1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetFrameLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 #define DEBUG_TYPE "target-reg-info"
27
28 using namespace llvm;
29
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)30 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
31 regclass_iterator RCB, regclass_iterator RCE,
32 const char *const *SRINames,
33 const unsigned *SRILaneMasks,
34 unsigned SRICoveringLanes)
35 : InfoDesc(ID), SubRegIndexNames(SRINames),
36 SubRegIndexLaneMasks(SRILaneMasks),
37 RegClassBegin(RCB), RegClassEnd(RCE),
38 CoveringLanes(SRICoveringLanes) {
39 }
40
~TargetRegisterInfo()41 TargetRegisterInfo::~TargetRegisterInfo() {}
42
43 namespace llvm {
44
PrintReg(unsigned Reg,const TargetRegisterInfo * TRI,unsigned SubIdx)45 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
46 unsigned SubIdx) {
47 return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
48 if (!Reg)
49 OS << "%noreg";
50 else if (TargetRegisterInfo::isStackSlot(Reg))
51 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
52 else if (TargetRegisterInfo::isVirtualRegister(Reg))
53 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
54 else if (TRI && Reg < TRI->getNumRegs())
55 OS << '%' << TRI->getName(Reg);
56 else
57 OS << "%physreg" << Reg;
58 if (SubIdx) {
59 if (TRI)
60 OS << ':' << TRI->getSubRegIndexName(SubIdx);
61 else
62 OS << ":sub(" << SubIdx << ')';
63 }
64 });
65 }
66
PrintRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)67 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
68 return Printable([Unit, TRI](raw_ostream &OS) {
69 // Generic printout when TRI is missing.
70 if (!TRI) {
71 OS << "Unit~" << Unit;
72 return;
73 }
74
75 // Check for invalid register units.
76 if (Unit >= TRI->getNumRegUnits()) {
77 OS << "BadUnit~" << Unit;
78 return;
79 }
80
81 // Normal units have at least one root.
82 MCRegUnitRootIterator Roots(Unit, TRI);
83 assert(Roots.isValid() && "Unit has no roots.");
84 OS << TRI->getName(*Roots);
85 for (++Roots; Roots.isValid(); ++Roots)
86 OS << '~' << TRI->getName(*Roots);
87 });
88 }
89
PrintVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)90 Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
91 return Printable([Unit, TRI](raw_ostream &OS) {
92 if (TRI && TRI->isVirtualRegister(Unit)) {
93 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
94 } else {
95 OS << PrintRegUnit(Unit, TRI);
96 }
97 });
98 }
99
PrintLaneMask(LaneBitmask LaneMask)100 Printable PrintLaneMask(LaneBitmask LaneMask) {
101 return Printable([LaneMask](raw_ostream &OS) {
102 OS << format("%08X", LaneMask);
103 });
104 }
105
106 } // End of llvm namespace
107
108 /// getAllocatableClass - Return the maximal subclass of the given register
109 /// class that is alloctable, or NULL.
110 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const111 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
112 if (!RC || RC->isAllocatable())
113 return RC;
114
115 for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
116 ++It) {
117 const TargetRegisterClass *SubRC = getRegClass(It.getID());
118 if (SubRC->isAllocatable())
119 return SubRC;
120 }
121 return nullptr;
122 }
123
124 /// getMinimalPhysRegClass - Returns the Register Class of a physical
125 /// register of the given type, picking the most sub register class of
126 /// the right type that contains this physreg.
127 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const128 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
129 assert(isPhysicalRegister(reg) && "reg must be a physical register");
130
131 // Pick the most sub register class of the right type that contains
132 // this physreg.
133 const TargetRegisterClass* BestRC = nullptr;
134 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
135 const TargetRegisterClass* RC = *I;
136 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
137 (!BestRC || BestRC->hasSubClass(RC)))
138 BestRC = RC;
139 }
140
141 assert(BestRC && "Couldn't find the register class");
142 return BestRC;
143 }
144
145 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
146 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)147 static void getAllocatableSetForRC(const MachineFunction &MF,
148 const TargetRegisterClass *RC, BitVector &R){
149 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
150 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
151 for (unsigned i = 0; i != Order.size(); ++i)
152 R.set(Order[i]);
153 }
154
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const155 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
156 const TargetRegisterClass *RC) const {
157 BitVector Allocatable(getNumRegs());
158 if (RC) {
159 // A register class with no allocatable subclass returns an empty set.
160 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
161 if (SubClass)
162 getAllocatableSetForRC(MF, SubClass, Allocatable);
163 } else {
164 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
165 E = regclass_end(); I != E; ++I)
166 if ((*I)->isAllocatable())
167 getAllocatableSetForRC(MF, *I, Allocatable);
168 }
169
170 // Mask out the reserved registers
171 BitVector Reserved = getReservedRegs(MF);
172 Allocatable &= Reserved.flip();
173
174 return Allocatable;
175 }
176
177 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI,const MVT::SimpleValueType SVT=MVT::SimpleValueType::Any)178 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
179 const uint32_t *B,
180 const TargetRegisterInfo *TRI,
181 const MVT::SimpleValueType SVT =
182 MVT::SimpleValueType::Any) {
183 const MVT VT(SVT);
184 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
185 if (unsigned Common = *A++ & *B++) {
186 const TargetRegisterClass *RC =
187 TRI->getRegClass(I + countTrailingZeros(Common));
188 if (SVT == MVT::SimpleValueType::Any || RC->hasType(VT))
189 return RC;
190 }
191 return nullptr;
192 }
193
194 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B,const MVT::SimpleValueType SVT) const195 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
196 const TargetRegisterClass *B,
197 const MVT::SimpleValueType SVT) const {
198 // First take care of the trivial cases.
199 if (A == B)
200 return A;
201 if (!A || !B)
202 return nullptr;
203
204 // Register classes are ordered topologically, so the largest common
205 // sub-class it the common sub-class with the smallest ID.
206 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
207 }
208
209 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const210 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
211 const TargetRegisterClass *B,
212 unsigned Idx) const {
213 assert(A && B && "Missing register class");
214 assert(Idx && "Bad sub-register index");
215
216 // Find Idx in the list of super-register indices.
217 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
218 if (RCI.getSubReg() == Idx)
219 // The bit mask contains all register classes that are projected into B
220 // by Idx. Find a class that is also a sub-class of A.
221 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
222 return nullptr;
223 }
224
225 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const226 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
227 const TargetRegisterClass *RCB, unsigned SubB,
228 unsigned &PreA, unsigned &PreB) const {
229 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
230
231 // Search all pairs of sub-register indices that project into RCA and RCB
232 // respectively. This is quadratic, but usually the sets are very small. On
233 // most targets like X86, there will only be a single sub-register index
234 // (e.g., sub_16bit projecting into GR16).
235 //
236 // The worst case is a register class like DPR on ARM.
237 // We have indices dsub_0..dsub_7 projecting into that class.
238 //
239 // It is very common that one register class is a sub-register of the other.
240 // Arrange for RCA to be the larger register so the answer will be found in
241 // the first iteration. This makes the search linear for the most common
242 // case.
243 const TargetRegisterClass *BestRC = nullptr;
244 unsigned *BestPreA = &PreA;
245 unsigned *BestPreB = &PreB;
246 if (RCA->getSize() < RCB->getSize()) {
247 std::swap(RCA, RCB);
248 std::swap(SubA, SubB);
249 std::swap(BestPreA, BestPreB);
250 }
251
252 // Also terminate the search one we have found a register class as small as
253 // RCA.
254 unsigned MinSize = RCA->getSize();
255
256 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
257 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
258 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
259 // Check if a common super-register class exists for this index pair.
260 const TargetRegisterClass *RC =
261 firstCommonClass(IA.getMask(), IB.getMask(), this);
262 if (!RC || RC->getSize() < MinSize)
263 continue;
264
265 // The indexes must compose identically: PreA+SubA == PreB+SubB.
266 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
267 if (FinalA != FinalB)
268 continue;
269
270 // Is RC a better candidate than BestRC?
271 if (BestRC && RC->getSize() >= BestRC->getSize())
272 continue;
273
274 // Yes, RC is the smallest super-register seen so far.
275 BestRC = RC;
276 *BestPreA = IA.getSubReg();
277 *BestPreB = IB.getSubReg();
278
279 // Bail early if we reached MinSize. We won't find a better candidate.
280 if (BestRC->getSize() == MinSize)
281 return BestRC;
282 }
283 }
284 return BestRC;
285 }
286
287 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
288 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)289 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
290 const TargetRegisterClass *DefRC,
291 unsigned DefSubReg,
292 const TargetRegisterClass *SrcRC,
293 unsigned SrcSubReg) {
294 // Same register class.
295 if (DefRC == SrcRC)
296 return true;
297
298 // Both operands are sub registers. Check if they share a register class.
299 unsigned SrcIdx, DefIdx;
300 if (SrcSubReg && DefSubReg) {
301 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
302 SrcIdx, DefIdx) != nullptr;
303 }
304
305 // At most one of the register is a sub register, make it Src to avoid
306 // duplicating the test.
307 if (!SrcSubReg) {
308 std::swap(DefSubReg, SrcSubReg);
309 std::swap(DefRC, SrcRC);
310 }
311
312 // One of the register is a sub register, check if we can get a superclass.
313 if (SrcSubReg)
314 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
315
316 // Plain copy.
317 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
318 }
319
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const320 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
321 unsigned DefSubReg,
322 const TargetRegisterClass *SrcRC,
323 unsigned SrcSubReg) const {
324 // If this source does not incur a cross register bank copy, use it.
325 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
326 }
327
328 // Compute target-independent register allocator hints to help eliminate copies.
329 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const330 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
331 ArrayRef<MCPhysReg> Order,
332 SmallVectorImpl<MCPhysReg> &Hints,
333 const MachineFunction &MF,
334 const VirtRegMap *VRM,
335 const LiveRegMatrix *Matrix) const {
336 const MachineRegisterInfo &MRI = MF.getRegInfo();
337 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
338
339 // Hints with HintType != 0 were set by target-dependent code.
340 // Such targets must provide their own implementation of
341 // TRI::getRegAllocationHints to interpret those hint types.
342 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
343
344 // Target-independent hints are either a physical or a virtual register.
345 unsigned Phys = Hint.second;
346 if (VRM && isVirtualRegister(Phys))
347 Phys = VRM->getPhys(Phys);
348
349 // Check that Phys is a valid hint in VirtReg's register class.
350 if (!isPhysicalRegister(Phys))
351 return;
352 if (MRI.isReserved(Phys))
353 return;
354 // Check that Phys is in the allocation order. We shouldn't heed hints
355 // from VirtReg's register class if they aren't in the allocation order. The
356 // target probably has a reason for removing the register.
357 if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
358 return;
359
360 // All clear, tell the register allocator to prefer this register.
361 Hints.push_back(Phys);
362 }
363
canRealignStack(const MachineFunction & MF) const364 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
365 return !MF.getFunction()->hasFnAttribute("no-realign-stack");
366 }
367
needsStackRealignment(const MachineFunction & MF) const368 bool TargetRegisterInfo::needsStackRealignment(
369 const MachineFunction &MF) const {
370 const MachineFrameInfo *MFI = MF.getFrameInfo();
371 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
372 const Function *F = MF.getFunction();
373 unsigned StackAlign = TFI->getStackAlignment();
374 bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
375 F->hasFnAttribute(Attribute::StackAlignment));
376 if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
377 if (canRealignStack(MF))
378 return true;
379 DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
380 }
381 return false;
382 }
383
regmaskSubsetEqual(const uint32_t * mask0,const uint32_t * mask1) const384 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
385 const uint32_t *mask1) const {
386 unsigned N = (getNumRegs()+31) / 32;
387 for (unsigned I = 0; I < N; ++I)
388 if ((mask0[I] & mask1[I]) != mask0[I])
389 return false;
390 return true;
391 }
392
393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
394 void
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)395 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
396 const TargetRegisterInfo *TRI) {
397 dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
398 }
399 #endif
400