• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/LU>
12 using namespace std;
13 
14 template<typename MatrixType>
matrix_l1_norm(const MatrixType & m)15 typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
16   return m.cwiseAbs().colwise().sum().maxCoeff();
17 }
18 
lu_non_invertible()19 template<typename MatrixType> void lu_non_invertible()
20 {
21   typedef typename MatrixType::Index Index;
22   typedef typename MatrixType::RealScalar RealScalar;
23   /* this test covers the following files:
24      LU.h
25   */
26   Index rows, cols, cols2;
27   if(MatrixType::RowsAtCompileTime==Dynamic)
28   {
29     rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
30   }
31   else
32   {
33     rows = MatrixType::RowsAtCompileTime;
34   }
35   if(MatrixType::ColsAtCompileTime==Dynamic)
36   {
37     cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
38     cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
39   }
40   else
41   {
42     cols2 = cols = MatrixType::ColsAtCompileTime;
43   }
44 
45   enum {
46     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
47     ColsAtCompileTime = MatrixType::ColsAtCompileTime
48   };
49   typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
50   typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
51   typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
52           CMatrixType;
53   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
54           RMatrixType;
55 
56   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
57 
58   // The image of the zero matrix should consist of a single (zero) column vector
59   VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
60 
61   MatrixType m1(rows, cols), m3(rows, cols2);
62   CMatrixType m2(cols, cols2);
63   createRandomPIMatrixOfRank(rank, rows, cols, m1);
64 
65   FullPivLU<MatrixType> lu;
66 
67   // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
68   // of singular values are either 0 or 1.
69   // So it's not clear at all that the epsilon should play any role there.
70   lu.setThreshold(RealScalar(0.01));
71   lu.compute(m1);
72 
73   MatrixType u(rows,cols);
74   u = lu.matrixLU().template triangularView<Upper>();
75   RMatrixType l = RMatrixType::Identity(rows,rows);
76   l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
77     = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
78 
79   VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
80 
81   KernelMatrixType m1kernel = lu.kernel();
82   ImageMatrixType m1image = lu.image(m1);
83 
84   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
85   VERIFY(rank == lu.rank());
86   VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
87   VERIFY(!lu.isInjective());
88   VERIFY(!lu.isInvertible());
89   VERIFY(!lu.isSurjective());
90   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
91   VERIFY(m1image.fullPivLu().rank() == rank);
92   VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
93 
94   m2 = CMatrixType::Random(cols,cols2);
95   m3 = m1*m2;
96   m2 = CMatrixType::Random(cols,cols2);
97   // test that the code, which does resize(), may be applied to an xpr
98   m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
99   VERIFY_IS_APPROX(m3, m1*m2);
100 
101   // test solve with transposed
102   m3 = MatrixType::Random(rows,cols2);
103   m2 = m1.transpose()*m3;
104   m3 = MatrixType::Random(rows,cols2);
105   lu.template _solve_impl_transposed<false>(m2, m3);
106   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
107   m3 = MatrixType::Random(rows,cols2);
108   m3 = lu.transpose().solve(m2);
109   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
110 
111   // test solve with conjugate transposed
112   m3 = MatrixType::Random(rows,cols2);
113   m2 = m1.adjoint()*m3;
114   m3 = MatrixType::Random(rows,cols2);
115   lu.template _solve_impl_transposed<true>(m2, m3);
116   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
117   m3 = MatrixType::Random(rows,cols2);
118   m3 = lu.adjoint().solve(m2);
119   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
120 }
121 
lu_invertible()122 template<typename MatrixType> void lu_invertible()
123 {
124   /* this test covers the following files:
125      LU.h
126   */
127   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
128   Index size = MatrixType::RowsAtCompileTime;
129   if( size==Dynamic)
130     size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
131 
132   MatrixType m1(size, size), m2(size, size), m3(size, size);
133   FullPivLU<MatrixType> lu;
134   lu.setThreshold(RealScalar(0.01));
135   do {
136     m1 = MatrixType::Random(size,size);
137     lu.compute(m1);
138   } while(!lu.isInvertible());
139 
140   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
141   VERIFY(0 == lu.dimensionOfKernel());
142   VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
143   VERIFY(size == lu.rank());
144   VERIFY(lu.isInjective());
145   VERIFY(lu.isSurjective());
146   VERIFY(lu.isInvertible());
147   VERIFY(lu.image(m1).fullPivLu().isInvertible());
148   m3 = MatrixType::Random(size,size);
149   m2 = lu.solve(m3);
150   VERIFY_IS_APPROX(m3, m1*m2);
151   MatrixType m1_inverse = lu.inverse();
152   VERIFY_IS_APPROX(m2, m1_inverse*m3);
153 
154   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
155   const RealScalar rcond_est = lu.rcond();
156   // Verify that the estimated condition number is within a factor of 10 of the
157   // truth.
158   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
159 
160   // test solve with transposed
161   lu.template _solve_impl_transposed<false>(m3, m2);
162   VERIFY_IS_APPROX(m3, m1.transpose()*m2);
163   m3 = MatrixType::Random(size,size);
164   m3 = lu.transpose().solve(m2);
165   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
166 
167   // test solve with conjugate transposed
168   lu.template _solve_impl_transposed<true>(m3, m2);
169   VERIFY_IS_APPROX(m3, m1.adjoint()*m2);
170   m3 = MatrixType::Random(size,size);
171   m3 = lu.adjoint().solve(m2);
172   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
173 
174   // Regression test for Bug 302
175   MatrixType m4 = MatrixType::Random(size,size);
176   VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
177 }
178 
lu_partial_piv()179 template<typename MatrixType> void lu_partial_piv()
180 {
181   /* this test covers the following files:
182      PartialPivLU.h
183   */
184   typedef typename MatrixType::Index Index;
185   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
186   Index size = internal::random<Index>(1,4);
187 
188   MatrixType m1(size, size), m2(size, size), m3(size, size);
189   m1.setRandom();
190   PartialPivLU<MatrixType> plu(m1);
191 
192   VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
193 
194   m3 = MatrixType::Random(size,size);
195   m2 = plu.solve(m3);
196   VERIFY_IS_APPROX(m3, m1*m2);
197   MatrixType m1_inverse = plu.inverse();
198   VERIFY_IS_APPROX(m2, m1_inverse*m3);
199 
200   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
201   const RealScalar rcond_est = plu.rcond();
202   // Verify that the estimate is within a factor of 10 of the truth.
203   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
204 
205   // test solve with transposed
206   plu.template _solve_impl_transposed<false>(m3, m2);
207   VERIFY_IS_APPROX(m3, m1.transpose()*m2);
208   m3 = MatrixType::Random(size,size);
209   m3 = plu.transpose().solve(m2);
210   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
211 
212   // test solve with conjugate transposed
213   plu.template _solve_impl_transposed<true>(m3, m2);
214   VERIFY_IS_APPROX(m3, m1.adjoint()*m2);
215   m3 = MatrixType::Random(size,size);
216   m3 = plu.adjoint().solve(m2);
217   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
218 }
219 
lu_verify_assert()220 template<typename MatrixType> void lu_verify_assert()
221 {
222   MatrixType tmp;
223 
224   FullPivLU<MatrixType> lu;
225   VERIFY_RAISES_ASSERT(lu.matrixLU())
226   VERIFY_RAISES_ASSERT(lu.permutationP())
227   VERIFY_RAISES_ASSERT(lu.permutationQ())
228   VERIFY_RAISES_ASSERT(lu.kernel())
229   VERIFY_RAISES_ASSERT(lu.image(tmp))
230   VERIFY_RAISES_ASSERT(lu.solve(tmp))
231   VERIFY_RAISES_ASSERT(lu.determinant())
232   VERIFY_RAISES_ASSERT(lu.rank())
233   VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
234   VERIFY_RAISES_ASSERT(lu.isInjective())
235   VERIFY_RAISES_ASSERT(lu.isSurjective())
236   VERIFY_RAISES_ASSERT(lu.isInvertible())
237   VERIFY_RAISES_ASSERT(lu.inverse())
238 
239   PartialPivLU<MatrixType> plu;
240   VERIFY_RAISES_ASSERT(plu.matrixLU())
241   VERIFY_RAISES_ASSERT(plu.permutationP())
242   VERIFY_RAISES_ASSERT(plu.solve(tmp))
243   VERIFY_RAISES_ASSERT(plu.determinant())
244   VERIFY_RAISES_ASSERT(plu.inverse())
245 }
246 
test_lu()247 void test_lu()
248 {
249   for(int i = 0; i < g_repeat; i++) {
250     CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
251     CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
252     CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
253 
254     CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
255     CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
256 
257     CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
258     CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
259     CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
260 
261     CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
262     CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
263     CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
264     CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
265 
266     CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
267     CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
268     CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
269 
270     CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
271     CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
272     CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
273     CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
274 
275     CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
276 
277     // Test problem size constructors
278     CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
279     CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
280   }
281 }
282