• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LiveRangeCalc.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "regalloc"
21 
resetLiveOutMap()22 void LiveRangeCalc::resetLiveOutMap() {
23   unsigned NumBlocks = MF->getNumBlockIDs();
24   Seen.clear();
25   Seen.resize(NumBlocks);
26   Map.resize(NumBlocks);
27 }
28 
reset(const MachineFunction * mf,SlotIndexes * SI,MachineDominatorTree * MDT,VNInfo::Allocator * VNIA)29 void LiveRangeCalc::reset(const MachineFunction *mf,
30                           SlotIndexes *SI,
31                           MachineDominatorTree *MDT,
32                           VNInfo::Allocator *VNIA) {
33   MF = mf;
34   MRI = &MF->getRegInfo();
35   Indexes = SI;
36   DomTree = MDT;
37   Alloc = VNIA;
38   resetLiveOutMap();
39   LiveIn.clear();
40 }
41 
42 
createDeadDef(SlotIndexes & Indexes,VNInfo::Allocator & Alloc,LiveRange & LR,const MachineOperand & MO)43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44                           LiveRange &LR, const MachineOperand &MO) {
45   const MachineInstr &MI = *MO.getParent();
46   SlotIndex DefIdx =
47       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
48 
49   // Create the def in LR. This may find an existing def.
50   LR.createDeadDef(DefIdx, Alloc);
51 }
52 
calculate(LiveInterval & LI,bool TrackSubRegs)53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
54   assert(MRI && Indexes && "call reset() first");
55 
56   // Step 1: Create minimal live segments for every definition of Reg.
57   // Visit all def operands. If the same instruction has multiple defs of Reg,
58   // createDeadDef() will deduplicate.
59   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
60   unsigned Reg = LI.reg;
61   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
62     if (!MO.isDef() && !MO.readsReg())
63       continue;
64 
65     unsigned SubReg = MO.getSubReg();
66     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
67       LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
68                                      : MRI->getMaxLaneMaskForVReg(Reg);
69 
70       // If this is the first time we see a subregister def, initialize
71       // subranges by creating a copy of the main range.
72       if (!LI.hasSubRanges() && !LI.empty()) {
73         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
74         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
75       }
76 
77       for (LiveInterval::SubRange &S : LI.subranges()) {
78         // A Mask for subregs common to the existing subrange and current def.
79         LaneBitmask Common = S.LaneMask & Mask;
80         if (Common == 0)
81           continue;
82         // A Mask for subregs covered by the subrange but not the current def.
83         LaneBitmask LRest = S.LaneMask & ~Mask;
84         LiveInterval::SubRange *CommonRange;
85         if (LRest != 0) {
86           // Split current subrange into Common and LRest ranges.
87           S.LaneMask = LRest;
88           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
89         } else {
90           assert(Common == S.LaneMask);
91           CommonRange = &S;
92         }
93         if (MO.isDef())
94           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
95         Mask &= ~Common;
96       }
97       // Create a new SubRange for subregs we did not cover yet.
98       if (Mask != 0) {
99         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
100         if (MO.isDef())
101           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
102       }
103     }
104 
105     // Create the def in the main liverange. We do not have to do this if
106     // subranges are tracked as we recreate the main range later in this case.
107     if (MO.isDef() && !LI.hasSubRanges())
108       createDeadDef(*Indexes, *Alloc, LI, MO);
109   }
110 
111   // We may have created empty live ranges for partially undefined uses, we
112   // can't keep them because we won't find defs in them later.
113   LI.removeEmptySubRanges();
114 
115   // Step 2: Extend live segments to all uses, constructing SSA form as
116   // necessary.
117   if (LI.hasSubRanges()) {
118     for (LiveInterval::SubRange &S : LI.subranges()) {
119       resetLiveOutMap();
120       extendToUses(S, Reg, S.LaneMask);
121     }
122     LI.clear();
123     constructMainRangeFromSubranges(LI);
124   } else {
125     resetLiveOutMap();
126     extendToUses(LI, Reg, ~0u);
127   }
128 }
129 
constructMainRangeFromSubranges(LiveInterval & LI)130 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
131   // First create dead defs at all defs found in subranges.
132   LiveRange &MainRange = LI;
133   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
134          "Expect empty main liverange");
135 
136   for (const LiveInterval::SubRange &SR : LI.subranges()) {
137     for (const VNInfo *VNI : SR.valnos) {
138       if (!VNI->isUnused() && !VNI->isPHIDef())
139         MainRange.createDeadDef(VNI->def, *Alloc);
140     }
141   }
142 
143   resetLiveOutMap();
144   extendToUses(MainRange, LI.reg);
145 }
146 
createDeadDefs(LiveRange & LR,unsigned Reg)147 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
148   assert(MRI && Indexes && "call reset() first");
149 
150   // Visit all def operands. If the same instruction has multiple defs of Reg,
151   // LR.createDeadDef() will deduplicate.
152   for (MachineOperand &MO : MRI->def_operands(Reg))
153     createDeadDef(*Indexes, *Alloc, LR, MO);
154 }
155 
156 
extendToUses(LiveRange & LR,unsigned Reg,LaneBitmask Mask)157 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
158                                  LaneBitmask Mask) {
159   // Visit all operands that read Reg. This may include partial defs.
160   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
161   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
162     // Clear all kill flags. They will be reinserted after register allocation
163     // by LiveIntervalAnalysis::addKillFlags().
164     if (MO.isUse())
165       MO.setIsKill(false);
166     else {
167       // We only care about uses, but on the main range (mask ~0u) this includes
168       // the "virtual" reads happening for subregister defs.
169       if (Mask != ~0u)
170         continue;
171     }
172 
173     if (!MO.readsReg())
174       continue;
175     unsigned SubReg = MO.getSubReg();
176     if (SubReg != 0) {
177       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
178       // Ignore uses not covering the current subrange.
179       if ((SubRegMask & Mask) == 0)
180         continue;
181     }
182 
183     // Determine the actual place of the use.
184     const MachineInstr *MI = MO.getParent();
185     unsigned OpNo = (&MO - &MI->getOperand(0));
186     SlotIndex UseIdx;
187     if (MI->isPHI()) {
188       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
189       // The actual place where a phi operand is used is the end of the pred
190       // MBB. PHI operands are paired: (Reg, PredMBB).
191       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
192     } else {
193       // Check for early-clobber redefs.
194       bool isEarlyClobber = false;
195       unsigned DefIdx;
196       if (MO.isDef())
197         isEarlyClobber = MO.isEarlyClobber();
198       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
199         // FIXME: This would be a lot easier if tied early-clobber uses also
200         // had an early-clobber flag.
201         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
202       }
203       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
204     }
205 
206     // MI is reading Reg. We may have visited MI before if it happens to be
207     // reading Reg multiple times. That is OK, extend() is idempotent.
208     extend(LR, UseIdx, Reg);
209   }
210 }
211 
212 
updateFromLiveIns()213 void LiveRangeCalc::updateFromLiveIns() {
214   LiveRangeUpdater Updater;
215   for (const LiveInBlock &I : LiveIn) {
216     if (!I.DomNode)
217       continue;
218     MachineBasicBlock *MBB = I.DomNode->getBlock();
219     assert(I.Value && "No live-in value found");
220     SlotIndex Start, End;
221     std::tie(Start, End) = Indexes->getMBBRange(MBB);
222 
223     if (I.Kill.isValid())
224       // Value is killed inside this block.
225       End = I.Kill;
226     else {
227       // The value is live-through, update LiveOut as well.
228       // Defer the Domtree lookup until it is needed.
229       assert(Seen.test(MBB->getNumber()));
230       Map[MBB] = LiveOutPair(I.Value, nullptr);
231     }
232     Updater.setDest(&I.LR);
233     Updater.add(Start, End, I.Value);
234   }
235   LiveIn.clear();
236 }
237 
238 
extend(LiveRange & LR,SlotIndex Use,unsigned PhysReg)239 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
240   assert(Use.isValid() && "Invalid SlotIndex");
241   assert(Indexes && "Missing SlotIndexes");
242   assert(DomTree && "Missing dominator tree");
243 
244   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
245   assert(UseMBB && "No MBB at Use");
246 
247   // Is there a def in the same MBB we can extend?
248   if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
249     return;
250 
251   // Find the single reaching def, or determine if Use is jointly dominated by
252   // multiple values, and we may need to create even more phi-defs to preserve
253   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
254   // know the dominating VNInfo.
255   if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
256     return;
257 
258   // When there were multiple different values, we may need new PHIs.
259   calculateValues();
260 }
261 
262 
263 // This function is called by a client after using the low-level API to add
264 // live-out and live-in blocks.  The unique value optimization is not
265 // available, SplitEditor::transferValues handles that case directly anyway.
calculateValues()266 void LiveRangeCalc::calculateValues() {
267   assert(Indexes && "Missing SlotIndexes");
268   assert(DomTree && "Missing dominator tree");
269   updateSSA();
270   updateFromLiveIns();
271 }
272 
273 
findReachingDefs(LiveRange & LR,MachineBasicBlock & UseMBB,SlotIndex Use,unsigned PhysReg)274 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
275                                      SlotIndex Use, unsigned PhysReg) {
276   unsigned UseMBBNum = UseMBB.getNumber();
277 
278   // Block numbers where LR should be live-in.
279   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
280 
281   // Remember if we have seen more than one value.
282   bool UniqueVNI = true;
283   VNInfo *TheVNI = nullptr;
284 
285   // Using Seen as a visited set, perform a BFS for all reaching defs.
286   for (unsigned i = 0; i != WorkList.size(); ++i) {
287     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
288 
289 #ifndef NDEBUG
290     if (MBB->pred_empty()) {
291       MBB->getParent()->verify();
292       errs() << "Use of " << PrintReg(PhysReg)
293              << " does not have a corresponding definition on every path:\n";
294       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
295       if (MI != nullptr)
296         errs() << Use << " " << *MI;
297       llvm_unreachable("Use not jointly dominated by defs.");
298     }
299 
300     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
301         !MBB->isLiveIn(PhysReg)) {
302       MBB->getParent()->verify();
303       errs() << "The register " << PrintReg(PhysReg)
304              << " needs to be live in to BB#" << MBB->getNumber()
305              << ", but is missing from the live-in list.\n";
306       llvm_unreachable("Invalid global physical register");
307     }
308 #endif
309 
310     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
311          PE = MBB->pred_end(); PI != PE; ++PI) {
312        MachineBasicBlock *Pred = *PI;
313 
314        // Is this a known live-out block?
315        if (Seen.test(Pred->getNumber())) {
316          if (VNInfo *VNI = Map[Pred].first) {
317            if (TheVNI && TheVNI != VNI)
318              UniqueVNI = false;
319            TheVNI = VNI;
320          }
321          continue;
322        }
323 
324        SlotIndex Start, End;
325        std::tie(Start, End) = Indexes->getMBBRange(Pred);
326 
327        // First time we see Pred.  Try to determine the live-out value, but set
328        // it as null if Pred is live-through with an unknown value.
329        VNInfo *VNI = LR.extendInBlock(Start, End);
330        setLiveOutValue(Pred, VNI);
331        if (VNI) {
332          if (TheVNI && TheVNI != VNI)
333            UniqueVNI = false;
334          TheVNI = VNI;
335          continue;
336        }
337 
338        // No, we need a live-in value for Pred as well
339        if (Pred != &UseMBB)
340           WorkList.push_back(Pred->getNumber());
341        else
342           // Loopback to UseMBB, so value is really live through.
343          Use = SlotIndex();
344     }
345   }
346 
347   LiveIn.clear();
348 
349   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
350   // neither require it. Skip the sorting overhead for small updates.
351   if (WorkList.size() > 4)
352     array_pod_sort(WorkList.begin(), WorkList.end());
353 
354   // If a unique reaching def was found, blit in the live ranges immediately.
355   if (UniqueVNI) {
356     LiveRangeUpdater Updater(&LR);
357     for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
358          E = WorkList.end(); I != E; ++I) {
359        SlotIndex Start, End;
360        std::tie(Start, End) = Indexes->getMBBRange(*I);
361        // Trim the live range in UseMBB.
362        if (*I == UseMBBNum && Use.isValid())
363          End = Use;
364        else
365          Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
366        Updater.add(Start, End, TheVNI);
367     }
368     return true;
369   }
370 
371   // Multiple values were found, so transfer the work list to the LiveIn array
372   // where UpdateSSA will use it as a work list.
373   LiveIn.reserve(WorkList.size());
374   for (SmallVectorImpl<unsigned>::const_iterator
375        I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
376     MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
377     addLiveInBlock(LR, DomTree->getNode(MBB));
378     if (MBB == &UseMBB)
379       LiveIn.back().Kill = Use;
380   }
381 
382   return false;
383 }
384 
385 
386 // This is essentially the same iterative algorithm that SSAUpdater uses,
387 // except we already have a dominator tree, so we don't have to recompute it.
updateSSA()388 void LiveRangeCalc::updateSSA() {
389   assert(Indexes && "Missing SlotIndexes");
390   assert(DomTree && "Missing dominator tree");
391 
392   // Interate until convergence.
393   unsigned Changes;
394   do {
395     Changes = 0;
396     // Propagate live-out values down the dominator tree, inserting phi-defs
397     // when necessary.
398     for (LiveInBlock &I : LiveIn) {
399       MachineDomTreeNode *Node = I.DomNode;
400       // Skip block if the live-in value has already been determined.
401       if (!Node)
402         continue;
403       MachineBasicBlock *MBB = Node->getBlock();
404       MachineDomTreeNode *IDom = Node->getIDom();
405       LiveOutPair IDomValue;
406 
407       // We need a live-in value to a block with no immediate dominator?
408       // This is probably an unreachable block that has survived somehow.
409       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
410 
411       // IDom dominates all of our predecessors, but it may not be their
412       // immediate dominator. Check if any of them have live-out values that are
413       // properly dominated by IDom. If so, we need a phi-def here.
414       if (!needPHI) {
415         IDomValue = Map[IDom->getBlock()];
416 
417         // Cache the DomTree node that defined the value.
418         if (IDomValue.first && !IDomValue.second)
419           Map[IDom->getBlock()].second = IDomValue.second =
420             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
421 
422         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
423                PE = MBB->pred_end(); PI != PE; ++PI) {
424           LiveOutPair &Value = Map[*PI];
425           if (!Value.first || Value.first == IDomValue.first)
426             continue;
427 
428           // Cache the DomTree node that defined the value.
429           if (!Value.second)
430             Value.second =
431               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
432 
433           // This predecessor is carrying something other than IDomValue.
434           // It could be because IDomValue hasn't propagated yet, or it could be
435           // because MBB is in the dominance frontier of that value.
436           if (DomTree->dominates(IDom, Value.second)) {
437             needPHI = true;
438             break;
439           }
440         }
441       }
442 
443       // The value may be live-through even if Kill is set, as can happen when
444       // we are called from extendRange. In that case LiveOutSeen is true, and
445       // LiveOut indicates a foreign or missing value.
446       LiveOutPair &LOP = Map[MBB];
447 
448       // Create a phi-def if required.
449       if (needPHI) {
450         ++Changes;
451         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
452         SlotIndex Start, End;
453         std::tie(Start, End) = Indexes->getMBBRange(MBB);
454         LiveRange &LR = I.LR;
455         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
456         I.Value = VNI;
457         // This block is done, we know the final value.
458         I.DomNode = nullptr;
459 
460         // Add liveness since updateFromLiveIns now skips this node.
461         if (I.Kill.isValid())
462           LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
463         else {
464           LR.addSegment(LiveInterval::Segment(Start, End, VNI));
465           LOP = LiveOutPair(VNI, Node);
466         }
467       } else if (IDomValue.first) {
468         // No phi-def here. Remember incoming value.
469         I.Value = IDomValue.first;
470 
471         // If the IDomValue is killed in the block, don't propagate through.
472         if (I.Kill.isValid())
473           continue;
474 
475         // Propagate IDomValue if it isn't killed:
476         // MBB is live-out and doesn't define its own value.
477         if (LOP.first == IDomValue.first)
478           continue;
479         ++Changes;
480         LOP = IDomValue;
481       }
482     }
483   } while (Changes);
484 }
485