1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39
40 namespace {
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44 // VALUE_SYMTAB_BLOCK abbrev id's.
45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 VST_ENTRY_7_ABBREV,
47 VST_ENTRY_6_ABBREV,
48 VST_BBENTRY_6_ABBREV,
49
50 // CONSTANTS_BLOCK abbrev id's.
51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52 CONSTANTS_INTEGER_ABBREV,
53 CONSTANTS_CE_CAST_Abbrev,
54 CONSTANTS_NULL_Abbrev,
55
56 // FUNCTION_BLOCK abbrev id's.
57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58 FUNCTION_INST_BINOP_ABBREV,
59 FUNCTION_INST_BINOP_FLAGS_ABBREV,
60 FUNCTION_INST_CAST_ABBREV,
61 FUNCTION_INST_RET_VOID_ABBREV,
62 FUNCTION_INST_RET_VAL_ABBREV,
63 FUNCTION_INST_UNREACHABLE_ABBREV,
64 FUNCTION_INST_GEP_ABBREV,
65 };
66
67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
68 /// file type. Owns the BitstreamWriter, and includes the main entry point for
69 /// writing.
70 class BitcodeWriter {
71 protected:
72 /// Pointer to the buffer allocated by caller for bitcode writing.
73 const SmallVectorImpl<char> &Buffer;
74
75 /// The stream created and owned by the BitodeWriter.
76 BitstreamWriter Stream;
77
78 /// Saves the offset of the VSTOffset record that must eventually be
79 /// backpatched with the offset of the actual VST.
80 uint64_t VSTOffsetPlaceholder = 0;
81
82 public:
83 /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
84 /// writing to the provided \p Buffer.
BitcodeWriter(SmallVectorImpl<char> & Buffer)85 BitcodeWriter(SmallVectorImpl<char> &Buffer)
86 : Buffer(Buffer), Stream(Buffer) {}
87
88 virtual ~BitcodeWriter() = default;
89
90 /// Main entry point to write the bitcode file, which writes the bitcode
91 /// header and will then invoke the virtual writeBlocks() method.
92 void write();
93
94 private:
95 /// Derived classes must implement this to write the corresponding blocks for
96 /// that bitcode file type.
97 virtual void writeBlocks() = 0;
98
99 protected:
hasVSTOffsetPlaceholder()100 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
101 void writeValueSymbolTableForwardDecl();
102 void writeBitcodeHeader();
103 };
104
105 /// Class to manage the bitcode writing for a module.
106 class ModuleBitcodeWriter : public BitcodeWriter {
107 /// The Module to write to bitcode.
108 const Module &M;
109
110 /// Enumerates ids for all values in the module.
111 ValueEnumerator VE;
112
113 /// Optional per-module index to write for ThinLTO.
114 const ModuleSummaryIndex *Index;
115
116 /// True if a module hash record should be written.
117 bool GenerateHash;
118
119 /// The start bit of the module block, for use in generating a module hash
120 uint64_t BitcodeStartBit = 0;
121
122 public:
123 /// Constructs a ModuleBitcodeWriter object for the given Module,
124 /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module * M,SmallVectorImpl<char> & Buffer,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash)125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
126 bool ShouldPreserveUseListOrder,
127 const ModuleSummaryIndex *Index, bool GenerateHash)
128 : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
129 Index(Index), GenerateHash(GenerateHash) {
130 // Save the start bit of the actual bitcode, in case there is space
131 // saved at the start for the darwin header above. The reader stream
132 // will start at the bitcode, and we need the offset of the VST
133 // to line up.
134 BitcodeStartBit = Stream.GetCurrentBitNo();
135 }
136
137 private:
138 /// Main entry point for writing a module to bitcode, invoked by
139 /// BitcodeWriter::write() after it writes the header.
140 void writeBlocks() override;
141
142 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
143 /// current llvm version, and a record for the epoch number.
144 void writeIdentificationBlock();
145
146 /// Emit the current module to the bitstream.
147 void writeModule();
148
bitcodeStartBit()149 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
150
151 void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
152 void writeAttributeGroupTable();
153 void writeAttributeTable();
154 void writeTypeTable();
155 void writeComdats();
156 void writeModuleInfo();
157 void writeValueAsMetadata(const ValueAsMetadata *MD,
158 SmallVectorImpl<uint64_t> &Record);
159 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
160 unsigned Abbrev);
161 unsigned createDILocationAbbrev();
162 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
163 unsigned &Abbrev);
164 unsigned createGenericDINodeAbbrev();
165 void writeGenericDINode(const GenericDINode *N,
166 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
167 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
168 unsigned Abbrev);
169 void writeDIEnumerator(const DIEnumerator *N,
170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
171 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
172 unsigned Abbrev);
173 void writeDIDerivedType(const DIDerivedType *N,
174 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
175 void writeDICompositeType(const DICompositeType *N,
176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
177 void writeDISubroutineType(const DISubroutineType *N,
178 SmallVectorImpl<uint64_t> &Record,
179 unsigned Abbrev);
180 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
181 unsigned Abbrev);
182 void writeDICompileUnit(const DICompileUnit *N,
183 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
184 void writeDISubprogram(const DISubprogram *N,
185 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
186 void writeDILexicalBlock(const DILexicalBlock *N,
187 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
188 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
189 SmallVectorImpl<uint64_t> &Record,
190 unsigned Abbrev);
191 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
192 unsigned Abbrev);
193 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
194 unsigned Abbrev);
195 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
196 unsigned Abbrev);
197 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
198 unsigned Abbrev);
199 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
200 SmallVectorImpl<uint64_t> &Record,
201 unsigned Abbrev);
202 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
203 SmallVectorImpl<uint64_t> &Record,
204 unsigned Abbrev);
205 void writeDIGlobalVariable(const DIGlobalVariable *N,
206 SmallVectorImpl<uint64_t> &Record,
207 unsigned Abbrev);
208 void writeDILocalVariable(const DILocalVariable *N,
209 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
210 void writeDIExpression(const DIExpression *N,
211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
212 void writeDIObjCProperty(const DIObjCProperty *N,
213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
214 void writeDIImportedEntity(const DIImportedEntity *N,
215 SmallVectorImpl<uint64_t> &Record,
216 unsigned Abbrev);
217 unsigned createNamedMetadataAbbrev();
218 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
219 unsigned createMetadataStringsAbbrev();
220 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
221 SmallVectorImpl<uint64_t> &Record);
222 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
223 SmallVectorImpl<uint64_t> &Record);
224 void writeModuleMetadata();
225 void writeFunctionMetadata(const Function &F);
226 void writeFunctionMetadataAttachment(const Function &F);
227 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
228 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
229 const GlobalObject &GO);
230 void writeModuleMetadataKinds();
231 void writeOperandBundleTags();
232 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
233 void writeModuleConstants();
234 bool pushValueAndType(const Value *V, unsigned InstID,
235 SmallVectorImpl<unsigned> &Vals);
236 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
237 void pushValue(const Value *V, unsigned InstID,
238 SmallVectorImpl<unsigned> &Vals);
239 void pushValueSigned(const Value *V, unsigned InstID,
240 SmallVectorImpl<uint64_t> &Vals);
241 void writeInstruction(const Instruction &I, unsigned InstID,
242 SmallVectorImpl<unsigned> &Vals);
243 void writeValueSymbolTable(
244 const ValueSymbolTable &VST, bool IsModuleLevel = false,
245 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
246 void writeUseList(UseListOrder &&Order);
247 void writeUseListBlock(const Function *F);
248 void
249 writeFunction(const Function &F,
250 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
251 void writeBlockInfo();
252 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
253 GlobalValueSummary *Summary,
254 unsigned ValueID,
255 unsigned FSCallsAbbrev,
256 unsigned FSCallsProfileAbbrev,
257 const Function &F);
258 void writeModuleLevelReferences(const GlobalVariable &V,
259 SmallVector<uint64_t, 64> &NameVals,
260 unsigned FSModRefsAbbrev);
261 void writePerModuleGlobalValueSummary();
262 void writeModuleHash(size_t BlockStartPos);
263 };
264
265 /// Class to manage the bitcode writing for a combined index.
266 class IndexBitcodeWriter : public BitcodeWriter {
267 /// The combined index to write to bitcode.
268 const ModuleSummaryIndex &Index;
269
270 /// When writing a subset of the index for distributed backends, client
271 /// provides a map of modules to the corresponding GUIDs/summaries to write.
272 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
273
274 /// Map that holds the correspondence between the GUID used in the combined
275 /// index and a value id generated by this class to use in references.
276 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
277
278 /// Tracks the last value id recorded in the GUIDToValueMap.
279 unsigned GlobalValueId = 0;
280
281 public:
282 /// Constructs a IndexBitcodeWriter object for the given combined index,
283 /// writing to the provided \p Buffer. When writing a subset of the index
284 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(SmallVectorImpl<char> & Buffer,const ModuleSummaryIndex & Index,std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)285 IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
286 const ModuleSummaryIndex &Index,
287 std::map<std::string, GVSummaryMapTy>
288 *ModuleToSummariesForIndex = nullptr)
289 : BitcodeWriter(Buffer), Index(Index),
290 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
291 // Assign unique value ids to all summaries to be written, for use
292 // in writing out the call graph edges. Save the mapping from GUID
293 // to the new global value id to use when writing those edges, which
294 // are currently saved in the index in terms of GUID.
295 for (const auto &I : *this)
296 GUIDToValueIdMap[I.first] = ++GlobalValueId;
297 }
298
299 /// The below iterator returns the GUID and associated summary.
300 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
301
302 /// Iterator over the value GUID and summaries to be written to bitcode,
303 /// hides the details of whether they are being pulled from the entire
304 /// index or just those in a provided ModuleToSummariesForIndex map.
305 class iterator
306 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
307 GVInfo> {
308 /// Enables access to parent class.
309 const IndexBitcodeWriter &Writer;
310
311 // Iterators used when writing only those summaries in a provided
312 // ModuleToSummariesForIndex map:
313
314 /// Points to the last element in outer ModuleToSummariesForIndex map.
315 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
316 /// Iterator on outer ModuleToSummariesForIndex map.
317 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
318 /// Iterator on an inner global variable summary map.
319 GVSummaryMapTy::iterator ModuleGVSummariesIter;
320
321 // Iterators used when writing all summaries in the index:
322
323 /// Points to the last element in the Index outer GlobalValueMap.
324 const_gvsummary_iterator IndexSummariesBack;
325 /// Iterator on outer GlobalValueMap.
326 const_gvsummary_iterator IndexSummariesIter;
327 /// Iterator on an inner GlobalValueSummaryList.
328 GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
329
330 public:
331 /// Construct iterator from parent \p Writer and indicate if we are
332 /// constructing the end iterator.
iterator(const IndexBitcodeWriter & Writer,bool IsAtEnd)333 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
334 // Set up the appropriate set of iterators given whether we are writing
335 // the full index or just a subset.
336 // Can't setup the Back or inner iterators if the corresponding map
337 // is empty. This will be handled specially in operator== as well.
338 if (Writer.ModuleToSummariesForIndex &&
339 !Writer.ModuleToSummariesForIndex->empty()) {
340 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
341 std::next(ModuleSummariesBack) !=
342 Writer.ModuleToSummariesForIndex->end();
343 ModuleSummariesBack++)
344 ;
345 ModuleSummariesIter = !IsAtEnd
346 ? Writer.ModuleToSummariesForIndex->begin()
347 : ModuleSummariesBack;
348 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
349 : ModuleSummariesBack->second.end();
350 } else if (!Writer.ModuleToSummariesForIndex &&
351 Writer.Index.begin() != Writer.Index.end()) {
352 for (IndexSummariesBack = Writer.Index.begin();
353 std::next(IndexSummariesBack) != Writer.Index.end();
354 IndexSummariesBack++)
355 ;
356 IndexSummariesIter =
357 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
358 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
359 : IndexSummariesBack->second.end();
360 }
361 }
362
363 /// Increment the appropriate set of iterators.
operator ++()364 iterator &operator++() {
365 // First the inner iterator is incremented, then if it is at the end
366 // and there are more outer iterations to go, the inner is reset to
367 // the start of the next inner list.
368 if (Writer.ModuleToSummariesForIndex) {
369 ++ModuleGVSummariesIter;
370 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
371 ModuleSummariesIter != ModuleSummariesBack) {
372 ++ModuleSummariesIter;
373 ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
374 }
375 } else {
376 ++IndexGVSummariesIter;
377 if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
378 IndexSummariesIter != IndexSummariesBack) {
379 ++IndexSummariesIter;
380 IndexGVSummariesIter = IndexSummariesIter->second.begin();
381 }
382 }
383 return *this;
384 }
385
386 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
387 /// outer and inner iterator positions.
operator *()388 GVInfo operator*() {
389 if (Writer.ModuleToSummariesForIndex)
390 return std::make_pair(ModuleGVSummariesIter->first,
391 ModuleGVSummariesIter->second);
392 return std::make_pair(IndexSummariesIter->first,
393 IndexGVSummariesIter->get());
394 }
395
396 /// Checks if the iterators are equal, with special handling for empty
397 /// indexes.
operator ==(const iterator & RHS) const398 bool operator==(const iterator &RHS) const {
399 if (Writer.ModuleToSummariesForIndex) {
400 // First ensure that both are writing the same subset.
401 if (Writer.ModuleToSummariesForIndex !=
402 RHS.Writer.ModuleToSummariesForIndex)
403 return false;
404 // Already determined above that maps are the same, so if one is
405 // empty, they both are.
406 if (Writer.ModuleToSummariesForIndex->empty())
407 return true;
408 // Ensure the ModuleGVSummariesIter are iterating over the same
409 // container before checking them below.
410 if (ModuleSummariesIter != RHS.ModuleSummariesIter)
411 return false;
412 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
413 }
414 // First ensure RHS also writing the full index, and that both are
415 // writing the same full index.
416 if (RHS.Writer.ModuleToSummariesForIndex ||
417 &Writer.Index != &RHS.Writer.Index)
418 return false;
419 // Already determined above that maps are the same, so if one is
420 // empty, they both are.
421 if (Writer.Index.begin() == Writer.Index.end())
422 return true;
423 // Ensure the IndexGVSummariesIter are iterating over the same
424 // container before checking them below.
425 if (IndexSummariesIter != RHS.IndexSummariesIter)
426 return false;
427 return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
428 }
429 };
430
431 /// Obtain the start iterator over the summaries to be written.
begin()432 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
433 /// Obtain the end iterator over the summaries to be written.
end()434 iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
435
436 private:
437 /// Main entry point for writing a combined index to bitcode, invoked by
438 /// BitcodeWriter::write() after it writes the header.
439 void writeBlocks() override;
440
441 void writeIndex();
442 void writeModStrings();
443 void writeCombinedValueSymbolTable();
444 void writeCombinedGlobalValueSummary();
445
446 /// Indicates whether the provided \p ModulePath should be written into
447 /// the module string table, e.g. if full index written or if it is in
448 /// the provided subset.
doIncludeModule(StringRef ModulePath)449 bool doIncludeModule(StringRef ModulePath) {
450 return !ModuleToSummariesForIndex ||
451 ModuleToSummariesForIndex->count(ModulePath);
452 }
453
hasValueId(GlobalValue::GUID ValGUID)454 bool hasValueId(GlobalValue::GUID ValGUID) {
455 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
456 return VMI != GUIDToValueIdMap.end();
457 }
getValueId(GlobalValue::GUID ValGUID)458 unsigned getValueId(GlobalValue::GUID ValGUID) {
459 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
460 // If this GUID doesn't have an entry, assign one.
461 if (VMI == GUIDToValueIdMap.end()) {
462 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
463 return GlobalValueId;
464 } else {
465 return VMI->second;
466 }
467 }
valueIds()468 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
469 };
470 } // end anonymous namespace
471
getEncodedCastOpcode(unsigned Opcode)472 static unsigned getEncodedCastOpcode(unsigned Opcode) {
473 switch (Opcode) {
474 default: llvm_unreachable("Unknown cast instruction!");
475 case Instruction::Trunc : return bitc::CAST_TRUNC;
476 case Instruction::ZExt : return bitc::CAST_ZEXT;
477 case Instruction::SExt : return bitc::CAST_SEXT;
478 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
479 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
480 case Instruction::UIToFP : return bitc::CAST_UITOFP;
481 case Instruction::SIToFP : return bitc::CAST_SITOFP;
482 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
483 case Instruction::FPExt : return bitc::CAST_FPEXT;
484 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
485 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
486 case Instruction::BitCast : return bitc::CAST_BITCAST;
487 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
488 }
489 }
490
getEncodedBinaryOpcode(unsigned Opcode)491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
492 switch (Opcode) {
493 default: llvm_unreachable("Unknown binary instruction!");
494 case Instruction::Add:
495 case Instruction::FAdd: return bitc::BINOP_ADD;
496 case Instruction::Sub:
497 case Instruction::FSub: return bitc::BINOP_SUB;
498 case Instruction::Mul:
499 case Instruction::FMul: return bitc::BINOP_MUL;
500 case Instruction::UDiv: return bitc::BINOP_UDIV;
501 case Instruction::FDiv:
502 case Instruction::SDiv: return bitc::BINOP_SDIV;
503 case Instruction::URem: return bitc::BINOP_UREM;
504 case Instruction::FRem:
505 case Instruction::SRem: return bitc::BINOP_SREM;
506 case Instruction::Shl: return bitc::BINOP_SHL;
507 case Instruction::LShr: return bitc::BINOP_LSHR;
508 case Instruction::AShr: return bitc::BINOP_ASHR;
509 case Instruction::And: return bitc::BINOP_AND;
510 case Instruction::Or: return bitc::BINOP_OR;
511 case Instruction::Xor: return bitc::BINOP_XOR;
512 }
513 }
514
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
516 switch (Op) {
517 default: llvm_unreachable("Unknown RMW operation!");
518 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
519 case AtomicRMWInst::Add: return bitc::RMW_ADD;
520 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
521 case AtomicRMWInst::And: return bitc::RMW_AND;
522 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
523 case AtomicRMWInst::Or: return bitc::RMW_OR;
524 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
525 case AtomicRMWInst::Max: return bitc::RMW_MAX;
526 case AtomicRMWInst::Min: return bitc::RMW_MIN;
527 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
528 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
529 }
530 }
531
getEncodedOrdering(AtomicOrdering Ordering)532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
533 switch (Ordering) {
534 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
535 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
536 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
537 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
538 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
539 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
540 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
541 }
542 llvm_unreachable("Invalid ordering");
543 }
544
getEncodedSynchScope(SynchronizationScope SynchScope)545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
546 switch (SynchScope) {
547 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
548 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
549 }
550 llvm_unreachable("Invalid synch scope");
551 }
552
writeStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse)553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
554 unsigned AbbrevToUse) {
555 SmallVector<unsigned, 64> Vals;
556
557 // Code: [strchar x N]
558 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
559 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
560 AbbrevToUse = 0;
561 Vals.push_back(Str[i]);
562 }
563
564 // Emit the finished record.
565 Stream.EmitRecord(Code, Vals, AbbrevToUse);
566 }
567
getAttrKindEncoding(Attribute::AttrKind Kind)568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
569 switch (Kind) {
570 case Attribute::Alignment:
571 return bitc::ATTR_KIND_ALIGNMENT;
572 case Attribute::AllocSize:
573 return bitc::ATTR_KIND_ALLOC_SIZE;
574 case Attribute::AlwaysInline:
575 return bitc::ATTR_KIND_ALWAYS_INLINE;
576 case Attribute::ArgMemOnly:
577 return bitc::ATTR_KIND_ARGMEMONLY;
578 case Attribute::Builtin:
579 return bitc::ATTR_KIND_BUILTIN;
580 case Attribute::ByVal:
581 return bitc::ATTR_KIND_BY_VAL;
582 case Attribute::Convergent:
583 return bitc::ATTR_KIND_CONVERGENT;
584 case Attribute::InAlloca:
585 return bitc::ATTR_KIND_IN_ALLOCA;
586 case Attribute::Cold:
587 return bitc::ATTR_KIND_COLD;
588 case Attribute::InaccessibleMemOnly:
589 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
590 case Attribute::InaccessibleMemOrArgMemOnly:
591 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
592 case Attribute::InlineHint:
593 return bitc::ATTR_KIND_INLINE_HINT;
594 case Attribute::InReg:
595 return bitc::ATTR_KIND_IN_REG;
596 case Attribute::JumpTable:
597 return bitc::ATTR_KIND_JUMP_TABLE;
598 case Attribute::MinSize:
599 return bitc::ATTR_KIND_MIN_SIZE;
600 case Attribute::Naked:
601 return bitc::ATTR_KIND_NAKED;
602 case Attribute::Nest:
603 return bitc::ATTR_KIND_NEST;
604 case Attribute::NoAlias:
605 return bitc::ATTR_KIND_NO_ALIAS;
606 case Attribute::NoBuiltin:
607 return bitc::ATTR_KIND_NO_BUILTIN;
608 case Attribute::NoCapture:
609 return bitc::ATTR_KIND_NO_CAPTURE;
610 case Attribute::NoDuplicate:
611 return bitc::ATTR_KIND_NO_DUPLICATE;
612 case Attribute::NoImplicitFloat:
613 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
614 case Attribute::NoInline:
615 return bitc::ATTR_KIND_NO_INLINE;
616 case Attribute::NoRecurse:
617 return bitc::ATTR_KIND_NO_RECURSE;
618 case Attribute::NonLazyBind:
619 return bitc::ATTR_KIND_NON_LAZY_BIND;
620 case Attribute::NonNull:
621 return bitc::ATTR_KIND_NON_NULL;
622 case Attribute::Dereferenceable:
623 return bitc::ATTR_KIND_DEREFERENCEABLE;
624 case Attribute::DereferenceableOrNull:
625 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
626 case Attribute::NoRedZone:
627 return bitc::ATTR_KIND_NO_RED_ZONE;
628 case Attribute::NoReturn:
629 return bitc::ATTR_KIND_NO_RETURN;
630 case Attribute::NoUnwind:
631 return bitc::ATTR_KIND_NO_UNWIND;
632 case Attribute::OptimizeForSize:
633 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
634 case Attribute::OptimizeNone:
635 return bitc::ATTR_KIND_OPTIMIZE_NONE;
636 case Attribute::ReadNone:
637 return bitc::ATTR_KIND_READ_NONE;
638 case Attribute::ReadOnly:
639 return bitc::ATTR_KIND_READ_ONLY;
640 case Attribute::Returned:
641 return bitc::ATTR_KIND_RETURNED;
642 case Attribute::ReturnsTwice:
643 return bitc::ATTR_KIND_RETURNS_TWICE;
644 case Attribute::SExt:
645 return bitc::ATTR_KIND_S_EXT;
646 case Attribute::StackAlignment:
647 return bitc::ATTR_KIND_STACK_ALIGNMENT;
648 case Attribute::StackProtect:
649 return bitc::ATTR_KIND_STACK_PROTECT;
650 case Attribute::StackProtectReq:
651 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
652 case Attribute::StackProtectStrong:
653 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
654 case Attribute::SafeStack:
655 return bitc::ATTR_KIND_SAFESTACK;
656 case Attribute::StructRet:
657 return bitc::ATTR_KIND_STRUCT_RET;
658 case Attribute::SanitizeAddress:
659 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
660 case Attribute::SanitizeThread:
661 return bitc::ATTR_KIND_SANITIZE_THREAD;
662 case Attribute::SanitizeMemory:
663 return bitc::ATTR_KIND_SANITIZE_MEMORY;
664 case Attribute::SwiftError:
665 return bitc::ATTR_KIND_SWIFT_ERROR;
666 case Attribute::SwiftSelf:
667 return bitc::ATTR_KIND_SWIFT_SELF;
668 case Attribute::UWTable:
669 return bitc::ATTR_KIND_UW_TABLE;
670 case Attribute::WriteOnly:
671 return bitc::ATTR_KIND_WRITEONLY;
672 case Attribute::ZExt:
673 return bitc::ATTR_KIND_Z_EXT;
674 case Attribute::EndAttrKinds:
675 llvm_unreachable("Can not encode end-attribute kinds marker.");
676 case Attribute::None:
677 llvm_unreachable("Can not encode none-attribute.");
678 }
679
680 llvm_unreachable("Trying to encode unknown attribute");
681 }
682
writeAttributeGroupTable()683 void ModuleBitcodeWriter::writeAttributeGroupTable() {
684 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
685 if (AttrGrps.empty()) return;
686
687 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
688
689 SmallVector<uint64_t, 64> Record;
690 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
691 AttributeSet AS = AttrGrps[i];
692 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
693 AttributeSet A = AS.getSlotAttributes(i);
694
695 Record.push_back(VE.getAttributeGroupID(A));
696 Record.push_back(AS.getSlotIndex(i));
697
698 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
699 I != E; ++I) {
700 Attribute Attr = *I;
701 if (Attr.isEnumAttribute()) {
702 Record.push_back(0);
703 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
704 } else if (Attr.isIntAttribute()) {
705 Record.push_back(1);
706 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
707 Record.push_back(Attr.getValueAsInt());
708 } else {
709 StringRef Kind = Attr.getKindAsString();
710 StringRef Val = Attr.getValueAsString();
711
712 Record.push_back(Val.empty() ? 3 : 4);
713 Record.append(Kind.begin(), Kind.end());
714 Record.push_back(0);
715 if (!Val.empty()) {
716 Record.append(Val.begin(), Val.end());
717 Record.push_back(0);
718 }
719 }
720 }
721
722 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
723 Record.clear();
724 }
725 }
726
727 Stream.ExitBlock();
728 }
729
writeAttributeTable()730 void ModuleBitcodeWriter::writeAttributeTable() {
731 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
732 if (Attrs.empty()) return;
733
734 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
735
736 SmallVector<uint64_t, 64> Record;
737 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
738 const AttributeSet &A = Attrs[i];
739 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
740 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
741
742 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
743 Record.clear();
744 }
745
746 Stream.ExitBlock();
747 }
748
749 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()750 void ModuleBitcodeWriter::writeTypeTable() {
751 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
752
753 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
754 SmallVector<uint64_t, 64> TypeVals;
755
756 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
757
758 // Abbrev for TYPE_CODE_POINTER.
759 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
760 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
762 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
763 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
764
765 // Abbrev for TYPE_CODE_FUNCTION.
766 Abbv = new BitCodeAbbrev();
767 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
771
772 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
773
774 // Abbrev for TYPE_CODE_STRUCT_ANON.
775 Abbv = new BitCodeAbbrev();
776 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
780
781 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
782
783 // Abbrev for TYPE_CODE_STRUCT_NAME.
784 Abbv = new BitCodeAbbrev();
785 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
788 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
789
790 // Abbrev for TYPE_CODE_STRUCT_NAMED.
791 Abbv = new BitCodeAbbrev();
792 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
796
797 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
798
799 // Abbrev for TYPE_CODE_ARRAY.
800 Abbv = new BitCodeAbbrev();
801 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
804
805 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
806
807 // Emit an entry count so the reader can reserve space.
808 TypeVals.push_back(TypeList.size());
809 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
810 TypeVals.clear();
811
812 // Loop over all of the types, emitting each in turn.
813 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
814 Type *T = TypeList[i];
815 int AbbrevToUse = 0;
816 unsigned Code = 0;
817
818 switch (T->getTypeID()) {
819 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
820 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
821 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
822 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
823 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
824 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
825 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
826 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
827 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
828 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
829 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
830 case Type::IntegerTyID:
831 // INTEGER: [width]
832 Code = bitc::TYPE_CODE_INTEGER;
833 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
834 break;
835 case Type::PointerTyID: {
836 PointerType *PTy = cast<PointerType>(T);
837 // POINTER: [pointee type, address space]
838 Code = bitc::TYPE_CODE_POINTER;
839 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
840 unsigned AddressSpace = PTy->getAddressSpace();
841 TypeVals.push_back(AddressSpace);
842 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
843 break;
844 }
845 case Type::FunctionTyID: {
846 FunctionType *FT = cast<FunctionType>(T);
847 // FUNCTION: [isvararg, retty, paramty x N]
848 Code = bitc::TYPE_CODE_FUNCTION;
849 TypeVals.push_back(FT->isVarArg());
850 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
851 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
852 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
853 AbbrevToUse = FunctionAbbrev;
854 break;
855 }
856 case Type::StructTyID: {
857 StructType *ST = cast<StructType>(T);
858 // STRUCT: [ispacked, eltty x N]
859 TypeVals.push_back(ST->isPacked());
860 // Output all of the element types.
861 for (StructType::element_iterator I = ST->element_begin(),
862 E = ST->element_end(); I != E; ++I)
863 TypeVals.push_back(VE.getTypeID(*I));
864
865 if (ST->isLiteral()) {
866 Code = bitc::TYPE_CODE_STRUCT_ANON;
867 AbbrevToUse = StructAnonAbbrev;
868 } else {
869 if (ST->isOpaque()) {
870 Code = bitc::TYPE_CODE_OPAQUE;
871 } else {
872 Code = bitc::TYPE_CODE_STRUCT_NAMED;
873 AbbrevToUse = StructNamedAbbrev;
874 }
875
876 // Emit the name if it is present.
877 if (!ST->getName().empty())
878 writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
879 StructNameAbbrev);
880 }
881 break;
882 }
883 case Type::ArrayTyID: {
884 ArrayType *AT = cast<ArrayType>(T);
885 // ARRAY: [numelts, eltty]
886 Code = bitc::TYPE_CODE_ARRAY;
887 TypeVals.push_back(AT->getNumElements());
888 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
889 AbbrevToUse = ArrayAbbrev;
890 break;
891 }
892 case Type::VectorTyID: {
893 VectorType *VT = cast<VectorType>(T);
894 // VECTOR [numelts, eltty]
895 Code = bitc::TYPE_CODE_VECTOR;
896 TypeVals.push_back(VT->getNumElements());
897 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
898 break;
899 }
900 }
901
902 // Emit the finished record.
903 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
904 TypeVals.clear();
905 }
906
907 Stream.ExitBlock();
908 }
909
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)910 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
911 switch (Linkage) {
912 case GlobalValue::ExternalLinkage:
913 return 0;
914 case GlobalValue::WeakAnyLinkage:
915 return 16;
916 case GlobalValue::AppendingLinkage:
917 return 2;
918 case GlobalValue::InternalLinkage:
919 return 3;
920 case GlobalValue::LinkOnceAnyLinkage:
921 return 18;
922 case GlobalValue::ExternalWeakLinkage:
923 return 7;
924 case GlobalValue::CommonLinkage:
925 return 8;
926 case GlobalValue::PrivateLinkage:
927 return 9;
928 case GlobalValue::WeakODRLinkage:
929 return 17;
930 case GlobalValue::LinkOnceODRLinkage:
931 return 19;
932 case GlobalValue::AvailableExternallyLinkage:
933 return 12;
934 }
935 llvm_unreachable("Invalid linkage");
936 }
937
getEncodedLinkage(const GlobalValue & GV)938 static unsigned getEncodedLinkage(const GlobalValue &GV) {
939 return getEncodedLinkage(GV.getLinkage());
940 }
941
942 // Decode the flags for GlobalValue in the summary
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)943 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
944 uint64_t RawFlags = 0;
945
946 RawFlags |= Flags.HasSection; // bool
947
948 // Linkage don't need to be remapped at that time for the summary. Any future
949 // change to the getEncodedLinkage() function will need to be taken into
950 // account here as well.
951 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
952
953 return RawFlags;
954 }
955
getEncodedVisibility(const GlobalValue & GV)956 static unsigned getEncodedVisibility(const GlobalValue &GV) {
957 switch (GV.getVisibility()) {
958 case GlobalValue::DefaultVisibility: return 0;
959 case GlobalValue::HiddenVisibility: return 1;
960 case GlobalValue::ProtectedVisibility: return 2;
961 }
962 llvm_unreachable("Invalid visibility");
963 }
964
getEncodedDLLStorageClass(const GlobalValue & GV)965 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
966 switch (GV.getDLLStorageClass()) {
967 case GlobalValue::DefaultStorageClass: return 0;
968 case GlobalValue::DLLImportStorageClass: return 1;
969 case GlobalValue::DLLExportStorageClass: return 2;
970 }
971 llvm_unreachable("Invalid DLL storage class");
972 }
973
getEncodedThreadLocalMode(const GlobalValue & GV)974 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
975 switch (GV.getThreadLocalMode()) {
976 case GlobalVariable::NotThreadLocal: return 0;
977 case GlobalVariable::GeneralDynamicTLSModel: return 1;
978 case GlobalVariable::LocalDynamicTLSModel: return 2;
979 case GlobalVariable::InitialExecTLSModel: return 3;
980 case GlobalVariable::LocalExecTLSModel: return 4;
981 }
982 llvm_unreachable("Invalid TLS model");
983 }
984
getEncodedComdatSelectionKind(const Comdat & C)985 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
986 switch (C.getSelectionKind()) {
987 case Comdat::Any:
988 return bitc::COMDAT_SELECTION_KIND_ANY;
989 case Comdat::ExactMatch:
990 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
991 case Comdat::Largest:
992 return bitc::COMDAT_SELECTION_KIND_LARGEST;
993 case Comdat::NoDuplicates:
994 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
995 case Comdat::SameSize:
996 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
997 }
998 llvm_unreachable("Invalid selection kind");
999 }
1000
getEncodedUnnamedAddr(const GlobalValue & GV)1001 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1002 switch (GV.getUnnamedAddr()) {
1003 case GlobalValue::UnnamedAddr::None: return 0;
1004 case GlobalValue::UnnamedAddr::Local: return 2;
1005 case GlobalValue::UnnamedAddr::Global: return 1;
1006 }
1007 llvm_unreachable("Invalid unnamed_addr");
1008 }
1009
writeComdats()1010 void ModuleBitcodeWriter::writeComdats() {
1011 SmallVector<unsigned, 64> Vals;
1012 for (const Comdat *C : VE.getComdats()) {
1013 // COMDAT: [selection_kind, name]
1014 Vals.push_back(getEncodedComdatSelectionKind(*C));
1015 size_t Size = C->getName().size();
1016 assert(isUInt<32>(Size));
1017 Vals.push_back(Size);
1018 for (char Chr : C->getName())
1019 Vals.push_back((unsigned char)Chr);
1020 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1021 Vals.clear();
1022 }
1023 }
1024
1025 /// Write a record that will eventually hold the word offset of the
1026 /// module-level VST. For now the offset is 0, which will be backpatched
1027 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1028 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
1029 // Write a placeholder value in for the offset of the real VST,
1030 // which is written after the function blocks so that it can include
1031 // the offset of each function. The placeholder offset will be
1032 // updated when the real VST is written.
1033 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1034 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1035 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1036 // hold the real VST offset. Must use fixed instead of VBR as we don't
1037 // know how many VBR chunks to reserve ahead of time.
1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1039 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1040
1041 // Emit the placeholder
1042 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1043 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1044
1045 // Compute and save the bit offset to the placeholder, which will be
1046 // patched when the real VST is written. We can simply subtract the 32-bit
1047 // fixed size from the current bit number to get the location to backpatch.
1048 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1049 }
1050
1051 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1052
1053 /// Determine the encoding to use for the given string name and length.
getStringEncoding(const char * Str,unsigned StrLen)1054 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1055 bool isChar6 = true;
1056 for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1057 if (isChar6)
1058 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1059 if ((unsigned char)*C & 128)
1060 // don't bother scanning the rest.
1061 return SE_Fixed8;
1062 }
1063 if (isChar6)
1064 return SE_Char6;
1065 else
1066 return SE_Fixed7;
1067 }
1068
1069 /// Emit top-level description of module, including target triple, inline asm,
1070 /// descriptors for global variables, and function prototype info.
1071 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1072 void ModuleBitcodeWriter::writeModuleInfo() {
1073 // Emit various pieces of data attached to a module.
1074 if (!M.getTargetTriple().empty())
1075 writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1076 0 /*TODO*/);
1077 const std::string &DL = M.getDataLayoutStr();
1078 if (!DL.empty())
1079 writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1080 if (!M.getModuleInlineAsm().empty())
1081 writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1082 0 /*TODO*/);
1083
1084 // Emit information about sections and GC, computing how many there are. Also
1085 // compute the maximum alignment value.
1086 std::map<std::string, unsigned> SectionMap;
1087 std::map<std::string, unsigned> GCMap;
1088 unsigned MaxAlignment = 0;
1089 unsigned MaxGlobalType = 0;
1090 for (const GlobalValue &GV : M.globals()) {
1091 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1092 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1093 if (GV.hasSection()) {
1094 // Give section names unique ID's.
1095 unsigned &Entry = SectionMap[GV.getSection()];
1096 if (!Entry) {
1097 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1098 0 /*TODO*/);
1099 Entry = SectionMap.size();
1100 }
1101 }
1102 }
1103 for (const Function &F : M) {
1104 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1105 if (F.hasSection()) {
1106 // Give section names unique ID's.
1107 unsigned &Entry = SectionMap[F.getSection()];
1108 if (!Entry) {
1109 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1110 0 /*TODO*/);
1111 Entry = SectionMap.size();
1112 }
1113 }
1114 if (F.hasGC()) {
1115 // Same for GC names.
1116 unsigned &Entry = GCMap[F.getGC()];
1117 if (!Entry) {
1118 writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
1119 Entry = GCMap.size();
1120 }
1121 }
1122 }
1123
1124 // Emit abbrev for globals, now that we know # sections and max alignment.
1125 unsigned SimpleGVarAbbrev = 0;
1126 if (!M.global_empty()) {
1127 // Add an abbrev for common globals with no visibility or thread localness.
1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1131 Log2_32_Ceil(MaxGlobalType+1)));
1132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1133 //| explicitType << 1
1134 //| constant
1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1137 if (MaxAlignment == 0) // Alignment.
1138 Abbv->Add(BitCodeAbbrevOp(0));
1139 else {
1140 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1142 Log2_32_Ceil(MaxEncAlignment+1)));
1143 }
1144 if (SectionMap.empty()) // Section.
1145 Abbv->Add(BitCodeAbbrevOp(0));
1146 else
1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1148 Log2_32_Ceil(SectionMap.size()+1)));
1149 // Don't bother emitting vis + thread local.
1150 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1151 }
1152
1153 // Emit the global variable information.
1154 SmallVector<unsigned, 64> Vals;
1155 for (const GlobalVariable &GV : M.globals()) {
1156 unsigned AbbrevToUse = 0;
1157
1158 // GLOBALVAR: [type, isconst, initid,
1159 // linkage, alignment, section, visibility, threadlocal,
1160 // unnamed_addr, externally_initialized, dllstorageclass,
1161 // comdat]
1162 Vals.push_back(VE.getTypeID(GV.getValueType()));
1163 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1164 Vals.push_back(GV.isDeclaration() ? 0 :
1165 (VE.getValueID(GV.getInitializer()) + 1));
1166 Vals.push_back(getEncodedLinkage(GV));
1167 Vals.push_back(Log2_32(GV.getAlignment())+1);
1168 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1169 if (GV.isThreadLocal() ||
1170 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1171 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1172 GV.isExternallyInitialized() ||
1173 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1174 GV.hasComdat()) {
1175 Vals.push_back(getEncodedVisibility(GV));
1176 Vals.push_back(getEncodedThreadLocalMode(GV));
1177 Vals.push_back(getEncodedUnnamedAddr(GV));
1178 Vals.push_back(GV.isExternallyInitialized());
1179 Vals.push_back(getEncodedDLLStorageClass(GV));
1180 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1181 } else {
1182 AbbrevToUse = SimpleGVarAbbrev;
1183 }
1184
1185 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1186 Vals.clear();
1187 }
1188
1189 // Emit the function proto information.
1190 for (const Function &F : M) {
1191 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1192 // section, visibility, gc, unnamed_addr, prologuedata,
1193 // dllstorageclass, comdat, prefixdata, personalityfn]
1194 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1195 Vals.push_back(F.getCallingConv());
1196 Vals.push_back(F.isDeclaration());
1197 Vals.push_back(getEncodedLinkage(F));
1198 Vals.push_back(VE.getAttributeID(F.getAttributes()));
1199 Vals.push_back(Log2_32(F.getAlignment())+1);
1200 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1201 Vals.push_back(getEncodedVisibility(F));
1202 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1203 Vals.push_back(getEncodedUnnamedAddr(F));
1204 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1205 : 0);
1206 Vals.push_back(getEncodedDLLStorageClass(F));
1207 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1208 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1209 : 0);
1210 Vals.push_back(
1211 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1212
1213 unsigned AbbrevToUse = 0;
1214 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1215 Vals.clear();
1216 }
1217
1218 // Emit the alias information.
1219 for (const GlobalAlias &A : M.aliases()) {
1220 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
1221 // threadlocal, unnamed_addr]
1222 Vals.push_back(VE.getTypeID(A.getValueType()));
1223 Vals.push_back(A.getType()->getAddressSpace());
1224 Vals.push_back(VE.getValueID(A.getAliasee()));
1225 Vals.push_back(getEncodedLinkage(A));
1226 Vals.push_back(getEncodedVisibility(A));
1227 Vals.push_back(getEncodedDLLStorageClass(A));
1228 Vals.push_back(getEncodedThreadLocalMode(A));
1229 Vals.push_back(getEncodedUnnamedAddr(A));
1230 unsigned AbbrevToUse = 0;
1231 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1232 Vals.clear();
1233 }
1234
1235 // Emit the ifunc information.
1236 for (const GlobalIFunc &I : M.ifuncs()) {
1237 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1238 Vals.push_back(VE.getTypeID(I.getValueType()));
1239 Vals.push_back(I.getType()->getAddressSpace());
1240 Vals.push_back(VE.getValueID(I.getResolver()));
1241 Vals.push_back(getEncodedLinkage(I));
1242 Vals.push_back(getEncodedVisibility(I));
1243 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1244 Vals.clear();
1245 }
1246
1247 // Emit the module's source file name.
1248 {
1249 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1250 M.getSourceFileName().size());
1251 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1252 if (Bits == SE_Char6)
1253 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1254 else if (Bits == SE_Fixed7)
1255 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1256
1257 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1258 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1259 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1261 Abbv->Add(AbbrevOpToUse);
1262 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1263
1264 for (const auto P : M.getSourceFileName())
1265 Vals.push_back((unsigned char)P);
1266
1267 // Emit the finished record.
1268 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1269 Vals.clear();
1270 }
1271
1272 // If we have a VST, write the VSTOFFSET record placeholder.
1273 if (M.getValueSymbolTable().empty())
1274 return;
1275 writeValueSymbolTableForwardDecl();
1276 }
1277
getOptimizationFlags(const Value * V)1278 static uint64_t getOptimizationFlags(const Value *V) {
1279 uint64_t Flags = 0;
1280
1281 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1282 if (OBO->hasNoSignedWrap())
1283 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1284 if (OBO->hasNoUnsignedWrap())
1285 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1286 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1287 if (PEO->isExact())
1288 Flags |= 1 << bitc::PEO_EXACT;
1289 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1290 if (FPMO->hasUnsafeAlgebra())
1291 Flags |= FastMathFlags::UnsafeAlgebra;
1292 if (FPMO->hasNoNaNs())
1293 Flags |= FastMathFlags::NoNaNs;
1294 if (FPMO->hasNoInfs())
1295 Flags |= FastMathFlags::NoInfs;
1296 if (FPMO->hasNoSignedZeros())
1297 Flags |= FastMathFlags::NoSignedZeros;
1298 if (FPMO->hasAllowReciprocal())
1299 Flags |= FastMathFlags::AllowReciprocal;
1300 }
1301
1302 return Flags;
1303 }
1304
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1305 void ModuleBitcodeWriter::writeValueAsMetadata(
1306 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1307 // Mimic an MDNode with a value as one operand.
1308 Value *V = MD->getValue();
1309 Record.push_back(VE.getTypeID(V->getType()));
1310 Record.push_back(VE.getValueID(V));
1311 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1312 Record.clear();
1313 }
1314
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1315 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1316 SmallVectorImpl<uint64_t> &Record,
1317 unsigned Abbrev) {
1318 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1319 Metadata *MD = N->getOperand(i);
1320 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1321 "Unexpected function-local metadata");
1322 Record.push_back(VE.getMetadataOrNullID(MD));
1323 }
1324 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1325 : bitc::METADATA_NODE,
1326 Record, Abbrev);
1327 Record.clear();
1328 }
1329
createDILocationAbbrev()1330 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1331 // Assume the column is usually under 128, and always output the inlined-at
1332 // location (it's never more expensive than building an array size 1).
1333 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1334 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1340 return Stream.EmitAbbrev(Abbv);
1341 }
1342
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1343 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1344 SmallVectorImpl<uint64_t> &Record,
1345 unsigned &Abbrev) {
1346 if (!Abbrev)
1347 Abbrev = createDILocationAbbrev();
1348
1349 Record.push_back(N->isDistinct());
1350 Record.push_back(N->getLine());
1351 Record.push_back(N->getColumn());
1352 Record.push_back(VE.getMetadataID(N->getScope()));
1353 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1354
1355 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1356 Record.clear();
1357 }
1358
createGenericDINodeAbbrev()1359 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1360 // Assume the column is usually under 128, and always output the inlined-at
1361 // location (it's never more expensive than building an array size 1).
1362 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1363 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1370 return Stream.EmitAbbrev(Abbv);
1371 }
1372
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1373 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1374 SmallVectorImpl<uint64_t> &Record,
1375 unsigned &Abbrev) {
1376 if (!Abbrev)
1377 Abbrev = createGenericDINodeAbbrev();
1378
1379 Record.push_back(N->isDistinct());
1380 Record.push_back(N->getTag());
1381 Record.push_back(0); // Per-tag version field; unused for now.
1382
1383 for (auto &I : N->operands())
1384 Record.push_back(VE.getMetadataOrNullID(I));
1385
1386 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1387 Record.clear();
1388 }
1389
rotateSign(int64_t I)1390 static uint64_t rotateSign(int64_t I) {
1391 uint64_t U = I;
1392 return I < 0 ? ~(U << 1) : U << 1;
1393 }
1394
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1395 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1396 SmallVectorImpl<uint64_t> &Record,
1397 unsigned Abbrev) {
1398 Record.push_back(N->isDistinct());
1399 Record.push_back(N->getCount());
1400 Record.push_back(rotateSign(N->getLowerBound()));
1401
1402 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1403 Record.clear();
1404 }
1405
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1406 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1407 SmallVectorImpl<uint64_t> &Record,
1408 unsigned Abbrev) {
1409 Record.push_back(N->isDistinct());
1410 Record.push_back(rotateSign(N->getValue()));
1411 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1412
1413 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1414 Record.clear();
1415 }
1416
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1417 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1418 SmallVectorImpl<uint64_t> &Record,
1419 unsigned Abbrev) {
1420 Record.push_back(N->isDistinct());
1421 Record.push_back(N->getTag());
1422 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1423 Record.push_back(N->getSizeInBits());
1424 Record.push_back(N->getAlignInBits());
1425 Record.push_back(N->getEncoding());
1426
1427 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1428 Record.clear();
1429 }
1430
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1431 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1432 SmallVectorImpl<uint64_t> &Record,
1433 unsigned Abbrev) {
1434 Record.push_back(N->isDistinct());
1435 Record.push_back(N->getTag());
1436 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1437 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1438 Record.push_back(N->getLine());
1439 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1440 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1441 Record.push_back(N->getSizeInBits());
1442 Record.push_back(N->getAlignInBits());
1443 Record.push_back(N->getOffsetInBits());
1444 Record.push_back(N->getFlags());
1445 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1446
1447 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1448 Record.clear();
1449 }
1450
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1451 void ModuleBitcodeWriter::writeDICompositeType(
1452 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1453 unsigned Abbrev) {
1454 const unsigned IsNotUsedInOldTypeRef = 0x2;
1455 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1456 Record.push_back(N->getTag());
1457 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1458 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1459 Record.push_back(N->getLine());
1460 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1461 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1462 Record.push_back(N->getSizeInBits());
1463 Record.push_back(N->getAlignInBits());
1464 Record.push_back(N->getOffsetInBits());
1465 Record.push_back(N->getFlags());
1466 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1467 Record.push_back(N->getRuntimeLang());
1468 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1469 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1470 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1471
1472 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1473 Record.clear();
1474 }
1475
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1476 void ModuleBitcodeWriter::writeDISubroutineType(
1477 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1478 unsigned Abbrev) {
1479 const unsigned HasNoOldTypeRefs = 0x2;
1480 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1481 Record.push_back(N->getFlags());
1482 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1483 Record.push_back(N->getCC());
1484
1485 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1486 Record.clear();
1487 }
1488
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1489 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1490 SmallVectorImpl<uint64_t> &Record,
1491 unsigned Abbrev) {
1492 Record.push_back(N->isDistinct());
1493 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1494 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1495
1496 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1497 Record.clear();
1498 }
1499
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1500 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1501 SmallVectorImpl<uint64_t> &Record,
1502 unsigned Abbrev) {
1503 assert(N->isDistinct() && "Expected distinct compile units");
1504 Record.push_back(/* IsDistinct */ true);
1505 Record.push_back(N->getSourceLanguage());
1506 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1507 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1508 Record.push_back(N->isOptimized());
1509 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1510 Record.push_back(N->getRuntimeVersion());
1511 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1512 Record.push_back(N->getEmissionKind());
1513 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1514 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1515 Record.push_back(/* subprograms */ 0);
1516 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1517 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1518 Record.push_back(N->getDWOId());
1519 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1520
1521 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1522 Record.clear();
1523 }
1524
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1525 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1526 SmallVectorImpl<uint64_t> &Record,
1527 unsigned Abbrev) {
1528 uint64_t HasUnitFlag = 1 << 1;
1529 Record.push_back(N->isDistinct() | HasUnitFlag);
1530 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1531 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1532 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1533 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1534 Record.push_back(N->getLine());
1535 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1536 Record.push_back(N->isLocalToUnit());
1537 Record.push_back(N->isDefinition());
1538 Record.push_back(N->getScopeLine());
1539 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1540 Record.push_back(N->getVirtuality());
1541 Record.push_back(N->getVirtualIndex());
1542 Record.push_back(N->getFlags());
1543 Record.push_back(N->isOptimized());
1544 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1545 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1546 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1547 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1548 Record.push_back(N->getThisAdjustment());
1549
1550 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1551 Record.clear();
1552 }
1553
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1554 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1555 SmallVectorImpl<uint64_t> &Record,
1556 unsigned Abbrev) {
1557 Record.push_back(N->isDistinct());
1558 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1559 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1560 Record.push_back(N->getLine());
1561 Record.push_back(N->getColumn());
1562
1563 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1564 Record.clear();
1565 }
1566
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1567 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1568 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1569 unsigned Abbrev) {
1570 Record.push_back(N->isDistinct());
1571 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1572 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1573 Record.push_back(N->getDiscriminator());
1574
1575 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1576 Record.clear();
1577 }
1578
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1579 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1580 SmallVectorImpl<uint64_t> &Record,
1581 unsigned Abbrev) {
1582 Record.push_back(N->isDistinct());
1583 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1584 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1586 Record.push_back(N->getLine());
1587
1588 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1589 Record.clear();
1590 }
1591
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1592 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1593 SmallVectorImpl<uint64_t> &Record,
1594 unsigned Abbrev) {
1595 Record.push_back(N->isDistinct());
1596 Record.push_back(N->getMacinfoType());
1597 Record.push_back(N->getLine());
1598 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1599 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1600
1601 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1602 Record.clear();
1603 }
1604
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1605 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1606 SmallVectorImpl<uint64_t> &Record,
1607 unsigned Abbrev) {
1608 Record.push_back(N->isDistinct());
1609 Record.push_back(N->getMacinfoType());
1610 Record.push_back(N->getLine());
1611 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1612 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1613
1614 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1615 Record.clear();
1616 }
1617
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1618 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1619 SmallVectorImpl<uint64_t> &Record,
1620 unsigned Abbrev) {
1621 Record.push_back(N->isDistinct());
1622 for (auto &I : N->operands())
1623 Record.push_back(VE.getMetadataOrNullID(I));
1624
1625 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1626 Record.clear();
1627 }
1628
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1629 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1630 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1631 unsigned Abbrev) {
1632 Record.push_back(N->isDistinct());
1633 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1634 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1635
1636 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1637 Record.clear();
1638 }
1639
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1640 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1641 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1642 unsigned Abbrev) {
1643 Record.push_back(N->isDistinct());
1644 Record.push_back(N->getTag());
1645 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1647 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1648
1649 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1650 Record.clear();
1651 }
1652
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1653 void ModuleBitcodeWriter::writeDIGlobalVariable(
1654 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1655 unsigned Abbrev) {
1656 Record.push_back(N->isDistinct());
1657 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1658 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1659 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1660 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1661 Record.push_back(N->getLine());
1662 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1663 Record.push_back(N->isLocalToUnit());
1664 Record.push_back(N->isDefinition());
1665 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1666 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1667
1668 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1669 Record.clear();
1670 }
1671
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1672 void ModuleBitcodeWriter::writeDILocalVariable(
1673 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1674 unsigned Abbrev) {
1675 Record.push_back(N->isDistinct());
1676 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1677 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1678 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1679 Record.push_back(N->getLine());
1680 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1681 Record.push_back(N->getArg());
1682 Record.push_back(N->getFlags());
1683
1684 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1685 Record.clear();
1686 }
1687
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1688 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1689 SmallVectorImpl<uint64_t> &Record,
1690 unsigned Abbrev) {
1691 Record.reserve(N->getElements().size() + 1);
1692
1693 Record.push_back(N->isDistinct());
1694 Record.append(N->elements_begin(), N->elements_end());
1695
1696 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1697 Record.clear();
1698 }
1699
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1700 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1701 SmallVectorImpl<uint64_t> &Record,
1702 unsigned Abbrev) {
1703 Record.push_back(N->isDistinct());
1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1705 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1706 Record.push_back(N->getLine());
1707 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1708 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1709 Record.push_back(N->getAttributes());
1710 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1711
1712 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1713 Record.clear();
1714 }
1715
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1716 void ModuleBitcodeWriter::writeDIImportedEntity(
1717 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1718 unsigned Abbrev) {
1719 Record.push_back(N->isDistinct());
1720 Record.push_back(N->getTag());
1721 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1722 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1723 Record.push_back(N->getLine());
1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1725
1726 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1727 Record.clear();
1728 }
1729
createNamedMetadataAbbrev()1730 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1731 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1732 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1735 return Stream.EmitAbbrev(Abbv);
1736 }
1737
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)1738 void ModuleBitcodeWriter::writeNamedMetadata(
1739 SmallVectorImpl<uint64_t> &Record) {
1740 if (M.named_metadata_empty())
1741 return;
1742
1743 unsigned Abbrev = createNamedMetadataAbbrev();
1744 for (const NamedMDNode &NMD : M.named_metadata()) {
1745 // Write name.
1746 StringRef Str = NMD.getName();
1747 Record.append(Str.bytes_begin(), Str.bytes_end());
1748 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1749 Record.clear();
1750
1751 // Write named metadata operands.
1752 for (const MDNode *N : NMD.operands())
1753 Record.push_back(VE.getMetadataID(N));
1754 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1755 Record.clear();
1756 }
1757 }
1758
createMetadataStringsAbbrev()1759 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1760 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1761 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1765 return Stream.EmitAbbrev(Abbv);
1766 }
1767
1768 /// Write out a record for MDString.
1769 ///
1770 /// All the metadata strings in a metadata block are emitted in a single
1771 /// record. The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1772 void ModuleBitcodeWriter::writeMetadataStrings(
1773 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1774 if (Strings.empty())
1775 return;
1776
1777 // Start the record with the number of strings.
1778 Record.push_back(bitc::METADATA_STRINGS);
1779 Record.push_back(Strings.size());
1780
1781 // Emit the sizes of the strings in the blob.
1782 SmallString<256> Blob;
1783 {
1784 BitstreamWriter W(Blob);
1785 for (const Metadata *MD : Strings)
1786 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1787 W.FlushToWord();
1788 }
1789
1790 // Add the offset to the strings to the record.
1791 Record.push_back(Blob.size());
1792
1793 // Add the strings to the blob.
1794 for (const Metadata *MD : Strings)
1795 Blob.append(cast<MDString>(MD)->getString());
1796
1797 // Emit the final record.
1798 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1799 Record.clear();
1800 }
1801
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record)1802 void ModuleBitcodeWriter::writeMetadataRecords(
1803 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1804 if (MDs.empty())
1805 return;
1806
1807 // Initialize MDNode abbreviations.
1808 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1809 #include "llvm/IR/Metadata.def"
1810
1811 for (const Metadata *MD : MDs) {
1812 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1813 assert(N->isResolved() && "Expected forward references to be resolved");
1814
1815 switch (N->getMetadataID()) {
1816 default:
1817 llvm_unreachable("Invalid MDNode subclass");
1818 #define HANDLE_MDNODE_LEAF(CLASS) \
1819 case Metadata::CLASS##Kind: \
1820 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1821 continue;
1822 #include "llvm/IR/Metadata.def"
1823 }
1824 }
1825 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1826 }
1827 }
1828
writeModuleMetadata()1829 void ModuleBitcodeWriter::writeModuleMetadata() {
1830 if (!VE.hasMDs() && M.named_metadata_empty())
1831 return;
1832
1833 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1834 SmallVector<uint64_t, 64> Record;
1835 writeMetadataStrings(VE.getMDStrings(), Record);
1836 writeMetadataRecords(VE.getNonMDStrings(), Record);
1837 writeNamedMetadata(Record);
1838
1839 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
1840 SmallVector<uint64_t, 4> Record;
1841 Record.push_back(VE.getValueID(&GO));
1842 pushGlobalMetadataAttachment(Record, GO);
1843 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
1844 };
1845 for (const Function &F : M)
1846 if (F.isDeclaration() && F.hasMetadata())
1847 AddDeclAttachedMetadata(F);
1848 // FIXME: Only store metadata for declarations here, and move data for global
1849 // variable definitions to a separate block (PR28134).
1850 for (const GlobalVariable &GV : M.globals())
1851 if (GV.hasMetadata())
1852 AddDeclAttachedMetadata(GV);
1853
1854 Stream.ExitBlock();
1855 }
1856
writeFunctionMetadata(const Function & F)1857 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1858 if (!VE.hasMDs())
1859 return;
1860
1861 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1862 SmallVector<uint64_t, 64> Record;
1863 writeMetadataStrings(VE.getMDStrings(), Record);
1864 writeMetadataRecords(VE.getNonMDStrings(), Record);
1865 Stream.ExitBlock();
1866 }
1867
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)1868 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
1869 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
1870 // [n x [id, mdnode]]
1871 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1872 GO.getAllMetadata(MDs);
1873 for (const auto &I : MDs) {
1874 Record.push_back(I.first);
1875 Record.push_back(VE.getMetadataID(I.second));
1876 }
1877 }
1878
writeFunctionMetadataAttachment(const Function & F)1879 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1880 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1881
1882 SmallVector<uint64_t, 64> Record;
1883
1884 if (F.hasMetadata()) {
1885 pushGlobalMetadataAttachment(Record, F);
1886 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1887 Record.clear();
1888 }
1889
1890 // Write metadata attachments
1891 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1892 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1893 for (const BasicBlock &BB : F)
1894 for (const Instruction &I : BB) {
1895 MDs.clear();
1896 I.getAllMetadataOtherThanDebugLoc(MDs);
1897
1898 // If no metadata, ignore instruction.
1899 if (MDs.empty()) continue;
1900
1901 Record.push_back(VE.getInstructionID(&I));
1902
1903 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1904 Record.push_back(MDs[i].first);
1905 Record.push_back(VE.getMetadataID(MDs[i].second));
1906 }
1907 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1908 Record.clear();
1909 }
1910
1911 Stream.ExitBlock();
1912 }
1913
writeModuleMetadataKinds()1914 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
1915 SmallVector<uint64_t, 64> Record;
1916
1917 // Write metadata kinds
1918 // METADATA_KIND - [n x [id, name]]
1919 SmallVector<StringRef, 8> Names;
1920 M.getMDKindNames(Names);
1921
1922 if (Names.empty()) return;
1923
1924 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1925
1926 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1927 Record.push_back(MDKindID);
1928 StringRef KName = Names[MDKindID];
1929 Record.append(KName.begin(), KName.end());
1930
1931 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1932 Record.clear();
1933 }
1934
1935 Stream.ExitBlock();
1936 }
1937
writeOperandBundleTags()1938 void ModuleBitcodeWriter::writeOperandBundleTags() {
1939 // Write metadata kinds
1940 //
1941 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1942 //
1943 // OPERAND_BUNDLE_TAG - [strchr x N]
1944
1945 SmallVector<StringRef, 8> Tags;
1946 M.getOperandBundleTags(Tags);
1947
1948 if (Tags.empty())
1949 return;
1950
1951 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1952
1953 SmallVector<uint64_t, 64> Record;
1954
1955 for (auto Tag : Tags) {
1956 Record.append(Tag.begin(), Tag.end());
1957
1958 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1959 Record.clear();
1960 }
1961
1962 Stream.ExitBlock();
1963 }
1964
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1965 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1966 if ((int64_t)V >= 0)
1967 Vals.push_back(V << 1);
1968 else
1969 Vals.push_back((-V << 1) | 1);
1970 }
1971
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)1972 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1973 bool isGlobal) {
1974 if (FirstVal == LastVal) return;
1975
1976 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1977
1978 unsigned AggregateAbbrev = 0;
1979 unsigned String8Abbrev = 0;
1980 unsigned CString7Abbrev = 0;
1981 unsigned CString6Abbrev = 0;
1982 // If this is a constant pool for the module, emit module-specific abbrevs.
1983 if (isGlobal) {
1984 // Abbrev for CST_CODE_AGGREGATE.
1985 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1986 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1989 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1990
1991 // Abbrev for CST_CODE_STRING.
1992 Abbv = new BitCodeAbbrev();
1993 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1996 String8Abbrev = Stream.EmitAbbrev(Abbv);
1997 // Abbrev for CST_CODE_CSTRING.
1998 Abbv = new BitCodeAbbrev();
1999 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2002 CString7Abbrev = Stream.EmitAbbrev(Abbv);
2003 // Abbrev for CST_CODE_CSTRING.
2004 Abbv = new BitCodeAbbrev();
2005 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2008 CString6Abbrev = Stream.EmitAbbrev(Abbv);
2009 }
2010
2011 SmallVector<uint64_t, 64> Record;
2012
2013 const ValueEnumerator::ValueList &Vals = VE.getValues();
2014 Type *LastTy = nullptr;
2015 for (unsigned i = FirstVal; i != LastVal; ++i) {
2016 const Value *V = Vals[i].first;
2017 // If we need to switch types, do so now.
2018 if (V->getType() != LastTy) {
2019 LastTy = V->getType();
2020 Record.push_back(VE.getTypeID(LastTy));
2021 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2022 CONSTANTS_SETTYPE_ABBREV);
2023 Record.clear();
2024 }
2025
2026 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2027 Record.push_back(unsigned(IA->hasSideEffects()) |
2028 unsigned(IA->isAlignStack()) << 1 |
2029 unsigned(IA->getDialect()&1) << 2);
2030
2031 // Add the asm string.
2032 const std::string &AsmStr = IA->getAsmString();
2033 Record.push_back(AsmStr.size());
2034 Record.append(AsmStr.begin(), AsmStr.end());
2035
2036 // Add the constraint string.
2037 const std::string &ConstraintStr = IA->getConstraintString();
2038 Record.push_back(ConstraintStr.size());
2039 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2040 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2041 Record.clear();
2042 continue;
2043 }
2044 const Constant *C = cast<Constant>(V);
2045 unsigned Code = -1U;
2046 unsigned AbbrevToUse = 0;
2047 if (C->isNullValue()) {
2048 Code = bitc::CST_CODE_NULL;
2049 } else if (isa<UndefValue>(C)) {
2050 Code = bitc::CST_CODE_UNDEF;
2051 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2052 if (IV->getBitWidth() <= 64) {
2053 uint64_t V = IV->getSExtValue();
2054 emitSignedInt64(Record, V);
2055 Code = bitc::CST_CODE_INTEGER;
2056 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2057 } else { // Wide integers, > 64 bits in size.
2058 // We have an arbitrary precision integer value to write whose
2059 // bit width is > 64. However, in canonical unsigned integer
2060 // format it is likely that the high bits are going to be zero.
2061 // So, we only write the number of active words.
2062 unsigned NWords = IV->getValue().getActiveWords();
2063 const uint64_t *RawWords = IV->getValue().getRawData();
2064 for (unsigned i = 0; i != NWords; ++i) {
2065 emitSignedInt64(Record, RawWords[i]);
2066 }
2067 Code = bitc::CST_CODE_WIDE_INTEGER;
2068 }
2069 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2070 Code = bitc::CST_CODE_FLOAT;
2071 Type *Ty = CFP->getType();
2072 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2073 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2074 } else if (Ty->isX86_FP80Ty()) {
2075 // api needed to prevent premature destruction
2076 // bits are not in the same order as a normal i80 APInt, compensate.
2077 APInt api = CFP->getValueAPF().bitcastToAPInt();
2078 const uint64_t *p = api.getRawData();
2079 Record.push_back((p[1] << 48) | (p[0] >> 16));
2080 Record.push_back(p[0] & 0xffffLL);
2081 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2082 APInt api = CFP->getValueAPF().bitcastToAPInt();
2083 const uint64_t *p = api.getRawData();
2084 Record.push_back(p[0]);
2085 Record.push_back(p[1]);
2086 } else {
2087 assert (0 && "Unknown FP type!");
2088 }
2089 } else if (isa<ConstantDataSequential>(C) &&
2090 cast<ConstantDataSequential>(C)->isString()) {
2091 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2092 // Emit constant strings specially.
2093 unsigned NumElts = Str->getNumElements();
2094 // If this is a null-terminated string, use the denser CSTRING encoding.
2095 if (Str->isCString()) {
2096 Code = bitc::CST_CODE_CSTRING;
2097 --NumElts; // Don't encode the null, which isn't allowed by char6.
2098 } else {
2099 Code = bitc::CST_CODE_STRING;
2100 AbbrevToUse = String8Abbrev;
2101 }
2102 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2103 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2104 for (unsigned i = 0; i != NumElts; ++i) {
2105 unsigned char V = Str->getElementAsInteger(i);
2106 Record.push_back(V);
2107 isCStr7 &= (V & 128) == 0;
2108 if (isCStrChar6)
2109 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2110 }
2111
2112 if (isCStrChar6)
2113 AbbrevToUse = CString6Abbrev;
2114 else if (isCStr7)
2115 AbbrevToUse = CString7Abbrev;
2116 } else if (const ConstantDataSequential *CDS =
2117 dyn_cast<ConstantDataSequential>(C)) {
2118 Code = bitc::CST_CODE_DATA;
2119 Type *EltTy = CDS->getType()->getElementType();
2120 if (isa<IntegerType>(EltTy)) {
2121 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2122 Record.push_back(CDS->getElementAsInteger(i));
2123 } else {
2124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2125 Record.push_back(
2126 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2127 }
2128 } else if (isa<ConstantAggregate>(C)) {
2129 Code = bitc::CST_CODE_AGGREGATE;
2130 for (const Value *Op : C->operands())
2131 Record.push_back(VE.getValueID(Op));
2132 AbbrevToUse = AggregateAbbrev;
2133 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2134 switch (CE->getOpcode()) {
2135 default:
2136 if (Instruction::isCast(CE->getOpcode())) {
2137 Code = bitc::CST_CODE_CE_CAST;
2138 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2139 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2140 Record.push_back(VE.getValueID(C->getOperand(0)));
2141 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2142 } else {
2143 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2144 Code = bitc::CST_CODE_CE_BINOP;
2145 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2146 Record.push_back(VE.getValueID(C->getOperand(0)));
2147 Record.push_back(VE.getValueID(C->getOperand(1)));
2148 uint64_t Flags = getOptimizationFlags(CE);
2149 if (Flags != 0)
2150 Record.push_back(Flags);
2151 }
2152 break;
2153 case Instruction::GetElementPtr: {
2154 Code = bitc::CST_CODE_CE_GEP;
2155 const auto *GO = cast<GEPOperator>(C);
2156 if (GO->isInBounds())
2157 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2158 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2159 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2160 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2161 Record.push_back(VE.getValueID(C->getOperand(i)));
2162 }
2163 break;
2164 }
2165 case Instruction::Select:
2166 Code = bitc::CST_CODE_CE_SELECT;
2167 Record.push_back(VE.getValueID(C->getOperand(0)));
2168 Record.push_back(VE.getValueID(C->getOperand(1)));
2169 Record.push_back(VE.getValueID(C->getOperand(2)));
2170 break;
2171 case Instruction::ExtractElement:
2172 Code = bitc::CST_CODE_CE_EXTRACTELT;
2173 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2174 Record.push_back(VE.getValueID(C->getOperand(0)));
2175 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2176 Record.push_back(VE.getValueID(C->getOperand(1)));
2177 break;
2178 case Instruction::InsertElement:
2179 Code = bitc::CST_CODE_CE_INSERTELT;
2180 Record.push_back(VE.getValueID(C->getOperand(0)));
2181 Record.push_back(VE.getValueID(C->getOperand(1)));
2182 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2183 Record.push_back(VE.getValueID(C->getOperand(2)));
2184 break;
2185 case Instruction::ShuffleVector:
2186 // If the return type and argument types are the same, this is a
2187 // standard shufflevector instruction. If the types are different,
2188 // then the shuffle is widening or truncating the input vectors, and
2189 // the argument type must also be encoded.
2190 if (C->getType() == C->getOperand(0)->getType()) {
2191 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2192 } else {
2193 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2194 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2195 }
2196 Record.push_back(VE.getValueID(C->getOperand(0)));
2197 Record.push_back(VE.getValueID(C->getOperand(1)));
2198 Record.push_back(VE.getValueID(C->getOperand(2)));
2199 break;
2200 case Instruction::ICmp:
2201 case Instruction::FCmp:
2202 Code = bitc::CST_CODE_CE_CMP;
2203 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2204 Record.push_back(VE.getValueID(C->getOperand(0)));
2205 Record.push_back(VE.getValueID(C->getOperand(1)));
2206 Record.push_back(CE->getPredicate());
2207 break;
2208 }
2209 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2210 Code = bitc::CST_CODE_BLOCKADDRESS;
2211 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2212 Record.push_back(VE.getValueID(BA->getFunction()));
2213 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2214 } else {
2215 #ifndef NDEBUG
2216 C->dump();
2217 #endif
2218 llvm_unreachable("Unknown constant!");
2219 }
2220 Stream.EmitRecord(Code, Record, AbbrevToUse);
2221 Record.clear();
2222 }
2223
2224 Stream.ExitBlock();
2225 }
2226
writeModuleConstants()2227 void ModuleBitcodeWriter::writeModuleConstants() {
2228 const ValueEnumerator::ValueList &Vals = VE.getValues();
2229
2230 // Find the first constant to emit, which is the first non-globalvalue value.
2231 // We know globalvalues have been emitted by WriteModuleInfo.
2232 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2233 if (!isa<GlobalValue>(Vals[i].first)) {
2234 writeConstants(i, Vals.size(), true);
2235 return;
2236 }
2237 }
2238 }
2239
2240 /// pushValueAndType - The file has to encode both the value and type id for
2241 /// many values, because we need to know what type to create for forward
2242 /// references. However, most operands are not forward references, so this type
2243 /// field is not needed.
2244 ///
2245 /// This function adds V's value ID to Vals. If the value ID is higher than the
2246 /// instruction ID, then it is a forward reference, and it also includes the
2247 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2248 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2249 SmallVectorImpl<unsigned> &Vals) {
2250 unsigned ValID = VE.getValueID(V);
2251 // Make encoding relative to the InstID.
2252 Vals.push_back(InstID - ValID);
2253 if (ValID >= InstID) {
2254 Vals.push_back(VE.getTypeID(V->getType()));
2255 return true;
2256 }
2257 return false;
2258 }
2259
writeOperandBundles(ImmutableCallSite CS,unsigned InstID)2260 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2261 unsigned InstID) {
2262 SmallVector<unsigned, 64> Record;
2263 LLVMContext &C = CS.getInstruction()->getContext();
2264
2265 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2266 const auto &Bundle = CS.getOperandBundleAt(i);
2267 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2268
2269 for (auto &Input : Bundle.Inputs)
2270 pushValueAndType(Input, InstID, Record);
2271
2272 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2273 Record.clear();
2274 }
2275 }
2276
2277 /// pushValue - Like pushValueAndType, but where the type of the value is
2278 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2279 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2280 SmallVectorImpl<unsigned> &Vals) {
2281 unsigned ValID = VE.getValueID(V);
2282 Vals.push_back(InstID - ValID);
2283 }
2284
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2285 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2286 SmallVectorImpl<uint64_t> &Vals) {
2287 unsigned ValID = VE.getValueID(V);
2288 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2289 emitSignedInt64(Vals, diff);
2290 }
2291
2292 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2293 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2294 unsigned InstID,
2295 SmallVectorImpl<unsigned> &Vals) {
2296 unsigned Code = 0;
2297 unsigned AbbrevToUse = 0;
2298 VE.setInstructionID(&I);
2299 switch (I.getOpcode()) {
2300 default:
2301 if (Instruction::isCast(I.getOpcode())) {
2302 Code = bitc::FUNC_CODE_INST_CAST;
2303 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2304 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2305 Vals.push_back(VE.getTypeID(I.getType()));
2306 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2307 } else {
2308 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2309 Code = bitc::FUNC_CODE_INST_BINOP;
2310 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2311 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2312 pushValue(I.getOperand(1), InstID, Vals);
2313 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2314 uint64_t Flags = getOptimizationFlags(&I);
2315 if (Flags != 0) {
2316 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2317 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2318 Vals.push_back(Flags);
2319 }
2320 }
2321 break;
2322
2323 case Instruction::GetElementPtr: {
2324 Code = bitc::FUNC_CODE_INST_GEP;
2325 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2326 auto &GEPInst = cast<GetElementPtrInst>(I);
2327 Vals.push_back(GEPInst.isInBounds());
2328 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2329 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2330 pushValueAndType(I.getOperand(i), InstID, Vals);
2331 break;
2332 }
2333 case Instruction::ExtractValue: {
2334 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2335 pushValueAndType(I.getOperand(0), InstID, Vals);
2336 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2337 Vals.append(EVI->idx_begin(), EVI->idx_end());
2338 break;
2339 }
2340 case Instruction::InsertValue: {
2341 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2342 pushValueAndType(I.getOperand(0), InstID, Vals);
2343 pushValueAndType(I.getOperand(1), InstID, Vals);
2344 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2345 Vals.append(IVI->idx_begin(), IVI->idx_end());
2346 break;
2347 }
2348 case Instruction::Select:
2349 Code = bitc::FUNC_CODE_INST_VSELECT;
2350 pushValueAndType(I.getOperand(1), InstID, Vals);
2351 pushValue(I.getOperand(2), InstID, Vals);
2352 pushValueAndType(I.getOperand(0), InstID, Vals);
2353 break;
2354 case Instruction::ExtractElement:
2355 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2356 pushValueAndType(I.getOperand(0), InstID, Vals);
2357 pushValueAndType(I.getOperand(1), InstID, Vals);
2358 break;
2359 case Instruction::InsertElement:
2360 Code = bitc::FUNC_CODE_INST_INSERTELT;
2361 pushValueAndType(I.getOperand(0), InstID, Vals);
2362 pushValue(I.getOperand(1), InstID, Vals);
2363 pushValueAndType(I.getOperand(2), InstID, Vals);
2364 break;
2365 case Instruction::ShuffleVector:
2366 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2367 pushValueAndType(I.getOperand(0), InstID, Vals);
2368 pushValue(I.getOperand(1), InstID, Vals);
2369 pushValue(I.getOperand(2), InstID, Vals);
2370 break;
2371 case Instruction::ICmp:
2372 case Instruction::FCmp: {
2373 // compare returning Int1Ty or vector of Int1Ty
2374 Code = bitc::FUNC_CODE_INST_CMP2;
2375 pushValueAndType(I.getOperand(0), InstID, Vals);
2376 pushValue(I.getOperand(1), InstID, Vals);
2377 Vals.push_back(cast<CmpInst>(I).getPredicate());
2378 uint64_t Flags = getOptimizationFlags(&I);
2379 if (Flags != 0)
2380 Vals.push_back(Flags);
2381 break;
2382 }
2383
2384 case Instruction::Ret:
2385 {
2386 Code = bitc::FUNC_CODE_INST_RET;
2387 unsigned NumOperands = I.getNumOperands();
2388 if (NumOperands == 0)
2389 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2390 else if (NumOperands == 1) {
2391 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2392 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2393 } else {
2394 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2395 pushValueAndType(I.getOperand(i), InstID, Vals);
2396 }
2397 }
2398 break;
2399 case Instruction::Br:
2400 {
2401 Code = bitc::FUNC_CODE_INST_BR;
2402 const BranchInst &II = cast<BranchInst>(I);
2403 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2404 if (II.isConditional()) {
2405 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2406 pushValue(II.getCondition(), InstID, Vals);
2407 }
2408 }
2409 break;
2410 case Instruction::Switch:
2411 {
2412 Code = bitc::FUNC_CODE_INST_SWITCH;
2413 const SwitchInst &SI = cast<SwitchInst>(I);
2414 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2415 pushValue(SI.getCondition(), InstID, Vals);
2416 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2417 for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2418 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2419 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2420 }
2421 }
2422 break;
2423 case Instruction::IndirectBr:
2424 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2425 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2426 // Encode the address operand as relative, but not the basic blocks.
2427 pushValue(I.getOperand(0), InstID, Vals);
2428 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2429 Vals.push_back(VE.getValueID(I.getOperand(i)));
2430 break;
2431
2432 case Instruction::Invoke: {
2433 const InvokeInst *II = cast<InvokeInst>(&I);
2434 const Value *Callee = II->getCalledValue();
2435 FunctionType *FTy = II->getFunctionType();
2436
2437 if (II->hasOperandBundles())
2438 writeOperandBundles(II, InstID);
2439
2440 Code = bitc::FUNC_CODE_INST_INVOKE;
2441
2442 Vals.push_back(VE.getAttributeID(II->getAttributes()));
2443 Vals.push_back(II->getCallingConv() | 1 << 13);
2444 Vals.push_back(VE.getValueID(II->getNormalDest()));
2445 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2446 Vals.push_back(VE.getTypeID(FTy));
2447 pushValueAndType(Callee, InstID, Vals);
2448
2449 // Emit value #'s for the fixed parameters.
2450 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2451 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2452
2453 // Emit type/value pairs for varargs params.
2454 if (FTy->isVarArg()) {
2455 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2456 i != e; ++i)
2457 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2458 }
2459 break;
2460 }
2461 case Instruction::Resume:
2462 Code = bitc::FUNC_CODE_INST_RESUME;
2463 pushValueAndType(I.getOperand(0), InstID, Vals);
2464 break;
2465 case Instruction::CleanupRet: {
2466 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2467 const auto &CRI = cast<CleanupReturnInst>(I);
2468 pushValue(CRI.getCleanupPad(), InstID, Vals);
2469 if (CRI.hasUnwindDest())
2470 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2471 break;
2472 }
2473 case Instruction::CatchRet: {
2474 Code = bitc::FUNC_CODE_INST_CATCHRET;
2475 const auto &CRI = cast<CatchReturnInst>(I);
2476 pushValue(CRI.getCatchPad(), InstID, Vals);
2477 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2478 break;
2479 }
2480 case Instruction::CleanupPad:
2481 case Instruction::CatchPad: {
2482 const auto &FuncletPad = cast<FuncletPadInst>(I);
2483 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2484 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2485 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2486
2487 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2488 Vals.push_back(NumArgOperands);
2489 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2490 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2491 break;
2492 }
2493 case Instruction::CatchSwitch: {
2494 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2495 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2496
2497 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2498
2499 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2500 Vals.push_back(NumHandlers);
2501 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2502 Vals.push_back(VE.getValueID(CatchPadBB));
2503
2504 if (CatchSwitch.hasUnwindDest())
2505 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2506 break;
2507 }
2508 case Instruction::Unreachable:
2509 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2510 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2511 break;
2512
2513 case Instruction::PHI: {
2514 const PHINode &PN = cast<PHINode>(I);
2515 Code = bitc::FUNC_CODE_INST_PHI;
2516 // With the newer instruction encoding, forward references could give
2517 // negative valued IDs. This is most common for PHIs, so we use
2518 // signed VBRs.
2519 SmallVector<uint64_t, 128> Vals64;
2520 Vals64.push_back(VE.getTypeID(PN.getType()));
2521 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2522 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2523 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2524 }
2525 // Emit a Vals64 vector and exit.
2526 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2527 Vals64.clear();
2528 return;
2529 }
2530
2531 case Instruction::LandingPad: {
2532 const LandingPadInst &LP = cast<LandingPadInst>(I);
2533 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2534 Vals.push_back(VE.getTypeID(LP.getType()));
2535 Vals.push_back(LP.isCleanup());
2536 Vals.push_back(LP.getNumClauses());
2537 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2538 if (LP.isCatch(I))
2539 Vals.push_back(LandingPadInst::Catch);
2540 else
2541 Vals.push_back(LandingPadInst::Filter);
2542 pushValueAndType(LP.getClause(I), InstID, Vals);
2543 }
2544 break;
2545 }
2546
2547 case Instruction::Alloca: {
2548 Code = bitc::FUNC_CODE_INST_ALLOCA;
2549 const AllocaInst &AI = cast<AllocaInst>(I);
2550 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2551 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2552 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2553 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2554 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2555 "not enough bits for maximum alignment");
2556 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2557 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2558 AlignRecord |= 1 << 6;
2559 AlignRecord |= AI.isSwiftError() << 7;
2560 Vals.push_back(AlignRecord);
2561 break;
2562 }
2563
2564 case Instruction::Load:
2565 if (cast<LoadInst>(I).isAtomic()) {
2566 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2567 pushValueAndType(I.getOperand(0), InstID, Vals);
2568 } else {
2569 Code = bitc::FUNC_CODE_INST_LOAD;
2570 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2571 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2572 }
2573 Vals.push_back(VE.getTypeID(I.getType()));
2574 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2575 Vals.push_back(cast<LoadInst>(I).isVolatile());
2576 if (cast<LoadInst>(I).isAtomic()) {
2577 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2578 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2579 }
2580 break;
2581 case Instruction::Store:
2582 if (cast<StoreInst>(I).isAtomic())
2583 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2584 else
2585 Code = bitc::FUNC_CODE_INST_STORE;
2586 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2587 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2588 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2589 Vals.push_back(cast<StoreInst>(I).isVolatile());
2590 if (cast<StoreInst>(I).isAtomic()) {
2591 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2592 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2593 }
2594 break;
2595 case Instruction::AtomicCmpXchg:
2596 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2597 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2598 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2599 pushValue(I.getOperand(2), InstID, Vals); // newval.
2600 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2601 Vals.push_back(
2602 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2603 Vals.push_back(
2604 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2605 Vals.push_back(
2606 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2607 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2608 break;
2609 case Instruction::AtomicRMW:
2610 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2611 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2612 pushValue(I.getOperand(1), InstID, Vals); // val.
2613 Vals.push_back(
2614 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2615 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2616 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2617 Vals.push_back(
2618 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2619 break;
2620 case Instruction::Fence:
2621 Code = bitc::FUNC_CODE_INST_FENCE;
2622 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2623 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2624 break;
2625 case Instruction::Call: {
2626 const CallInst &CI = cast<CallInst>(I);
2627 FunctionType *FTy = CI.getFunctionType();
2628
2629 if (CI.hasOperandBundles())
2630 writeOperandBundles(&CI, InstID);
2631
2632 Code = bitc::FUNC_CODE_INST_CALL;
2633
2634 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2635
2636 unsigned Flags = getOptimizationFlags(&I);
2637 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2638 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2639 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2640 1 << bitc::CALL_EXPLICIT_TYPE |
2641 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2642 unsigned(Flags != 0) << bitc::CALL_FMF);
2643 if (Flags != 0)
2644 Vals.push_back(Flags);
2645
2646 Vals.push_back(VE.getTypeID(FTy));
2647 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2648
2649 // Emit value #'s for the fixed parameters.
2650 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2651 // Check for labels (can happen with asm labels).
2652 if (FTy->getParamType(i)->isLabelTy())
2653 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2654 else
2655 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2656 }
2657
2658 // Emit type/value pairs for varargs params.
2659 if (FTy->isVarArg()) {
2660 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2661 i != e; ++i)
2662 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2663 }
2664 break;
2665 }
2666 case Instruction::VAArg:
2667 Code = bitc::FUNC_CODE_INST_VAARG;
2668 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2669 pushValue(I.getOperand(0), InstID, Vals); // valist.
2670 Vals.push_back(VE.getTypeID(I.getType())); // restype.
2671 break;
2672 }
2673
2674 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2675 Vals.clear();
2676 }
2677
2678 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2679 /// we are writing the module-level VST, where we are including a function
2680 /// bitcode index and need to backpatch the VST forward declaration record.
writeValueSymbolTable(const ValueSymbolTable & VST,bool IsModuleLevel,DenseMap<const Function *,uint64_t> * FunctionToBitcodeIndex)2681 void ModuleBitcodeWriter::writeValueSymbolTable(
2682 const ValueSymbolTable &VST, bool IsModuleLevel,
2683 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2684 if (VST.empty()) {
2685 // writeValueSymbolTableForwardDecl should have returned early as
2686 // well. Ensure this handling remains in sync by asserting that
2687 // the placeholder offset is not set.
2688 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2689 return;
2690 }
2691
2692 if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2693 // Get the offset of the VST we are writing, and backpatch it into
2694 // the VST forward declaration record.
2695 uint64_t VSTOffset = Stream.GetCurrentBitNo();
2696 // The BitcodeStartBit was the stream offset of the actual bitcode
2697 // (e.g. excluding any initial darwin header).
2698 VSTOffset -= bitcodeStartBit();
2699 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2700 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2701 }
2702
2703 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2704
2705 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2706 // records, which are not used in the per-function VSTs.
2707 unsigned FnEntry8BitAbbrev;
2708 unsigned FnEntry7BitAbbrev;
2709 unsigned FnEntry6BitAbbrev;
2710 if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2711 // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2712 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2713 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2718 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2719
2720 // 7-bit fixed width VST_CODE_FNENTRY function strings.
2721 Abbv = new BitCodeAbbrev();
2722 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2727 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2728
2729 // 6-bit char6 VST_CODE_FNENTRY function strings.
2730 Abbv = new BitCodeAbbrev();
2731 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2736 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2737 }
2738
2739 // FIXME: Set up the abbrev, we know how many values there are!
2740 // FIXME: We know if the type names can use 7-bit ascii.
2741 SmallVector<unsigned, 64> NameVals;
2742
2743 for (const ValueName &Name : VST) {
2744 // Figure out the encoding to use for the name.
2745 StringEncoding Bits =
2746 getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2747
2748 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2749 NameVals.push_back(VE.getValueID(Name.getValue()));
2750
2751 Function *F = dyn_cast<Function>(Name.getValue());
2752 if (!F) {
2753 // If value is an alias, need to get the aliased base object to
2754 // see if it is a function.
2755 auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2756 if (GA && GA->getBaseObject())
2757 F = dyn_cast<Function>(GA->getBaseObject());
2758 }
2759
2760 // VST_CODE_ENTRY: [valueid, namechar x N]
2761 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2762 // VST_CODE_BBENTRY: [bbid, namechar x N]
2763 unsigned Code;
2764 if (isa<BasicBlock>(Name.getValue())) {
2765 Code = bitc::VST_CODE_BBENTRY;
2766 if (Bits == SE_Char6)
2767 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2768 } else if (F && !F->isDeclaration()) {
2769 // Must be the module-level VST, where we pass in the Index and
2770 // have a VSTOffsetPlaceholder. The function-level VST should not
2771 // contain any Function symbols.
2772 assert(FunctionToBitcodeIndex);
2773 assert(hasVSTOffsetPlaceholder());
2774
2775 // Save the word offset of the function (from the start of the
2776 // actual bitcode written to the stream).
2777 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2778 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2779 NameVals.push_back(BitcodeIndex / 32);
2780
2781 Code = bitc::VST_CODE_FNENTRY;
2782 AbbrevToUse = FnEntry8BitAbbrev;
2783 if (Bits == SE_Char6)
2784 AbbrevToUse = FnEntry6BitAbbrev;
2785 else if (Bits == SE_Fixed7)
2786 AbbrevToUse = FnEntry7BitAbbrev;
2787 } else {
2788 Code = bitc::VST_CODE_ENTRY;
2789 if (Bits == SE_Char6)
2790 AbbrevToUse = VST_ENTRY_6_ABBREV;
2791 else if (Bits == SE_Fixed7)
2792 AbbrevToUse = VST_ENTRY_7_ABBREV;
2793 }
2794
2795 for (const auto P : Name.getKey())
2796 NameVals.push_back((unsigned char)P);
2797
2798 // Emit the finished record.
2799 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2800 NameVals.clear();
2801 }
2802 Stream.ExitBlock();
2803 }
2804
2805 /// Emit function names and summary offsets for the combined index
2806 /// used by ThinLTO.
writeCombinedValueSymbolTable()2807 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2808 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2809 // Get the offset of the VST we are writing, and backpatch it into
2810 // the VST forward declaration record.
2811 uint64_t VSTOffset = Stream.GetCurrentBitNo();
2812 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2813 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2814
2815 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2816
2817 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2818 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2821 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2822
2823 SmallVector<uint64_t, 64> NameVals;
2824 for (const auto &GVI : valueIds()) {
2825 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2826 NameVals.push_back(GVI.second);
2827 NameVals.push_back(GVI.first);
2828
2829 // Emit the finished record.
2830 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2831 NameVals.clear();
2832 }
2833 Stream.ExitBlock();
2834 }
2835
writeUseList(UseListOrder && Order)2836 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2837 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2838 unsigned Code;
2839 if (isa<BasicBlock>(Order.V))
2840 Code = bitc::USELIST_CODE_BB;
2841 else
2842 Code = bitc::USELIST_CODE_DEFAULT;
2843
2844 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2845 Record.push_back(VE.getValueID(Order.V));
2846 Stream.EmitRecord(Code, Record);
2847 }
2848
writeUseListBlock(const Function * F)2849 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2850 assert(VE.shouldPreserveUseListOrder() &&
2851 "Expected to be preserving use-list order");
2852
2853 auto hasMore = [&]() {
2854 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2855 };
2856 if (!hasMore())
2857 // Nothing to do.
2858 return;
2859
2860 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2861 while (hasMore()) {
2862 writeUseList(std::move(VE.UseListOrders.back()));
2863 VE.UseListOrders.pop_back();
2864 }
2865 Stream.ExitBlock();
2866 }
2867
2868 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)2869 void ModuleBitcodeWriter::writeFunction(
2870 const Function &F,
2871 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2872 // Save the bitcode index of the start of this function block for recording
2873 // in the VST.
2874 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2875
2876 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2877 VE.incorporateFunction(F);
2878
2879 SmallVector<unsigned, 64> Vals;
2880
2881 // Emit the number of basic blocks, so the reader can create them ahead of
2882 // time.
2883 Vals.push_back(VE.getBasicBlocks().size());
2884 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2885 Vals.clear();
2886
2887 // If there are function-local constants, emit them now.
2888 unsigned CstStart, CstEnd;
2889 VE.getFunctionConstantRange(CstStart, CstEnd);
2890 writeConstants(CstStart, CstEnd, false);
2891
2892 // If there is function-local metadata, emit it now.
2893 writeFunctionMetadata(F);
2894
2895 // Keep a running idea of what the instruction ID is.
2896 unsigned InstID = CstEnd;
2897
2898 bool NeedsMetadataAttachment = F.hasMetadata();
2899
2900 DILocation *LastDL = nullptr;
2901 // Finally, emit all the instructions, in order.
2902 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2903 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2904 I != E; ++I) {
2905 writeInstruction(*I, InstID, Vals);
2906
2907 if (!I->getType()->isVoidTy())
2908 ++InstID;
2909
2910 // If the instruction has metadata, write a metadata attachment later.
2911 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2912
2913 // If the instruction has a debug location, emit it.
2914 DILocation *DL = I->getDebugLoc();
2915 if (!DL)
2916 continue;
2917
2918 if (DL == LastDL) {
2919 // Just repeat the same debug loc as last time.
2920 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2921 continue;
2922 }
2923
2924 Vals.push_back(DL->getLine());
2925 Vals.push_back(DL->getColumn());
2926 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2927 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2928 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2929 Vals.clear();
2930
2931 LastDL = DL;
2932 }
2933
2934 // Emit names for all the instructions etc.
2935 writeValueSymbolTable(F.getValueSymbolTable());
2936
2937 if (NeedsMetadataAttachment)
2938 writeFunctionMetadataAttachment(F);
2939 if (VE.shouldPreserveUseListOrder())
2940 writeUseListBlock(&F);
2941 VE.purgeFunction();
2942 Stream.ExitBlock();
2943 }
2944
2945 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()2946 void ModuleBitcodeWriter::writeBlockInfo() {
2947 // We only want to emit block info records for blocks that have multiple
2948 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2949 // Other blocks can define their abbrevs inline.
2950 Stream.EnterBlockInfoBlock(2);
2951
2952 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2953 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2958 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2959 VST_ENTRY_8_ABBREV)
2960 llvm_unreachable("Unexpected abbrev ordering!");
2961 }
2962
2963 { // 7-bit fixed width VST_CODE_ENTRY strings.
2964 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2965 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2969 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2970 VST_ENTRY_7_ABBREV)
2971 llvm_unreachable("Unexpected abbrev ordering!");
2972 }
2973 { // 6-bit char6 VST_CODE_ENTRY strings.
2974 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2975 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2979 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2980 VST_ENTRY_6_ABBREV)
2981 llvm_unreachable("Unexpected abbrev ordering!");
2982 }
2983 { // 6-bit char6 VST_CODE_BBENTRY strings.
2984 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2985 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2989 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2990 VST_BBENTRY_6_ABBREV)
2991 llvm_unreachable("Unexpected abbrev ordering!");
2992 }
2993
2994
2995
2996 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2997 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2998 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3000 VE.computeBitsRequiredForTypeIndicies()));
3001 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3002 CONSTANTS_SETTYPE_ABBREV)
3003 llvm_unreachable("Unexpected abbrev ordering!");
3004 }
3005
3006 { // INTEGER abbrev for CONSTANTS_BLOCK.
3007 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3008 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3010 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3011 CONSTANTS_INTEGER_ABBREV)
3012 llvm_unreachable("Unexpected abbrev ordering!");
3013 }
3014
3015 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3016 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3017 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3020 VE.computeBitsRequiredForTypeIndicies()));
3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3022
3023 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3024 CONSTANTS_CE_CAST_Abbrev)
3025 llvm_unreachable("Unexpected abbrev ordering!");
3026 }
3027 { // NULL abbrev for CONSTANTS_BLOCK.
3028 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3029 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3030 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3031 CONSTANTS_NULL_Abbrev)
3032 llvm_unreachable("Unexpected abbrev ordering!");
3033 }
3034
3035 // FIXME: This should only use space for first class types!
3036
3037 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3038 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3039 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3042 VE.computeBitsRequiredForTypeIndicies()));
3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3045 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3046 FUNCTION_INST_LOAD_ABBREV)
3047 llvm_unreachable("Unexpected abbrev ordering!");
3048 }
3049 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3050 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3051 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3055 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3056 FUNCTION_INST_BINOP_ABBREV)
3057 llvm_unreachable("Unexpected abbrev ordering!");
3058 }
3059 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3060 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3061 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3066 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3067 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3068 llvm_unreachable("Unexpected abbrev ordering!");
3069 }
3070 { // INST_CAST abbrev for FUNCTION_BLOCK.
3071 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3072 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3075 VE.computeBitsRequiredForTypeIndicies()));
3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3077 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3078 FUNCTION_INST_CAST_ABBREV)
3079 llvm_unreachable("Unexpected abbrev ordering!");
3080 }
3081
3082 { // INST_RET abbrev for FUNCTION_BLOCK.
3083 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3084 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3085 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3086 FUNCTION_INST_RET_VOID_ABBREV)
3087 llvm_unreachable("Unexpected abbrev ordering!");
3088 }
3089 { // INST_RET abbrev for FUNCTION_BLOCK.
3090 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3093 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3094 FUNCTION_INST_RET_VAL_ABBREV)
3095 llvm_unreachable("Unexpected abbrev ordering!");
3096 }
3097 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3098 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3099 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3100 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3101 FUNCTION_INST_UNREACHABLE_ABBREV)
3102 llvm_unreachable("Unexpected abbrev ordering!");
3103 }
3104 {
3105 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3106 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3109 Log2_32_Ceil(VE.getTypes().size() + 1)));
3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3112 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3113 FUNCTION_INST_GEP_ABBREV)
3114 llvm_unreachable("Unexpected abbrev ordering!");
3115 }
3116
3117 Stream.ExitBlock();
3118 }
3119
3120 /// Write the module path strings, currently only used when generating
3121 /// a combined index file.
writeModStrings()3122 void IndexBitcodeWriter::writeModStrings() {
3123 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3124
3125 // TODO: See which abbrev sizes we actually need to emit
3126
3127 // 8-bit fixed-width MST_ENTRY strings.
3128 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3129 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3133 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3134
3135 // 7-bit fixed width MST_ENTRY strings.
3136 Abbv = new BitCodeAbbrev();
3137 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3141 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3142
3143 // 6-bit char6 MST_ENTRY strings.
3144 Abbv = new BitCodeAbbrev();
3145 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3149 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3150
3151 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3152 Abbv = new BitCodeAbbrev();
3153 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3159 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3160
3161 SmallVector<unsigned, 64> Vals;
3162 for (const auto &MPSE : Index.modulePaths()) {
3163 if (!doIncludeModule(MPSE.getKey()))
3164 continue;
3165 StringEncoding Bits =
3166 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3167 unsigned AbbrevToUse = Abbrev8Bit;
3168 if (Bits == SE_Char6)
3169 AbbrevToUse = Abbrev6Bit;
3170 else if (Bits == SE_Fixed7)
3171 AbbrevToUse = Abbrev7Bit;
3172
3173 Vals.push_back(MPSE.getValue().first);
3174
3175 for (const auto P : MPSE.getKey())
3176 Vals.push_back((unsigned char)P);
3177
3178 // Emit the finished record.
3179 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3180
3181 Vals.clear();
3182 // Emit an optional hash for the module now
3183 auto &Hash = MPSE.getValue().second;
3184 bool AllZero = true; // Detect if the hash is empty, and do not generate it
3185 for (auto Val : Hash) {
3186 if (Val)
3187 AllZero = false;
3188 Vals.push_back(Val);
3189 }
3190 if (!AllZero) {
3191 // Emit the hash record.
3192 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3193 }
3194
3195 Vals.clear();
3196 }
3197 Stream.ExitBlock();
3198 }
3199
3200 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3201 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3202 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3203 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3204 const Function &F) {
3205 NameVals.push_back(ValueID);
3206
3207 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3208 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3209 NameVals.push_back(FS->instCount());
3210 NameVals.push_back(FS->refs().size());
3211
3212 unsigned SizeBeforeRefs = NameVals.size();
3213 for (auto &RI : FS->refs())
3214 NameVals.push_back(VE.getValueID(RI.getValue()));
3215 // Sort the refs for determinism output, the vector returned by FS->refs() has
3216 // been initialized from a DenseSet.
3217 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3218
3219 std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
3220 std::sort(Calls.begin(), Calls.end(),
3221 [this](const FunctionSummary::EdgeTy &L,
3222 const FunctionSummary::EdgeTy &R) {
3223 return VE.getValueID(L.first.getValue()) <
3224 VE.getValueID(R.first.getValue());
3225 });
3226 bool HasProfileData = F.getEntryCount().hasValue();
3227 for (auto &ECI : Calls) {
3228 NameVals.push_back(VE.getValueID(ECI.first.getValue()));
3229 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
3230 NameVals.push_back(ECI.second.CallsiteCount);
3231 if (HasProfileData)
3232 NameVals.push_back(ECI.second.ProfileCount);
3233 }
3234
3235 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3236 unsigned Code =
3237 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3238
3239 // Emit the finished record.
3240 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3241 NameVals.clear();
3242 }
3243
3244 // Collect the global value references in the given variable's initializer,
3245 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev)3246 void ModuleBitcodeWriter::writeModuleLevelReferences(
3247 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3248 unsigned FSModRefsAbbrev) {
3249 // Only interested in recording variable defs in the summary.
3250 if (V.isDeclaration())
3251 return;
3252 NameVals.push_back(VE.getValueID(&V));
3253 NameVals.push_back(getEncodedGVSummaryFlags(V));
3254 auto *Summary = Index->getGlobalValueSummary(V);
3255 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3256
3257 unsigned SizeBeforeRefs = NameVals.size();
3258 for (auto &RI : VS->refs())
3259 NameVals.push_back(VE.getValueID(RI.getValue()));
3260 // Sort the refs for determinism output, the vector returned by FS->refs() has
3261 // been initialized from a DenseSet.
3262 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3263
3264 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3265 FSModRefsAbbrev);
3266 NameVals.clear();
3267 }
3268
3269 // Current version for the summary.
3270 // This is bumped whenever we introduce changes in the way some record are
3271 // interpreted, like flags for instance.
3272 static const uint64_t INDEX_VERSION = 1;
3273
3274 /// Emit the per-module summary section alongside the rest of
3275 /// the module's bitcode.
writePerModuleGlobalValueSummary()3276 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3277 if (Index->begin() == Index->end())
3278 return;
3279
3280 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3281
3282 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3283
3284 // Abbrev for FS_PERMODULE.
3285 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3286 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3291 // numrefs x valueid, n x (valueid, callsitecount)
3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3294 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3295
3296 // Abbrev for FS_PERMODULE_PROFILE.
3297 Abbv = new BitCodeAbbrev();
3298 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3303 // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3306 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3307
3308 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3309 Abbv = new BitCodeAbbrev();
3310 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3315 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3316
3317 // Abbrev for FS_ALIAS.
3318 Abbv = new BitCodeAbbrev();
3319 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3323 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3324
3325 SmallVector<uint64_t, 64> NameVals;
3326 // Iterate over the list of functions instead of the Index to
3327 // ensure the ordering is stable.
3328 for (const Function &F : M) {
3329 if (F.isDeclaration())
3330 continue;
3331 // Summary emission does not support anonymous functions, they have to
3332 // renamed using the anonymous function renaming pass.
3333 if (!F.hasName())
3334 report_fatal_error("Unexpected anonymous function when writing summary");
3335
3336 auto *Summary = Index->getGlobalValueSummary(F);
3337 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3338 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3339 }
3340
3341 // Capture references from GlobalVariable initializers, which are outside
3342 // of a function scope.
3343 for (const GlobalVariable &G : M.globals())
3344 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3345
3346 for (const GlobalAlias &A : M.aliases()) {
3347 auto *Aliasee = A.getBaseObject();
3348 if (!Aliasee->hasName())
3349 // Nameless function don't have an entry in the summary, skip it.
3350 continue;
3351 auto AliasId = VE.getValueID(&A);
3352 auto AliaseeId = VE.getValueID(Aliasee);
3353 NameVals.push_back(AliasId);
3354 NameVals.push_back(getEncodedGVSummaryFlags(A));
3355 NameVals.push_back(AliaseeId);
3356 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3357 NameVals.clear();
3358 }
3359
3360 Stream.ExitBlock();
3361 }
3362
3363 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()3364 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3365 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3366 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3367
3368 // Abbrev for FS_COMBINED.
3369 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3370 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3376 // numrefs x valueid, n x (valueid, callsitecount)
3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3379 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3380
3381 // Abbrev for FS_COMBINED_PROFILE.
3382 Abbv = new BitCodeAbbrev();
3383 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3389 // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3392 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3393
3394 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3395 Abbv = new BitCodeAbbrev();
3396 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3402 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3403
3404 // Abbrev for FS_COMBINED_ALIAS.
3405 Abbv = new BitCodeAbbrev();
3406 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3411 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3412
3413 // The aliases are emitted as a post-pass, and will point to the value
3414 // id of the aliasee. Save them in a vector for post-processing.
3415 SmallVector<AliasSummary *, 64> Aliases;
3416
3417 // Save the value id for each summary for alias emission.
3418 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3419
3420 SmallVector<uint64_t, 64> NameVals;
3421
3422 // For local linkage, we also emit the original name separately
3423 // immediately after the record.
3424 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3425 if (!GlobalValue::isLocalLinkage(S.linkage()))
3426 return;
3427 NameVals.push_back(S.getOriginalName());
3428 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3429 NameVals.clear();
3430 };
3431
3432 for (const auto &I : *this) {
3433 GlobalValueSummary *S = I.second;
3434 assert(S);
3435
3436 assert(hasValueId(I.first));
3437 unsigned ValueId = getValueId(I.first);
3438 SummaryToValueIdMap[S] = ValueId;
3439
3440 if (auto *AS = dyn_cast<AliasSummary>(S)) {
3441 // Will process aliases as a post-pass because the reader wants all
3442 // global to be loaded first.
3443 Aliases.push_back(AS);
3444 continue;
3445 }
3446
3447 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3448 NameVals.push_back(ValueId);
3449 NameVals.push_back(Index.getModuleId(VS->modulePath()));
3450 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3451 for (auto &RI : VS->refs()) {
3452 NameVals.push_back(getValueId(RI.getGUID()));
3453 }
3454
3455 // Emit the finished record.
3456 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3457 FSModRefsAbbrev);
3458 NameVals.clear();
3459 MaybeEmitOriginalName(*S);
3460 continue;
3461 }
3462
3463 auto *FS = cast<FunctionSummary>(S);
3464 NameVals.push_back(ValueId);
3465 NameVals.push_back(Index.getModuleId(FS->modulePath()));
3466 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3467 NameVals.push_back(FS->instCount());
3468 NameVals.push_back(FS->refs().size());
3469
3470 for (auto &RI : FS->refs()) {
3471 NameVals.push_back(getValueId(RI.getGUID()));
3472 }
3473
3474 bool HasProfileData = false;
3475 for (auto &EI : FS->calls()) {
3476 HasProfileData |= EI.second.ProfileCount != 0;
3477 if (HasProfileData)
3478 break;
3479 }
3480
3481 for (auto &EI : FS->calls()) {
3482 // If this GUID doesn't have a value id, it doesn't have a function
3483 // summary and we don't need to record any calls to it.
3484 if (!hasValueId(EI.first.getGUID()))
3485 continue;
3486 NameVals.push_back(getValueId(EI.first.getGUID()));
3487 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3488 NameVals.push_back(EI.second.CallsiteCount);
3489 if (HasProfileData)
3490 NameVals.push_back(EI.second.ProfileCount);
3491 }
3492
3493 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3494 unsigned Code =
3495 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3496
3497 // Emit the finished record.
3498 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3499 NameVals.clear();
3500 MaybeEmitOriginalName(*S);
3501 }
3502
3503 for (auto *AS : Aliases) {
3504 auto AliasValueId = SummaryToValueIdMap[AS];
3505 assert(AliasValueId);
3506 NameVals.push_back(AliasValueId);
3507 NameVals.push_back(Index.getModuleId(AS->modulePath()));
3508 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3509 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3510 assert(AliaseeValueId);
3511 NameVals.push_back(AliaseeValueId);
3512
3513 // Emit the finished record.
3514 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3515 NameVals.clear();
3516 MaybeEmitOriginalName(*AS);
3517 }
3518
3519 Stream.ExitBlock();
3520 }
3521
writeIdentificationBlock()3522 void ModuleBitcodeWriter::writeIdentificationBlock() {
3523 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3524
3525 // Write the "user readable" string identifying the bitcode producer
3526 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3527 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3530 auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3531 writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3532 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3533
3534 // Write the epoch version
3535 Abbv = new BitCodeAbbrev();
3536 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3538 auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3539 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3540 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3541 Stream.ExitBlock();
3542 }
3543
writeModuleHash(size_t BlockStartPos)3544 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3545 // Emit the module's hash.
3546 // MODULE_CODE_HASH: [5*i32]
3547 SHA1 Hasher;
3548 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3549 Buffer.size() - BlockStartPos));
3550 auto Hash = Hasher.result();
3551 SmallVector<uint64_t, 20> Vals;
3552 auto LShift = [&](unsigned char Val, unsigned Amount)
3553 -> uint64_t { return ((uint64_t)Val) << Amount; };
3554 for (int Pos = 0; Pos < 20; Pos += 4) {
3555 uint32_t SubHash = LShift(Hash[Pos + 0], 24);
3556 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
3557 (unsigned)(unsigned char)Hash[Pos + 3];
3558 Vals.push_back(SubHash);
3559 }
3560
3561 // Emit the finished record.
3562 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3563 }
3564
write()3565 void BitcodeWriter::write() {
3566 // Emit the file header first.
3567 writeBitcodeHeader();
3568
3569 writeBlocks();
3570 }
3571
writeBlocks()3572 void ModuleBitcodeWriter::writeBlocks() {
3573 writeIdentificationBlock();
3574 writeModule();
3575 }
3576
writeBlocks()3577 void IndexBitcodeWriter::writeBlocks() {
3578 // Index contains only a single outer (module) block.
3579 writeIndex();
3580 }
3581
writeModule()3582 void ModuleBitcodeWriter::writeModule() {
3583 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3584 size_t BlockStartPos = Buffer.size();
3585
3586 SmallVector<unsigned, 1> Vals;
3587 unsigned CurVersion = 1;
3588 Vals.push_back(CurVersion);
3589 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3590
3591 // Emit blockinfo, which defines the standard abbreviations etc.
3592 writeBlockInfo();
3593
3594 // Emit information about attribute groups.
3595 writeAttributeGroupTable();
3596
3597 // Emit information about parameter attributes.
3598 writeAttributeTable();
3599
3600 // Emit information describing all of the types in the module.
3601 writeTypeTable();
3602
3603 writeComdats();
3604
3605 // Emit top-level description of module, including target triple, inline asm,
3606 // descriptors for global variables, and function prototype info.
3607 writeModuleInfo();
3608
3609 // Emit constants.
3610 writeModuleConstants();
3611
3612 // Emit metadata kind names.
3613 writeModuleMetadataKinds();
3614
3615 // Emit metadata.
3616 writeModuleMetadata();
3617
3618 // Emit module-level use-lists.
3619 if (VE.shouldPreserveUseListOrder())
3620 writeUseListBlock(nullptr);
3621
3622 writeOperandBundleTags();
3623
3624 // Emit function bodies.
3625 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3626 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3627 if (!F->isDeclaration())
3628 writeFunction(*F, FunctionToBitcodeIndex);
3629
3630 // Need to write after the above call to WriteFunction which populates
3631 // the summary information in the index.
3632 if (Index)
3633 writePerModuleGlobalValueSummary();
3634
3635 writeValueSymbolTable(M.getValueSymbolTable(),
3636 /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3637
3638 if (GenerateHash) {
3639 writeModuleHash(BlockStartPos);
3640 }
3641
3642 Stream.ExitBlock();
3643 }
3644
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)3645 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3646 uint32_t &Position) {
3647 support::endian::write32le(&Buffer[Position], Value);
3648 Position += 4;
3649 }
3650
3651 /// If generating a bc file on darwin, we have to emit a
3652 /// header and trailer to make it compatible with the system archiver. To do
3653 /// this we emit the following header, and then emit a trailer that pads the
3654 /// file out to be a multiple of 16 bytes.
3655 ///
3656 /// struct bc_header {
3657 /// uint32_t Magic; // 0x0B17C0DE
3658 /// uint32_t Version; // Version, currently always 0.
3659 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3660 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
3661 /// uint32_t CPUType; // CPU specifier.
3662 /// ... potentially more later ...
3663 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)3664 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3665 const Triple &TT) {
3666 unsigned CPUType = ~0U;
3667
3668 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3669 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3670 // number from /usr/include/mach/machine.h. It is ok to reproduce the
3671 // specific constants here because they are implicitly part of the Darwin ABI.
3672 enum {
3673 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
3674 DARWIN_CPU_TYPE_X86 = 7,
3675 DARWIN_CPU_TYPE_ARM = 12,
3676 DARWIN_CPU_TYPE_POWERPC = 18
3677 };
3678
3679 Triple::ArchType Arch = TT.getArch();
3680 if (Arch == Triple::x86_64)
3681 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3682 else if (Arch == Triple::x86)
3683 CPUType = DARWIN_CPU_TYPE_X86;
3684 else if (Arch == Triple::ppc)
3685 CPUType = DARWIN_CPU_TYPE_POWERPC;
3686 else if (Arch == Triple::ppc64)
3687 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3688 else if (Arch == Triple::arm || Arch == Triple::thumb)
3689 CPUType = DARWIN_CPU_TYPE_ARM;
3690
3691 // Traditional Bitcode starts after header.
3692 assert(Buffer.size() >= BWH_HeaderSize &&
3693 "Expected header size to be reserved");
3694 unsigned BCOffset = BWH_HeaderSize;
3695 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3696
3697 // Write the magic and version.
3698 unsigned Position = 0;
3699 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3700 writeInt32ToBuffer(0, Buffer, Position); // Version.
3701 writeInt32ToBuffer(BCOffset, Buffer, Position);
3702 writeInt32ToBuffer(BCSize, Buffer, Position);
3703 writeInt32ToBuffer(CPUType, Buffer, Position);
3704
3705 // If the file is not a multiple of 16 bytes, insert dummy padding.
3706 while (Buffer.size() & 15)
3707 Buffer.push_back(0);
3708 }
3709
3710 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader()3711 void BitcodeWriter::writeBitcodeHeader() {
3712 // Emit the file header.
3713 Stream.Emit((unsigned)'B', 8);
3714 Stream.Emit((unsigned)'C', 8);
3715 Stream.Emit(0x0, 4);
3716 Stream.Emit(0xC, 4);
3717 Stream.Emit(0xE, 4);
3718 Stream.Emit(0xD, 4);
3719 }
3720
3721 /// WriteBitcodeToFile - Write the specified module to the specified output
3722 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash)3723 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3724 bool ShouldPreserveUseListOrder,
3725 const ModuleSummaryIndex *Index,
3726 bool GenerateHash) {
3727 SmallVector<char, 0> Buffer;
3728 Buffer.reserve(256*1024);
3729
3730 // If this is darwin or another generic macho target, reserve space for the
3731 // header.
3732 Triple TT(M->getTargetTriple());
3733 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3734 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3735
3736 // Emit the module into the buffer.
3737 ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
3738 GenerateHash);
3739 ModuleWriter.write();
3740
3741 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3742 emitDarwinBCHeaderAndTrailer(Buffer, TT);
3743
3744 // Write the generated bitstream to "Out".
3745 Out.write((char*)&Buffer.front(), Buffer.size());
3746 }
3747
writeIndex()3748 void IndexBitcodeWriter::writeIndex() {
3749 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3750
3751 SmallVector<unsigned, 1> Vals;
3752 unsigned CurVersion = 1;
3753 Vals.push_back(CurVersion);
3754 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3755
3756 // If we have a VST, write the VSTOFFSET record placeholder.
3757 writeValueSymbolTableForwardDecl();
3758
3759 // Write the module paths in the combined index.
3760 writeModStrings();
3761
3762 // Write the summary combined index records.
3763 writeCombinedGlobalValueSummary();
3764
3765 // Need a special VST writer for the combined index (we don't have a
3766 // real VST and real values when this is invoked).
3767 writeCombinedValueSymbolTable();
3768
3769 Stream.ExitBlock();
3770 }
3771
3772 // Write the specified module summary index to the given raw output stream,
3773 // where it will be written in a new bitcode block. This is used when
3774 // writing the combined index file for ThinLTO. When writing a subset of the
3775 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
WriteIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)3776 void llvm::WriteIndexToFile(
3777 const ModuleSummaryIndex &Index, raw_ostream &Out,
3778 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3779 SmallVector<char, 0> Buffer;
3780 Buffer.reserve(256 * 1024);
3781
3782 IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
3783 IndexWriter.write();
3784
3785 Out.write((char *)&Buffer.front(), Buffer.size());
3786 }
3787