1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "branch-prob"
29
30 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
31 "Branch Probability Analysis", false, true)
32 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
33 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
34 "Branch Probability Analysis", false, true)
35
36 char BranchProbabilityInfoWrapperPass::ID = 0;
37
38 // Weights are for internal use only. They are used by heuristics to help to
39 // estimate edges' probability. Example:
40 //
41 // Using "Loop Branch Heuristics" we predict weights of edges for the
42 // block BB2.
43 // ...
44 // |
45 // V
46 // BB1<-+
47 // | |
48 // | | (Weight = 124)
49 // V |
50 // BB2--+
51 // |
52 // | (Weight = 4)
53 // V
54 // BB3
55 //
56 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
57 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
58 static const uint32_t LBH_TAKEN_WEIGHT = 124;
59 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
60
61 /// \brief Unreachable-terminating branch taken weight.
62 ///
63 /// This is the weight for a branch being taken to a block that terminates
64 /// (eventually) in unreachable. These are predicted as unlikely as possible.
65 static const uint32_t UR_TAKEN_WEIGHT = 1;
66
67 /// \brief Unreachable-terminating branch not-taken weight.
68 ///
69 /// This is the weight for a branch not being taken toward a block that
70 /// terminates (eventually) in unreachable. Such a branch is essentially never
71 /// taken. Set the weight to an absurdly high value so that nested loops don't
72 /// easily subsume it.
73 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
74
75 /// \brief Weight for a branch taken going into a cold block.
76 ///
77 /// This is the weight for a branch taken toward a block marked
78 /// cold. A block is marked cold if it's postdominated by a
79 /// block containing a call to a cold function. Cold functions
80 /// are those marked with attribute 'cold'.
81 static const uint32_t CC_TAKEN_WEIGHT = 4;
82
83 /// \brief Weight for a branch not-taken into a cold block.
84 ///
85 /// This is the weight for a branch not taken toward a block marked
86 /// cold.
87 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
88
89 static const uint32_t PH_TAKEN_WEIGHT = 20;
90 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
91
92 static const uint32_t ZH_TAKEN_WEIGHT = 20;
93 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
94
95 static const uint32_t FPH_TAKEN_WEIGHT = 20;
96 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
97
98 /// \brief Invoke-terminating normal branch taken weight
99 ///
100 /// This is the weight for branching to the normal destination of an invoke
101 /// instruction. We expect this to happen most of the time. Set the weight to an
102 /// absurdly high value so that nested loops subsume it.
103 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
104
105 /// \brief Invoke-terminating normal branch not-taken weight.
106 ///
107 /// This is the weight for branching to the unwind destination of an invoke
108 /// instruction. This is essentially never taken.
109 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
110
111 /// \brief Calculate edge weights for successors lead to unreachable.
112 ///
113 /// Predict that a successor which leads necessarily to an
114 /// unreachable-terminated block as extremely unlikely.
calcUnreachableHeuristics(const BasicBlock * BB)115 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
116 const TerminatorInst *TI = BB->getTerminator();
117 if (TI->getNumSuccessors() == 0) {
118 if (isa<UnreachableInst>(TI) ||
119 // If this block is terminated by a call to
120 // @llvm.experimental.deoptimize then treat it like an unreachable since
121 // the @llvm.experimental.deoptimize call is expected to practically
122 // never execute.
123 BB->getTerminatingDeoptimizeCall())
124 PostDominatedByUnreachable.insert(BB);
125 return false;
126 }
127
128 SmallVector<unsigned, 4> UnreachableEdges;
129 SmallVector<unsigned, 4> ReachableEdges;
130
131 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
132 if (PostDominatedByUnreachable.count(*I))
133 UnreachableEdges.push_back(I.getSuccessorIndex());
134 else
135 ReachableEdges.push_back(I.getSuccessorIndex());
136 }
137
138 // If all successors are in the set of blocks post-dominated by unreachable,
139 // this block is too.
140 if (UnreachableEdges.size() == TI->getNumSuccessors())
141 PostDominatedByUnreachable.insert(BB);
142
143 // Skip probabilities if this block has a single successor or if all were
144 // reachable.
145 if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
146 return false;
147
148 // If the terminator is an InvokeInst, check only the normal destination block
149 // as the unwind edge of InvokeInst is also very unlikely taken.
150 if (auto *II = dyn_cast<InvokeInst>(TI))
151 if (PostDominatedByUnreachable.count(II->getNormalDest())) {
152 PostDominatedByUnreachable.insert(BB);
153 // Return false here so that edge weights for InvokeInst could be decided
154 // in calcInvokeHeuristics().
155 return false;
156 }
157
158 if (ReachableEdges.empty()) {
159 BranchProbability Prob(1, UnreachableEdges.size());
160 for (unsigned SuccIdx : UnreachableEdges)
161 setEdgeProbability(BB, SuccIdx, Prob);
162 return true;
163 }
164
165 BranchProbability UnreachableProb(UR_TAKEN_WEIGHT,
166 (UR_TAKEN_WEIGHT + UR_NONTAKEN_WEIGHT) *
167 UnreachableEdges.size());
168 BranchProbability ReachableProb(UR_NONTAKEN_WEIGHT,
169 (UR_TAKEN_WEIGHT + UR_NONTAKEN_WEIGHT) *
170 ReachableEdges.size());
171
172 for (unsigned SuccIdx : UnreachableEdges)
173 setEdgeProbability(BB, SuccIdx, UnreachableProb);
174 for (unsigned SuccIdx : ReachableEdges)
175 setEdgeProbability(BB, SuccIdx, ReachableProb);
176
177 return true;
178 }
179
180 // Propagate existing explicit probabilities from either profile data or
181 // 'expect' intrinsic processing.
calcMetadataWeights(const BasicBlock * BB)182 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
183 const TerminatorInst *TI = BB->getTerminator();
184 if (TI->getNumSuccessors() == 1)
185 return false;
186 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
187 return false;
188
189 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
190 if (!WeightsNode)
191 return false;
192
193 // Check that the number of successors is manageable.
194 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
195
196 // Ensure there are weights for all of the successors. Note that the first
197 // operand to the metadata node is a name, not a weight.
198 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
199 return false;
200
201 // Build up the final weights that will be used in a temporary buffer.
202 // Compute the sum of all weights to later decide whether they need to
203 // be scaled to fit in 32 bits.
204 uint64_t WeightSum = 0;
205 SmallVector<uint32_t, 2> Weights;
206 Weights.reserve(TI->getNumSuccessors());
207 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
208 ConstantInt *Weight =
209 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
210 if (!Weight)
211 return false;
212 assert(Weight->getValue().getActiveBits() <= 32 &&
213 "Too many bits for uint32_t");
214 Weights.push_back(Weight->getZExtValue());
215 WeightSum += Weights.back();
216 }
217 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
218
219 // If the sum of weights does not fit in 32 bits, scale every weight down
220 // accordingly.
221 uint64_t ScalingFactor =
222 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
223
224 WeightSum = 0;
225 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
226 Weights[i] /= ScalingFactor;
227 WeightSum += Weights[i];
228 }
229
230 if (WeightSum == 0) {
231 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
232 setEdgeProbability(BB, i, {1, e});
233 } else {
234 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
235 setEdgeProbability(BB, i, {Weights[i], static_cast<uint32_t>(WeightSum)});
236 }
237
238 assert(WeightSum <= UINT32_MAX &&
239 "Expected weights to scale down to 32 bits");
240
241 return true;
242 }
243
244 /// \brief Calculate edge weights for edges leading to cold blocks.
245 ///
246 /// A cold block is one post-dominated by a block with a call to a
247 /// cold function. Those edges are unlikely to be taken, so we give
248 /// them relatively low weight.
249 ///
250 /// Return true if we could compute the weights for cold edges.
251 /// Return false, otherwise.
calcColdCallHeuristics(const BasicBlock * BB)252 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
253 const TerminatorInst *TI = BB->getTerminator();
254 if (TI->getNumSuccessors() == 0)
255 return false;
256
257 // Determine which successors are post-dominated by a cold block.
258 SmallVector<unsigned, 4> ColdEdges;
259 SmallVector<unsigned, 4> NormalEdges;
260 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
261 if (PostDominatedByColdCall.count(*I))
262 ColdEdges.push_back(I.getSuccessorIndex());
263 else
264 NormalEdges.push_back(I.getSuccessorIndex());
265
266 // If all successors are in the set of blocks post-dominated by cold calls,
267 // this block is in the set post-dominated by cold calls.
268 if (ColdEdges.size() == TI->getNumSuccessors())
269 PostDominatedByColdCall.insert(BB);
270 else {
271 // Otherwise, if the block itself contains a cold function, add it to the
272 // set of blocks postdominated by a cold call.
273 assert(!PostDominatedByColdCall.count(BB));
274 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
275 if (const CallInst *CI = dyn_cast<CallInst>(I))
276 if (CI->hasFnAttr(Attribute::Cold)) {
277 PostDominatedByColdCall.insert(BB);
278 break;
279 }
280 }
281
282 // Skip probabilities if this block has a single successor.
283 if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
284 return false;
285
286 if (NormalEdges.empty()) {
287 BranchProbability Prob(1, ColdEdges.size());
288 for (unsigned SuccIdx : ColdEdges)
289 setEdgeProbability(BB, SuccIdx, Prob);
290 return true;
291 }
292
293 BranchProbability ColdProb(CC_TAKEN_WEIGHT,
294 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) *
295 ColdEdges.size());
296 BranchProbability NormalProb(CC_NONTAKEN_WEIGHT,
297 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) *
298 NormalEdges.size());
299
300 for (unsigned SuccIdx : ColdEdges)
301 setEdgeProbability(BB, SuccIdx, ColdProb);
302 for (unsigned SuccIdx : NormalEdges)
303 setEdgeProbability(BB, SuccIdx, NormalProb);
304
305 return true;
306 }
307
308 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
309 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(const BasicBlock * BB)310 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
311 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
312 if (!BI || !BI->isConditional())
313 return false;
314
315 Value *Cond = BI->getCondition();
316 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
317 if (!CI || !CI->isEquality())
318 return false;
319
320 Value *LHS = CI->getOperand(0);
321
322 if (!LHS->getType()->isPointerTy())
323 return false;
324
325 assert(CI->getOperand(1)->getType()->isPointerTy());
326
327 // p != 0 -> isProb = true
328 // p == 0 -> isProb = false
329 // p != q -> isProb = true
330 // p == q -> isProb = false;
331 unsigned TakenIdx = 0, NonTakenIdx = 1;
332 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
333 if (!isProb)
334 std::swap(TakenIdx, NonTakenIdx);
335
336 BranchProbability TakenProb(PH_TAKEN_WEIGHT,
337 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
338 setEdgeProbability(BB, TakenIdx, TakenProb);
339 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
340 return true;
341 }
342
343 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
344 // as taken, exiting edges as not-taken.
calcLoopBranchHeuristics(const BasicBlock * BB,const LoopInfo & LI)345 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
346 const LoopInfo &LI) {
347 Loop *L = LI.getLoopFor(BB);
348 if (!L)
349 return false;
350
351 SmallVector<unsigned, 8> BackEdges;
352 SmallVector<unsigned, 8> ExitingEdges;
353 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
354
355 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
356 if (!L->contains(*I))
357 ExitingEdges.push_back(I.getSuccessorIndex());
358 else if (L->getHeader() == *I)
359 BackEdges.push_back(I.getSuccessorIndex());
360 else
361 InEdges.push_back(I.getSuccessorIndex());
362 }
363
364 if (BackEdges.empty() && ExitingEdges.empty())
365 return false;
366
367 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
368 // normalize them so that they sum up to one.
369 BranchProbability Probs[] = {BranchProbability::getZero(),
370 BranchProbability::getZero(),
371 BranchProbability::getZero()};
372 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
373 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
374 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
375 if (!BackEdges.empty())
376 Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
377 if (!InEdges.empty())
378 Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
379 if (!ExitingEdges.empty())
380 Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);
381
382 if (uint32_t numBackEdges = BackEdges.size()) {
383 auto Prob = Probs[0] / numBackEdges;
384 for (unsigned SuccIdx : BackEdges)
385 setEdgeProbability(BB, SuccIdx, Prob);
386 }
387
388 if (uint32_t numInEdges = InEdges.size()) {
389 auto Prob = Probs[1] / numInEdges;
390 for (unsigned SuccIdx : InEdges)
391 setEdgeProbability(BB, SuccIdx, Prob);
392 }
393
394 if (uint32_t numExitingEdges = ExitingEdges.size()) {
395 auto Prob = Probs[2] / numExitingEdges;
396 for (unsigned SuccIdx : ExitingEdges)
397 setEdgeProbability(BB, SuccIdx, Prob);
398 }
399
400 return true;
401 }
402
calcZeroHeuristics(const BasicBlock * BB)403 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB) {
404 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
405 if (!BI || !BI->isConditional())
406 return false;
407
408 Value *Cond = BI->getCondition();
409 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
410 if (!CI)
411 return false;
412
413 Value *RHS = CI->getOperand(1);
414 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
415 if (!CV)
416 return false;
417
418 // If the LHS is the result of AND'ing a value with a single bit bitmask,
419 // we don't have information about probabilities.
420 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
421 if (LHS->getOpcode() == Instruction::And)
422 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
423 if (AndRHS->getUniqueInteger().isPowerOf2())
424 return false;
425
426 bool isProb;
427 if (CV->isZero()) {
428 switch (CI->getPredicate()) {
429 case CmpInst::ICMP_EQ:
430 // X == 0 -> Unlikely
431 isProb = false;
432 break;
433 case CmpInst::ICMP_NE:
434 // X != 0 -> Likely
435 isProb = true;
436 break;
437 case CmpInst::ICMP_SLT:
438 // X < 0 -> Unlikely
439 isProb = false;
440 break;
441 case CmpInst::ICMP_SGT:
442 // X > 0 -> Likely
443 isProb = true;
444 break;
445 default:
446 return false;
447 }
448 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
449 // InstCombine canonicalizes X <= 0 into X < 1.
450 // X <= 0 -> Unlikely
451 isProb = false;
452 } else if (CV->isAllOnesValue()) {
453 switch (CI->getPredicate()) {
454 case CmpInst::ICMP_EQ:
455 // X == -1 -> Unlikely
456 isProb = false;
457 break;
458 case CmpInst::ICMP_NE:
459 // X != -1 -> Likely
460 isProb = true;
461 break;
462 case CmpInst::ICMP_SGT:
463 // InstCombine canonicalizes X >= 0 into X > -1.
464 // X >= 0 -> Likely
465 isProb = true;
466 break;
467 default:
468 return false;
469 }
470 } else {
471 return false;
472 }
473
474 unsigned TakenIdx = 0, NonTakenIdx = 1;
475
476 if (!isProb)
477 std::swap(TakenIdx, NonTakenIdx);
478
479 BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
480 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
481 setEdgeProbability(BB, TakenIdx, TakenProb);
482 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
483 return true;
484 }
485
calcFloatingPointHeuristics(const BasicBlock * BB)486 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
487 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
488 if (!BI || !BI->isConditional())
489 return false;
490
491 Value *Cond = BI->getCondition();
492 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
493 if (!FCmp)
494 return false;
495
496 bool isProb;
497 if (FCmp->isEquality()) {
498 // f1 == f2 -> Unlikely
499 // f1 != f2 -> Likely
500 isProb = !FCmp->isTrueWhenEqual();
501 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
502 // !isnan -> Likely
503 isProb = true;
504 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
505 // isnan -> Unlikely
506 isProb = false;
507 } else {
508 return false;
509 }
510
511 unsigned TakenIdx = 0, NonTakenIdx = 1;
512
513 if (!isProb)
514 std::swap(TakenIdx, NonTakenIdx);
515
516 BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
517 FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
518 setEdgeProbability(BB, TakenIdx, TakenProb);
519 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
520 return true;
521 }
522
calcInvokeHeuristics(const BasicBlock * BB)523 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
524 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
525 if (!II)
526 return false;
527
528 BranchProbability TakenProb(IH_TAKEN_WEIGHT,
529 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
530 setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
531 setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
532 return true;
533 }
534
releaseMemory()535 void BranchProbabilityInfo::releaseMemory() {
536 Probs.clear();
537 }
538
print(raw_ostream & OS) const539 void BranchProbabilityInfo::print(raw_ostream &OS) const {
540 OS << "---- Branch Probabilities ----\n";
541 // We print the probabilities from the last function the analysis ran over,
542 // or the function it is currently running over.
543 assert(LastF && "Cannot print prior to running over a function");
544 for (const auto &BI : *LastF) {
545 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
546 ++SI) {
547 printEdgeProbability(OS << " ", &BI, *SI);
548 }
549 }
550 }
551
552 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const553 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
554 // Hot probability is at least 4/5 = 80%
555 // FIXME: Compare against a static "hot" BranchProbability.
556 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
557 }
558
559 const BasicBlock *
getHotSucc(const BasicBlock * BB) const560 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
561 auto MaxProb = BranchProbability::getZero();
562 const BasicBlock *MaxSucc = nullptr;
563
564 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
565 const BasicBlock *Succ = *I;
566 auto Prob = getEdgeProbability(BB, Succ);
567 if (Prob > MaxProb) {
568 MaxProb = Prob;
569 MaxSucc = Succ;
570 }
571 }
572
573 // Hot probability is at least 4/5 = 80%
574 if (MaxProb > BranchProbability(4, 5))
575 return MaxSucc;
576
577 return nullptr;
578 }
579
580 /// Get the raw edge probability for the edge. If can't find it, return a
581 /// default probability 1/N where N is the number of successors. Here an edge is
582 /// specified using PredBlock and an
583 /// index to the successors.
584 BranchProbability
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const585 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
586 unsigned IndexInSuccessors) const {
587 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
588
589 if (I != Probs.end())
590 return I->second;
591
592 return {1,
593 static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
594 }
595
596 BranchProbability
getEdgeProbability(const BasicBlock * Src,succ_const_iterator Dst) const597 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
598 succ_const_iterator Dst) const {
599 return getEdgeProbability(Src, Dst.getSuccessorIndex());
600 }
601
602 /// Get the raw edge probability calculated for the block pair. This returns the
603 /// sum of all raw edge probabilities from Src to Dst.
604 BranchProbability
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const605 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
606 const BasicBlock *Dst) const {
607 auto Prob = BranchProbability::getZero();
608 bool FoundProb = false;
609 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
610 if (*I == Dst) {
611 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
612 if (MapI != Probs.end()) {
613 FoundProb = true;
614 Prob += MapI->second;
615 }
616 }
617 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
618 return FoundProb ? Prob : BranchProbability(1, succ_num);
619 }
620
621 /// Set the edge probability for a given edge specified by PredBlock and an
622 /// index to the successors.
setEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors,BranchProbability Prob)623 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
624 unsigned IndexInSuccessors,
625 BranchProbability Prob) {
626 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
627 DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
628 << " successor probability to " << Prob << "\n");
629 }
630
631 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const632 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
633 const BasicBlock *Src,
634 const BasicBlock *Dst) const {
635
636 const BranchProbability Prob = getEdgeProbability(Src, Dst);
637 OS << "edge " << Src->getName() << " -> " << Dst->getName()
638 << " probability is " << Prob
639 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
640
641 return OS;
642 }
643
calculate(const Function & F,const LoopInfo & LI)644 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI) {
645 DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
646 << " ----\n\n");
647 LastF = &F; // Store the last function we ran on for printing.
648 assert(PostDominatedByUnreachable.empty());
649 assert(PostDominatedByColdCall.empty());
650
651 // Walk the basic blocks in post-order so that we can build up state about
652 // the successors of a block iteratively.
653 for (auto BB : post_order(&F.getEntryBlock())) {
654 DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
655 if (calcUnreachableHeuristics(BB))
656 continue;
657 if (calcMetadataWeights(BB))
658 continue;
659 if (calcColdCallHeuristics(BB))
660 continue;
661 if (calcLoopBranchHeuristics(BB, LI))
662 continue;
663 if (calcPointerHeuristics(BB))
664 continue;
665 if (calcZeroHeuristics(BB))
666 continue;
667 if (calcFloatingPointHeuristics(BB))
668 continue;
669 calcInvokeHeuristics(BB);
670 }
671
672 PostDominatedByUnreachable.clear();
673 PostDominatedByColdCall.clear();
674 }
675
getAnalysisUsage(AnalysisUsage & AU) const676 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
677 AnalysisUsage &AU) const {
678 AU.addRequired<LoopInfoWrapperPass>();
679 AU.setPreservesAll();
680 }
681
runOnFunction(Function & F)682 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
683 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
684 BPI.calculate(F, LI);
685 return false;
686 }
687
releaseMemory()688 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
689
print(raw_ostream & OS,const Module *) const690 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
691 const Module *) const {
692 BPI.print(OS);
693 }
694
695 char BranchProbabilityAnalysis::PassID;
696 BranchProbabilityInfo
run(Function & F,AnalysisManager<Function> & AM)697 BranchProbabilityAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
698 BranchProbabilityInfo BPI;
699 BPI.calculate(F, AM.getResult<LoopAnalysis>(F));
700 return BPI;
701 }
702
703 PreservedAnalyses
run(Function & F,AnalysisManager<Function> & AM)704 BranchProbabilityPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
705 OS << "Printing analysis results of BPI for function "
706 << "'" << F.getName() << "':"
707 << "\n";
708 AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
709 return PreservedAnalyses::all();
710 }
711