1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Metadata classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Metadata.h"
15 #include "LLVMContextImpl.h"
16 #include "MetadataImpl.h"
17 #include "SymbolTableListTraitsImpl.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/ValueHandle.h"
27
28 using namespace llvm;
29
MetadataAsValue(Type * Ty,Metadata * MD)30 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
31 : Value(Ty, MetadataAsValueVal), MD(MD) {
32 track();
33 }
34
~MetadataAsValue()35 MetadataAsValue::~MetadataAsValue() {
36 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
37 untrack();
38 }
39
40 /// Canonicalize metadata arguments to intrinsics.
41 ///
42 /// To support bitcode upgrades (and assembly semantic sugar) for \a
43 /// MetadataAsValue, we need to canonicalize certain metadata.
44 ///
45 /// - nullptr is replaced by an empty MDNode.
46 /// - An MDNode with a single null operand is replaced by an empty MDNode.
47 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
48 ///
49 /// This maintains readability of bitcode from when metadata was a type of
50 /// value, and these bridges were unnecessary.
canonicalizeMetadataForValue(LLVMContext & Context,Metadata * MD)51 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
52 Metadata *MD) {
53 if (!MD)
54 // !{}
55 return MDNode::get(Context, None);
56
57 // Return early if this isn't a single-operand MDNode.
58 auto *N = dyn_cast<MDNode>(MD);
59 if (!N || N->getNumOperands() != 1)
60 return MD;
61
62 if (!N->getOperand(0))
63 // !{}
64 return MDNode::get(Context, None);
65
66 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
67 // Look through the MDNode.
68 return C;
69
70 return MD;
71 }
72
get(LLVMContext & Context,Metadata * MD)73 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
74 MD = canonicalizeMetadataForValue(Context, MD);
75 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
76 if (!Entry)
77 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
78 return Entry;
79 }
80
getIfExists(LLVMContext & Context,Metadata * MD)81 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
82 Metadata *MD) {
83 MD = canonicalizeMetadataForValue(Context, MD);
84 auto &Store = Context.pImpl->MetadataAsValues;
85 return Store.lookup(MD);
86 }
87
handleChangedMetadata(Metadata * MD)88 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
89 LLVMContext &Context = getContext();
90 MD = canonicalizeMetadataForValue(Context, MD);
91 auto &Store = Context.pImpl->MetadataAsValues;
92
93 // Stop tracking the old metadata.
94 Store.erase(this->MD);
95 untrack();
96 this->MD = nullptr;
97
98 // Start tracking MD, or RAUW if necessary.
99 auto *&Entry = Store[MD];
100 if (Entry) {
101 replaceAllUsesWith(Entry);
102 delete this;
103 return;
104 }
105
106 this->MD = MD;
107 track();
108 Entry = this;
109 }
110
track()111 void MetadataAsValue::track() {
112 if (MD)
113 MetadataTracking::track(&MD, *MD, *this);
114 }
115
untrack()116 void MetadataAsValue::untrack() {
117 if (MD)
118 MetadataTracking::untrack(MD);
119 }
120
track(void * Ref,Metadata & MD,OwnerTy Owner)121 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
122 assert(Ref && "Expected live reference");
123 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
124 "Reference without owner must be direct");
125 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
126 R->addRef(Ref, Owner);
127 return true;
128 }
129 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
130 assert(!PH->Use && "Placeholders can only be used once");
131 assert(!Owner && "Unexpected callback to owner");
132 PH->Use = static_cast<Metadata **>(Ref);
133 return true;
134 }
135 return false;
136 }
137
untrack(void * Ref,Metadata & MD)138 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
139 assert(Ref && "Expected live reference");
140 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
141 R->dropRef(Ref);
142 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
143 PH->Use = nullptr;
144 }
145
retrack(void * Ref,Metadata & MD,void * New)146 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
147 assert(Ref && "Expected live reference");
148 assert(New && "Expected live reference");
149 assert(Ref != New && "Expected change");
150 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
151 R->moveRef(Ref, New, MD);
152 return true;
153 }
154 assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
155 "Unexpected move of an MDOperand");
156 assert(!isReplaceable(MD) &&
157 "Expected un-replaceable metadata, since we didn't move a reference");
158 return false;
159 }
160
isReplaceable(const Metadata & MD)161 bool MetadataTracking::isReplaceable(const Metadata &MD) {
162 return ReplaceableMetadataImpl::isReplaceable(MD);
163 }
164
addRef(void * Ref,OwnerTy Owner)165 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
166 bool WasInserted =
167 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
168 .second;
169 (void)WasInserted;
170 assert(WasInserted && "Expected to add a reference");
171
172 ++NextIndex;
173 assert(NextIndex != 0 && "Unexpected overflow");
174 }
175
dropRef(void * Ref)176 void ReplaceableMetadataImpl::dropRef(void *Ref) {
177 bool WasErased = UseMap.erase(Ref);
178 (void)WasErased;
179 assert(WasErased && "Expected to drop a reference");
180 }
181
moveRef(void * Ref,void * New,const Metadata & MD)182 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
183 const Metadata &MD) {
184 auto I = UseMap.find(Ref);
185 assert(I != UseMap.end() && "Expected to move a reference");
186 auto OwnerAndIndex = I->second;
187 UseMap.erase(I);
188 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
189 (void)WasInserted;
190 assert(WasInserted && "Expected to add a reference");
191
192 // Check that the references are direct if there's no owner.
193 (void)MD;
194 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
195 "Reference without owner must be direct");
196 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
197 "Reference without owner must be direct");
198 }
199
replaceAllUsesWith(Metadata * MD)200 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
201 if (UseMap.empty())
202 return;
203
204 // Copy out uses since UseMap will get touched below.
205 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
206 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
207 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
208 return L.second.second < R.second.second;
209 });
210 for (const auto &Pair : Uses) {
211 // Check that this Ref hasn't disappeared after RAUW (when updating a
212 // previous Ref).
213 if (!UseMap.count(Pair.first))
214 continue;
215
216 OwnerTy Owner = Pair.second.first;
217 if (!Owner) {
218 // Update unowned tracking references directly.
219 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
220 Ref = MD;
221 if (MD)
222 MetadataTracking::track(Ref);
223 UseMap.erase(Pair.first);
224 continue;
225 }
226
227 // Check for MetadataAsValue.
228 if (Owner.is<MetadataAsValue *>()) {
229 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
230 continue;
231 }
232
233 // There's a Metadata owner -- dispatch.
234 Metadata *OwnerMD = Owner.get<Metadata *>();
235 switch (OwnerMD->getMetadataID()) {
236 #define HANDLE_METADATA_LEAF(CLASS) \
237 case Metadata::CLASS##Kind: \
238 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
239 continue;
240 #include "llvm/IR/Metadata.def"
241 default:
242 llvm_unreachable("Invalid metadata subclass");
243 }
244 }
245 assert(UseMap.empty() && "Expected all uses to be replaced");
246 }
247
resolveAllUses(bool ResolveUsers)248 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
249 if (UseMap.empty())
250 return;
251
252 if (!ResolveUsers) {
253 UseMap.clear();
254 return;
255 }
256
257 // Copy out uses since UseMap could get touched below.
258 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
259 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
260 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
261 return L.second.second < R.second.second;
262 });
263 UseMap.clear();
264 for (const auto &Pair : Uses) {
265 auto Owner = Pair.second.first;
266 if (!Owner)
267 continue;
268 if (Owner.is<MetadataAsValue *>())
269 continue;
270
271 // Resolve MDNodes that point at this.
272 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
273 if (!OwnerMD)
274 continue;
275 if (OwnerMD->isResolved())
276 continue;
277 OwnerMD->decrementUnresolvedOperandCount();
278 }
279 }
280
getOrCreate(Metadata & MD)281 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
282 if (auto *N = dyn_cast<MDNode>(&MD))
283 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
284 return dyn_cast<ValueAsMetadata>(&MD);
285 }
286
getIfExists(Metadata & MD)287 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
288 if (auto *N = dyn_cast<MDNode>(&MD))
289 return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
290 return dyn_cast<ValueAsMetadata>(&MD);
291 }
292
isReplaceable(const Metadata & MD)293 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
294 if (auto *N = dyn_cast<MDNode>(&MD))
295 return !N->isResolved();
296 return dyn_cast<ValueAsMetadata>(&MD);
297 }
298
getLocalFunction(Value * V)299 static Function *getLocalFunction(Value *V) {
300 assert(V && "Expected value");
301 if (auto *A = dyn_cast<Argument>(V))
302 return A->getParent();
303 if (BasicBlock *BB = cast<Instruction>(V)->getParent())
304 return BB->getParent();
305 return nullptr;
306 }
307
get(Value * V)308 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
309 assert(V && "Unexpected null Value");
310
311 auto &Context = V->getContext();
312 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
313 if (!Entry) {
314 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
315 "Expected constant or function-local value");
316 assert(!V->IsUsedByMD &&
317 "Expected this to be the only metadata use");
318 V->IsUsedByMD = true;
319 if (auto *C = dyn_cast<Constant>(V))
320 Entry = new ConstantAsMetadata(C);
321 else
322 Entry = new LocalAsMetadata(V);
323 }
324
325 return Entry;
326 }
327
getIfExists(Value * V)328 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
329 assert(V && "Unexpected null Value");
330 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
331 }
332
handleDeletion(Value * V)333 void ValueAsMetadata::handleDeletion(Value *V) {
334 assert(V && "Expected valid value");
335
336 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
337 auto I = Store.find(V);
338 if (I == Store.end())
339 return;
340
341 // Remove old entry from the map.
342 ValueAsMetadata *MD = I->second;
343 assert(MD && "Expected valid metadata");
344 assert(MD->getValue() == V && "Expected valid mapping");
345 Store.erase(I);
346
347 // Delete the metadata.
348 MD->replaceAllUsesWith(nullptr);
349 delete MD;
350 }
351
handleRAUW(Value * From,Value * To)352 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
353 assert(From && "Expected valid value");
354 assert(To && "Expected valid value");
355 assert(From != To && "Expected changed value");
356 assert(From->getType() == To->getType() && "Unexpected type change");
357
358 LLVMContext &Context = From->getType()->getContext();
359 auto &Store = Context.pImpl->ValuesAsMetadata;
360 auto I = Store.find(From);
361 if (I == Store.end()) {
362 assert(!From->IsUsedByMD &&
363 "Expected From not to be used by metadata");
364 return;
365 }
366
367 // Remove old entry from the map.
368 assert(From->IsUsedByMD &&
369 "Expected From to be used by metadata");
370 From->IsUsedByMD = false;
371 ValueAsMetadata *MD = I->second;
372 assert(MD && "Expected valid metadata");
373 assert(MD->getValue() == From && "Expected valid mapping");
374 Store.erase(I);
375
376 if (isa<LocalAsMetadata>(MD)) {
377 if (auto *C = dyn_cast<Constant>(To)) {
378 // Local became a constant.
379 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
380 delete MD;
381 return;
382 }
383 if (getLocalFunction(From) && getLocalFunction(To) &&
384 getLocalFunction(From) != getLocalFunction(To)) {
385 // Function changed.
386 MD->replaceAllUsesWith(nullptr);
387 delete MD;
388 return;
389 }
390 } else if (!isa<Constant>(To)) {
391 // Changed to function-local value.
392 MD->replaceAllUsesWith(nullptr);
393 delete MD;
394 return;
395 }
396
397 auto *&Entry = Store[To];
398 if (Entry) {
399 // The target already exists.
400 MD->replaceAllUsesWith(Entry);
401 delete MD;
402 return;
403 }
404
405 // Update MD in place (and update the map entry).
406 assert(!To->IsUsedByMD &&
407 "Expected this to be the only metadata use");
408 To->IsUsedByMD = true;
409 MD->V = To;
410 Entry = MD;
411 }
412
413 //===----------------------------------------------------------------------===//
414 // MDString implementation.
415 //
416
get(LLVMContext & Context,StringRef Str)417 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
418 auto &Store = Context.pImpl->MDStringCache;
419 auto I = Store.emplace_second(Str);
420 auto &MapEntry = I.first->getValue();
421 if (!I.second)
422 return &MapEntry;
423 MapEntry.Entry = &*I.first;
424 return &MapEntry;
425 }
426
getString() const427 StringRef MDString::getString() const {
428 assert(Entry && "Expected to find string map entry");
429 return Entry->first();
430 }
431
432 //===----------------------------------------------------------------------===//
433 // MDNode implementation.
434 //
435
436 // Assert that the MDNode types will not be unaligned by the objects
437 // prepended to them.
438 #define HANDLE_MDNODE_LEAF(CLASS) \
439 static_assert( \
440 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \
441 "Alignment is insufficient after objects prepended to " #CLASS);
442 #include "llvm/IR/Metadata.def"
443
operator new(size_t Size,unsigned NumOps)444 void *MDNode::operator new(size_t Size, unsigned NumOps) {
445 size_t OpSize = NumOps * sizeof(MDOperand);
446 // uint64_t is the most aligned type we need support (ensured by static_assert
447 // above)
448 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
449 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
450 MDOperand *O = static_cast<MDOperand *>(Ptr);
451 for (MDOperand *E = O - NumOps; O != E; --O)
452 (void)new (O - 1) MDOperand;
453 return Ptr;
454 }
455
operator delete(void * Mem)456 void MDNode::operator delete(void *Mem) {
457 MDNode *N = static_cast<MDNode *>(Mem);
458 size_t OpSize = N->NumOperands * sizeof(MDOperand);
459 OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
460
461 MDOperand *O = static_cast<MDOperand *>(Mem);
462 for (MDOperand *E = O - N->NumOperands; O != E; --O)
463 (O - 1)->~MDOperand();
464 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
465 }
466
MDNode(LLVMContext & Context,unsigned ID,StorageType Storage,ArrayRef<Metadata * > Ops1,ArrayRef<Metadata * > Ops2)467 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
468 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
469 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
470 NumUnresolved(0), Context(Context) {
471 unsigned Op = 0;
472 for (Metadata *MD : Ops1)
473 setOperand(Op++, MD);
474 for (Metadata *MD : Ops2)
475 setOperand(Op++, MD);
476
477 if (!isUniqued())
478 return;
479
480 // Count the unresolved operands. If there are any, RAUW support will be
481 // added lazily on first reference.
482 countUnresolvedOperands();
483 }
484
clone() const485 TempMDNode MDNode::clone() const {
486 switch (getMetadataID()) {
487 default:
488 llvm_unreachable("Invalid MDNode subclass");
489 #define HANDLE_MDNODE_LEAF(CLASS) \
490 case CLASS##Kind: \
491 return cast<CLASS>(this)->cloneImpl();
492 #include "llvm/IR/Metadata.def"
493 }
494 }
495
isOperandUnresolved(Metadata * Op)496 static bool isOperandUnresolved(Metadata *Op) {
497 if (auto *N = dyn_cast_or_null<MDNode>(Op))
498 return !N->isResolved();
499 return false;
500 }
501
countUnresolvedOperands()502 void MDNode::countUnresolvedOperands() {
503 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
504 assert(isUniqued() && "Expected this to be uniqued");
505 NumUnresolved = count_if(operands(), isOperandUnresolved);
506 }
507
makeUniqued()508 void MDNode::makeUniqued() {
509 assert(isTemporary() && "Expected this to be temporary");
510 assert(!isResolved() && "Expected this to be unresolved");
511
512 // Enable uniquing callbacks.
513 for (auto &Op : mutable_operands())
514 Op.reset(Op.get(), this);
515
516 // Make this 'uniqued'.
517 Storage = Uniqued;
518 countUnresolvedOperands();
519 if (!NumUnresolved) {
520 dropReplaceableUses();
521 assert(isResolved() && "Expected this to be resolved");
522 }
523
524 assert(isUniqued() && "Expected this to be uniqued");
525 }
526
makeDistinct()527 void MDNode::makeDistinct() {
528 assert(isTemporary() && "Expected this to be temporary");
529 assert(!isResolved() && "Expected this to be unresolved");
530
531 // Drop RAUW support and store as a distinct node.
532 dropReplaceableUses();
533 storeDistinctInContext();
534
535 assert(isDistinct() && "Expected this to be distinct");
536 assert(isResolved() && "Expected this to be resolved");
537 }
538
resolve()539 void MDNode::resolve() {
540 assert(isUniqued() && "Expected this to be uniqued");
541 assert(!isResolved() && "Expected this to be unresolved");
542
543 NumUnresolved = 0;
544 dropReplaceableUses();
545
546 assert(isResolved() && "Expected this to be resolved");
547 }
548
dropReplaceableUses()549 void MDNode::dropReplaceableUses() {
550 assert(!NumUnresolved && "Unexpected unresolved operand");
551
552 // Drop any RAUW support.
553 if (Context.hasReplaceableUses())
554 Context.takeReplaceableUses()->resolveAllUses();
555 }
556
resolveAfterOperandChange(Metadata * Old,Metadata * New)557 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
558 assert(isUniqued() && "Expected this to be uniqued");
559 assert(NumUnresolved != 0 && "Expected unresolved operands");
560
561 // Check if an operand was resolved.
562 if (!isOperandUnresolved(Old)) {
563 if (isOperandUnresolved(New))
564 // An operand was un-resolved!
565 ++NumUnresolved;
566 } else if (!isOperandUnresolved(New))
567 decrementUnresolvedOperandCount();
568 }
569
decrementUnresolvedOperandCount()570 void MDNode::decrementUnresolvedOperandCount() {
571 assert(!isResolved() && "Expected this to be unresolved");
572 if (isTemporary())
573 return;
574
575 assert(isUniqued() && "Expected this to be uniqued");
576 if (--NumUnresolved)
577 return;
578
579 // Last unresolved operand has just been resolved.
580 dropReplaceableUses();
581 assert(isResolved() && "Expected this to become resolved");
582 }
583
resolveCycles()584 void MDNode::resolveCycles() {
585 if (isResolved())
586 return;
587
588 // Resolve this node immediately.
589 resolve();
590
591 // Resolve all operands.
592 for (const auto &Op : operands()) {
593 auto *N = dyn_cast_or_null<MDNode>(Op);
594 if (!N)
595 continue;
596
597 assert(!N->isTemporary() &&
598 "Expected all forward declarations to be resolved");
599 if (!N->isResolved())
600 N->resolveCycles();
601 }
602 }
603
hasSelfReference(MDNode * N)604 static bool hasSelfReference(MDNode *N) {
605 for (Metadata *MD : N->operands())
606 if (MD == N)
607 return true;
608 return false;
609 }
610
replaceWithPermanentImpl()611 MDNode *MDNode::replaceWithPermanentImpl() {
612 switch (getMetadataID()) {
613 default:
614 // If this type isn't uniquable, replace with a distinct node.
615 return replaceWithDistinctImpl();
616
617 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
618 case CLASS##Kind: \
619 break;
620 #include "llvm/IR/Metadata.def"
621 }
622
623 // Even if this type is uniquable, self-references have to be distinct.
624 if (hasSelfReference(this))
625 return replaceWithDistinctImpl();
626 return replaceWithUniquedImpl();
627 }
628
replaceWithUniquedImpl()629 MDNode *MDNode::replaceWithUniquedImpl() {
630 // Try to uniquify in place.
631 MDNode *UniquedNode = uniquify();
632
633 if (UniquedNode == this) {
634 makeUniqued();
635 return this;
636 }
637
638 // Collision, so RAUW instead.
639 replaceAllUsesWith(UniquedNode);
640 deleteAsSubclass();
641 return UniquedNode;
642 }
643
replaceWithDistinctImpl()644 MDNode *MDNode::replaceWithDistinctImpl() {
645 makeDistinct();
646 return this;
647 }
648
recalculateHash()649 void MDTuple::recalculateHash() {
650 setHash(MDTupleInfo::KeyTy::calculateHash(this));
651 }
652
dropAllReferences()653 void MDNode::dropAllReferences() {
654 for (unsigned I = 0, E = NumOperands; I != E; ++I)
655 setOperand(I, nullptr);
656 if (Context.hasReplaceableUses()) {
657 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
658 (void)Context.takeReplaceableUses();
659 }
660 }
661
handleChangedOperand(void * Ref,Metadata * New)662 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
663 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
664 assert(Op < getNumOperands() && "Expected valid operand");
665
666 if (!isUniqued()) {
667 // This node is not uniqued. Just set the operand and be done with it.
668 setOperand(Op, New);
669 return;
670 }
671
672 // This node is uniqued.
673 eraseFromStore();
674
675 Metadata *Old = getOperand(Op);
676 setOperand(Op, New);
677
678 // Drop uniquing for self-reference cycles.
679 if (New == this) {
680 if (!isResolved())
681 resolve();
682 storeDistinctInContext();
683 return;
684 }
685
686 // Re-unique the node.
687 auto *Uniqued = uniquify();
688 if (Uniqued == this) {
689 if (!isResolved())
690 resolveAfterOperandChange(Old, New);
691 return;
692 }
693
694 // Collision.
695 if (!isResolved()) {
696 // Still unresolved, so RAUW.
697 //
698 // First, clear out all operands to prevent any recursion (similar to
699 // dropAllReferences(), but we still need the use-list).
700 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
701 setOperand(O, nullptr);
702 if (Context.hasReplaceableUses())
703 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
704 deleteAsSubclass();
705 return;
706 }
707
708 // Store in non-uniqued form if RAUW isn't possible.
709 storeDistinctInContext();
710 }
711
deleteAsSubclass()712 void MDNode::deleteAsSubclass() {
713 switch (getMetadataID()) {
714 default:
715 llvm_unreachable("Invalid subclass of MDNode");
716 #define HANDLE_MDNODE_LEAF(CLASS) \
717 case CLASS##Kind: \
718 delete cast<CLASS>(this); \
719 break;
720 #include "llvm/IR/Metadata.def"
721 }
722 }
723
724 template <class T, class InfoT>
uniquifyImpl(T * N,DenseSet<T *,InfoT> & Store)725 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
726 if (T *U = getUniqued(Store, N))
727 return U;
728
729 Store.insert(N);
730 return N;
731 }
732
733 template <class NodeTy> struct MDNode::HasCachedHash {
734 typedef char Yes[1];
735 typedef char No[2];
736 template <class U, U Val> struct SFINAE {};
737
738 template <class U>
739 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
740 template <class U> static No &check(...);
741
742 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
743 };
744
uniquify()745 MDNode *MDNode::uniquify() {
746 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
747
748 // Try to insert into uniquing store.
749 switch (getMetadataID()) {
750 default:
751 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
752 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
753 case CLASS##Kind: { \
754 CLASS *SubclassThis = cast<CLASS>(this); \
755 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
756 ShouldRecalculateHash; \
757 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
758 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
759 }
760 #include "llvm/IR/Metadata.def"
761 }
762 }
763
eraseFromStore()764 void MDNode::eraseFromStore() {
765 switch (getMetadataID()) {
766 default:
767 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
768 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
769 case CLASS##Kind: \
770 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
771 break;
772 #include "llvm/IR/Metadata.def"
773 }
774 }
775
getImpl(LLVMContext & Context,ArrayRef<Metadata * > MDs,StorageType Storage,bool ShouldCreate)776 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
777 StorageType Storage, bool ShouldCreate) {
778 unsigned Hash = 0;
779 if (Storage == Uniqued) {
780 MDTupleInfo::KeyTy Key(MDs);
781 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
782 return N;
783 if (!ShouldCreate)
784 return nullptr;
785 Hash = Key.getHash();
786 } else {
787 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
788 }
789
790 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
791 Storage, Context.pImpl->MDTuples);
792 }
793
deleteTemporary(MDNode * N)794 void MDNode::deleteTemporary(MDNode *N) {
795 assert(N->isTemporary() && "Expected temporary node");
796 N->replaceAllUsesWith(nullptr);
797 N->deleteAsSubclass();
798 }
799
storeDistinctInContext()800 void MDNode::storeDistinctInContext() {
801 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
802 assert(!NumUnresolved && "Unexpected unresolved nodes");
803 Storage = Distinct;
804 assert(isResolved() && "Expected this to be resolved");
805
806 // Reset the hash.
807 switch (getMetadataID()) {
808 default:
809 llvm_unreachable("Invalid subclass of MDNode");
810 #define HANDLE_MDNODE_LEAF(CLASS) \
811 case CLASS##Kind: { \
812 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
813 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
814 break; \
815 }
816 #include "llvm/IR/Metadata.def"
817 }
818
819 getContext().pImpl->DistinctMDNodes.push_back(this);
820 }
821
replaceOperandWith(unsigned I,Metadata * New)822 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
823 if (getOperand(I) == New)
824 return;
825
826 if (!isUniqued()) {
827 setOperand(I, New);
828 return;
829 }
830
831 handleChangedOperand(mutable_begin() + I, New);
832 }
833
setOperand(unsigned I,Metadata * New)834 void MDNode::setOperand(unsigned I, Metadata *New) {
835 assert(I < NumOperands);
836 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
837 }
838
839 /// Get a node or a self-reference that looks like it.
840 ///
841 /// Special handling for finding self-references, for use by \a
842 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
843 /// when self-referencing nodes were still uniqued. If the first operand has
844 /// the same operands as \c Ops, return the first operand instead.
getOrSelfReference(LLVMContext & Context,ArrayRef<Metadata * > Ops)845 static MDNode *getOrSelfReference(LLVMContext &Context,
846 ArrayRef<Metadata *> Ops) {
847 if (!Ops.empty())
848 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
849 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
850 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
851 if (Ops[I] != N->getOperand(I))
852 return MDNode::get(Context, Ops);
853 return N;
854 }
855
856 return MDNode::get(Context, Ops);
857 }
858
concatenate(MDNode * A,MDNode * B)859 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
860 if (!A)
861 return B;
862 if (!B)
863 return A;
864
865 SmallVector<Metadata *, 4> MDs;
866 MDs.reserve(A->getNumOperands() + B->getNumOperands());
867 MDs.append(A->op_begin(), A->op_end());
868 MDs.append(B->op_begin(), B->op_end());
869
870 // FIXME: This preserves long-standing behaviour, but is it really the right
871 // behaviour? Or was that an unintended side-effect of node uniquing?
872 return getOrSelfReference(A->getContext(), MDs);
873 }
874
intersect(MDNode * A,MDNode * B)875 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
876 if (!A || !B)
877 return nullptr;
878
879 SmallVector<Metadata *, 4> MDs;
880 for (Metadata *MD : A->operands())
881 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
882 MDs.push_back(MD);
883
884 // FIXME: This preserves long-standing behaviour, but is it really the right
885 // behaviour? Or was that an unintended side-effect of node uniquing?
886 return getOrSelfReference(A->getContext(), MDs);
887 }
888
getMostGenericAliasScope(MDNode * A,MDNode * B)889 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
890 if (!A || !B)
891 return nullptr;
892
893 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
894 for (Metadata *MD : A->operands())
895 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
896 MDs.push_back(MD);
897
898 // FIXME: This preserves long-standing behaviour, but is it really the right
899 // behaviour? Or was that an unintended side-effect of node uniquing?
900 return getOrSelfReference(A->getContext(), MDs);
901 }
902
getMostGenericFPMath(MDNode * A,MDNode * B)903 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
904 if (!A || !B)
905 return nullptr;
906
907 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
908 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
909 if (AVal.compare(BVal) == APFloat::cmpLessThan)
910 return A;
911 return B;
912 }
913
isContiguous(const ConstantRange & A,const ConstantRange & B)914 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
915 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
916 }
917
canBeMerged(const ConstantRange & A,const ConstantRange & B)918 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
919 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
920 }
921
tryMergeRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)922 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
923 ConstantInt *Low, ConstantInt *High) {
924 ConstantRange NewRange(Low->getValue(), High->getValue());
925 unsigned Size = EndPoints.size();
926 APInt LB = EndPoints[Size - 2]->getValue();
927 APInt LE = EndPoints[Size - 1]->getValue();
928 ConstantRange LastRange(LB, LE);
929 if (canBeMerged(NewRange, LastRange)) {
930 ConstantRange Union = LastRange.unionWith(NewRange);
931 Type *Ty = High->getType();
932 EndPoints[Size - 2] =
933 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
934 EndPoints[Size - 1] =
935 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
936 return true;
937 }
938 return false;
939 }
940
addRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)941 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
942 ConstantInt *Low, ConstantInt *High) {
943 if (!EndPoints.empty())
944 if (tryMergeRange(EndPoints, Low, High))
945 return;
946
947 EndPoints.push_back(Low);
948 EndPoints.push_back(High);
949 }
950
getMostGenericRange(MDNode * A,MDNode * B)951 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
952 // Given two ranges, we want to compute the union of the ranges. This
953 // is slightly complitade by having to combine the intervals and merge
954 // the ones that overlap.
955
956 if (!A || !B)
957 return nullptr;
958
959 if (A == B)
960 return A;
961
962 // First, walk both lists in older of the lower boundary of each interval.
963 // At each step, try to merge the new interval to the last one we adedd.
964 SmallVector<ConstantInt *, 4> EndPoints;
965 int AI = 0;
966 int BI = 0;
967 int AN = A->getNumOperands() / 2;
968 int BN = B->getNumOperands() / 2;
969 while (AI < AN && BI < BN) {
970 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
971 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
972
973 if (ALow->getValue().slt(BLow->getValue())) {
974 addRange(EndPoints, ALow,
975 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
976 ++AI;
977 } else {
978 addRange(EndPoints, BLow,
979 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
980 ++BI;
981 }
982 }
983 while (AI < AN) {
984 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
985 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
986 ++AI;
987 }
988 while (BI < BN) {
989 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
990 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
991 ++BI;
992 }
993
994 // If we have more than 2 ranges (4 endpoints) we have to try to merge
995 // the last and first ones.
996 unsigned Size = EndPoints.size();
997 if (Size > 4) {
998 ConstantInt *FB = EndPoints[0];
999 ConstantInt *FE = EndPoints[1];
1000 if (tryMergeRange(EndPoints, FB, FE)) {
1001 for (unsigned i = 0; i < Size - 2; ++i) {
1002 EndPoints[i] = EndPoints[i + 2];
1003 }
1004 EndPoints.resize(Size - 2);
1005 }
1006 }
1007
1008 // If in the end we have a single range, it is possible that it is now the
1009 // full range. Just drop the metadata in that case.
1010 if (EndPoints.size() == 2) {
1011 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1012 if (Range.isFullSet())
1013 return nullptr;
1014 }
1015
1016 SmallVector<Metadata *, 4> MDs;
1017 MDs.reserve(EndPoints.size());
1018 for (auto *I : EndPoints)
1019 MDs.push_back(ConstantAsMetadata::get(I));
1020 return MDNode::get(A->getContext(), MDs);
1021 }
1022
getMostGenericAlignmentOrDereferenceable(MDNode * A,MDNode * B)1023 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1024 if (!A || !B)
1025 return nullptr;
1026
1027 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1028 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1029 if (AVal->getZExtValue() < BVal->getZExtValue())
1030 return A;
1031 return B;
1032 }
1033
1034 //===----------------------------------------------------------------------===//
1035 // NamedMDNode implementation.
1036 //
1037
getNMDOps(void * Operands)1038 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1039 return *(SmallVector<TrackingMDRef, 4> *)Operands;
1040 }
1041
NamedMDNode(const Twine & N)1042 NamedMDNode::NamedMDNode(const Twine &N)
1043 : Name(N.str()), Parent(nullptr),
1044 Operands(new SmallVector<TrackingMDRef, 4>()) {}
1045
~NamedMDNode()1046 NamedMDNode::~NamedMDNode() {
1047 dropAllReferences();
1048 delete &getNMDOps(Operands);
1049 }
1050
getNumOperands() const1051 unsigned NamedMDNode::getNumOperands() const {
1052 return (unsigned)getNMDOps(Operands).size();
1053 }
1054
getOperand(unsigned i) const1055 MDNode *NamedMDNode::getOperand(unsigned i) const {
1056 assert(i < getNumOperands() && "Invalid Operand number!");
1057 auto *N = getNMDOps(Operands)[i].get();
1058 return cast_or_null<MDNode>(N);
1059 }
1060
addOperand(MDNode * M)1061 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1062
setOperand(unsigned I,MDNode * New)1063 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1064 assert(I < getNumOperands() && "Invalid operand number");
1065 getNMDOps(Operands)[I].reset(New);
1066 }
1067
eraseFromParent()1068 void NamedMDNode::eraseFromParent() {
1069 getParent()->eraseNamedMetadata(this);
1070 }
1071
dropAllReferences()1072 void NamedMDNode::dropAllReferences() {
1073 getNMDOps(Operands).clear();
1074 }
1075
getName() const1076 StringRef NamedMDNode::getName() const {
1077 return StringRef(Name);
1078 }
1079
1080 //===----------------------------------------------------------------------===//
1081 // Instruction Metadata method implementations.
1082 //
set(unsigned ID,MDNode & MD)1083 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
1084 for (auto &I : Attachments)
1085 if (I.first == ID) {
1086 I.second.reset(&MD);
1087 return;
1088 }
1089 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
1090 std::make_tuple(&MD));
1091 }
1092
erase(unsigned ID)1093 void MDAttachmentMap::erase(unsigned ID) {
1094 if (empty())
1095 return;
1096
1097 // Common case is one/last value.
1098 if (Attachments.back().first == ID) {
1099 Attachments.pop_back();
1100 return;
1101 }
1102
1103 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
1104 ++I)
1105 if (I->first == ID) {
1106 *I = std::move(Attachments.back());
1107 Attachments.pop_back();
1108 return;
1109 }
1110 }
1111
lookup(unsigned ID) const1112 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1113 for (const auto &I : Attachments)
1114 if (I.first == ID)
1115 return I.second;
1116 return nullptr;
1117 }
1118
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1119 void MDAttachmentMap::getAll(
1120 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1121 Result.append(Attachments.begin(), Attachments.end());
1122
1123 // Sort the resulting array so it is stable.
1124 if (Result.size() > 1)
1125 array_pod_sort(Result.begin(), Result.end());
1126 }
1127
insert(unsigned ID,MDNode & MD)1128 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) {
1129 Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1130 }
1131
get(unsigned ID,SmallVectorImpl<MDNode * > & Result)1132 void MDGlobalAttachmentMap::get(unsigned ID,
1133 SmallVectorImpl<MDNode *> &Result) {
1134 for (auto A : Attachments)
1135 if (A.MDKind == ID)
1136 Result.push_back(A.Node);
1137 }
1138
erase(unsigned ID)1139 void MDGlobalAttachmentMap::erase(unsigned ID) {
1140 auto Follower = Attachments.begin();
1141 for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E;
1142 ++Leader) {
1143 if (Leader->MDKind != ID) {
1144 if (Follower != Leader)
1145 *Follower = std::move(*Leader);
1146 ++Follower;
1147 }
1148 }
1149 Attachments.resize(Follower - Attachments.begin());
1150 }
1151
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1152 void MDGlobalAttachmentMap::getAll(
1153 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1154 for (auto &A : Attachments)
1155 Result.emplace_back(A.MDKind, A.Node);
1156
1157 // Sort the resulting array so it is stable with respect to metadata IDs. We
1158 // need to preserve the original insertion order though.
1159 std::stable_sort(
1160 Result.begin(), Result.end(),
1161 [](const std::pair<unsigned, MDNode *> &A,
1162 const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; });
1163 }
1164
setMetadata(StringRef Kind,MDNode * Node)1165 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1166 if (!Node && !hasMetadata())
1167 return;
1168 setMetadata(getContext().getMDKindID(Kind), Node);
1169 }
1170
getMetadataImpl(StringRef Kind) const1171 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1172 return getMetadataImpl(getContext().getMDKindID(Kind));
1173 }
1174
dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs)1175 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1176 SmallSet<unsigned, 5> KnownSet;
1177 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1178
1179 if (!hasMetadataHashEntry())
1180 return; // Nothing to remove!
1181
1182 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1183
1184 if (KnownSet.empty()) {
1185 // Just drop our entry at the store.
1186 InstructionMetadata.erase(this);
1187 setHasMetadataHashEntry(false);
1188 return;
1189 }
1190
1191 auto &Info = InstructionMetadata[this];
1192 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1193 return !KnownSet.count(I.first);
1194 });
1195
1196 if (Info.empty()) {
1197 // Drop our entry at the store.
1198 InstructionMetadata.erase(this);
1199 setHasMetadataHashEntry(false);
1200 }
1201 }
1202
setMetadata(unsigned KindID,MDNode * Node)1203 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1204 if (!Node && !hasMetadata())
1205 return;
1206
1207 // Handle 'dbg' as a special case since it is not stored in the hash table.
1208 if (KindID == LLVMContext::MD_dbg) {
1209 DbgLoc = DebugLoc(Node);
1210 return;
1211 }
1212
1213 // Handle the case when we're adding/updating metadata on an instruction.
1214 if (Node) {
1215 auto &Info = getContext().pImpl->InstructionMetadata[this];
1216 assert(!Info.empty() == hasMetadataHashEntry() &&
1217 "HasMetadata bit is wonked");
1218 if (Info.empty())
1219 setHasMetadataHashEntry(true);
1220 Info.set(KindID, *Node);
1221 return;
1222 }
1223
1224 // Otherwise, we're removing metadata from an instruction.
1225 assert((hasMetadataHashEntry() ==
1226 (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1227 "HasMetadata bit out of date!");
1228 if (!hasMetadataHashEntry())
1229 return; // Nothing to remove!
1230 auto &Info = getContext().pImpl->InstructionMetadata[this];
1231
1232 // Handle removal of an existing value.
1233 Info.erase(KindID);
1234
1235 if (!Info.empty())
1236 return;
1237
1238 getContext().pImpl->InstructionMetadata.erase(this);
1239 setHasMetadataHashEntry(false);
1240 }
1241
setAAMetadata(const AAMDNodes & N)1242 void Instruction::setAAMetadata(const AAMDNodes &N) {
1243 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1244 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1245 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1246 }
1247
getMetadataImpl(unsigned KindID) const1248 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1249 // Handle 'dbg' as a special case since it is not stored in the hash table.
1250 if (KindID == LLVMContext::MD_dbg)
1251 return DbgLoc.getAsMDNode();
1252
1253 if (!hasMetadataHashEntry())
1254 return nullptr;
1255 auto &Info = getContext().pImpl->InstructionMetadata[this];
1256 assert(!Info.empty() && "bit out of sync with hash table");
1257
1258 return Info.lookup(KindID);
1259 }
1260
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1261 void Instruction::getAllMetadataImpl(
1262 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1263 Result.clear();
1264
1265 // Handle 'dbg' as a special case since it is not stored in the hash table.
1266 if (DbgLoc) {
1267 Result.push_back(
1268 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1269 if (!hasMetadataHashEntry()) return;
1270 }
1271
1272 assert(hasMetadataHashEntry() &&
1273 getContext().pImpl->InstructionMetadata.count(this) &&
1274 "Shouldn't have called this");
1275 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1276 assert(!Info.empty() && "Shouldn't have called this");
1277 Info.getAll(Result);
1278 }
1279
getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1280 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1281 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1282 Result.clear();
1283 assert(hasMetadataHashEntry() &&
1284 getContext().pImpl->InstructionMetadata.count(this) &&
1285 "Shouldn't have called this");
1286 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1287 assert(!Info.empty() && "Shouldn't have called this");
1288 Info.getAll(Result);
1289 }
1290
extractProfMetadata(uint64_t & TrueVal,uint64_t & FalseVal)1291 bool Instruction::extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) {
1292 assert((getOpcode() == Instruction::Br ||
1293 getOpcode() == Instruction::Select) &&
1294 "Looking for branch weights on something besides branch or select");
1295
1296 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1297 if (!ProfileData || ProfileData->getNumOperands() != 3)
1298 return false;
1299
1300 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1301 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1302 return false;
1303
1304 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
1305 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
1306 if (!CITrue || !CIFalse)
1307 return false;
1308
1309 TrueVal = CITrue->getValue().getZExtValue();
1310 FalseVal = CIFalse->getValue().getZExtValue();
1311
1312 return true;
1313 }
1314
extractProfTotalWeight(uint64_t & TotalVal)1315 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) {
1316 assert((getOpcode() == Instruction::Br ||
1317 getOpcode() == Instruction::Select ||
1318 getOpcode() == Instruction::Call ||
1319 getOpcode() == Instruction::Invoke) &&
1320 "Looking for branch weights on something besides branch");
1321
1322 TotalVal = 0;
1323 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1324 if (!ProfileData)
1325 return false;
1326
1327 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1328 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1329 return false;
1330
1331 TotalVal = 0;
1332 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
1333 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
1334 if (!V)
1335 return false;
1336 TotalVal += V->getValue().getZExtValue();
1337 }
1338 return true;
1339 }
1340
clearMetadataHashEntries()1341 void Instruction::clearMetadataHashEntries() {
1342 assert(hasMetadataHashEntry() && "Caller should check");
1343 getContext().pImpl->InstructionMetadata.erase(this);
1344 setHasMetadataHashEntry(false);
1345 }
1346
getMetadata(unsigned KindID,SmallVectorImpl<MDNode * > & MDs) const1347 void GlobalObject::getMetadata(unsigned KindID,
1348 SmallVectorImpl<MDNode *> &MDs) const {
1349 if (hasMetadata())
1350 getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs);
1351 }
1352
getMetadata(StringRef Kind,SmallVectorImpl<MDNode * > & MDs) const1353 void GlobalObject::getMetadata(StringRef Kind,
1354 SmallVectorImpl<MDNode *> &MDs) const {
1355 if (hasMetadata())
1356 getMetadata(getContext().getMDKindID(Kind), MDs);
1357 }
1358
addMetadata(unsigned KindID,MDNode & MD)1359 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) {
1360 if (!hasMetadata())
1361 setHasMetadataHashEntry(true);
1362
1363 getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD);
1364 }
1365
addMetadata(StringRef Kind,MDNode & MD)1366 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) {
1367 addMetadata(getContext().getMDKindID(Kind), MD);
1368 }
1369
eraseMetadata(unsigned KindID)1370 void GlobalObject::eraseMetadata(unsigned KindID) {
1371 // Nothing to unset.
1372 if (!hasMetadata())
1373 return;
1374
1375 auto &Store = getContext().pImpl->GlobalObjectMetadata[this];
1376 Store.erase(KindID);
1377 if (Store.empty())
1378 clearMetadata();
1379 }
1380
getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs) const1381 void GlobalObject::getAllMetadata(
1382 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1383 MDs.clear();
1384
1385 if (!hasMetadata())
1386 return;
1387
1388 getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs);
1389 }
1390
clearMetadata()1391 void GlobalObject::clearMetadata() {
1392 if (!hasMetadata())
1393 return;
1394 getContext().pImpl->GlobalObjectMetadata.erase(this);
1395 setHasMetadataHashEntry(false);
1396 }
1397
setMetadata(unsigned KindID,MDNode * N)1398 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) {
1399 eraseMetadata(KindID);
1400 if (N)
1401 addMetadata(KindID, *N);
1402 }
1403
setMetadata(StringRef Kind,MDNode * N)1404 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) {
1405 setMetadata(getContext().getMDKindID(Kind), N);
1406 }
1407
getMetadata(unsigned KindID) const1408 MDNode *GlobalObject::getMetadata(unsigned KindID) const {
1409 SmallVector<MDNode *, 1> MDs;
1410 getMetadata(KindID, MDs);
1411 assert(MDs.size() <= 1 && "Expected at most one metadata attachment");
1412 if (MDs.empty())
1413 return nullptr;
1414 return MDs[0];
1415 }
1416
getMetadata(StringRef Kind) const1417 MDNode *GlobalObject::getMetadata(StringRef Kind) const {
1418 return getMetadata(getContext().getMDKindID(Kind));
1419 }
1420
copyMetadata(const GlobalObject * Other,unsigned Offset)1421 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1422 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1423 Other->getAllMetadata(MDs);
1424 for (auto &MD : MDs) {
1425 // We need to adjust the type metadata offset.
1426 if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1427 auto *OffsetConst = cast<ConstantInt>(
1428 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1429 Metadata *TypeId = MD.second->getOperand(1);
1430 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1431 OffsetConst->getType(), OffsetConst->getValue() + Offset));
1432 addMetadata(LLVMContext::MD_type,
1433 *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1434 continue;
1435 }
1436 addMetadata(MD.first, *MD.second);
1437 }
1438 }
1439
addTypeMetadata(unsigned Offset,Metadata * TypeID)1440 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1441 addMetadata(
1442 LLVMContext::MD_type,
1443 *MDTuple::get(getContext(),
1444 {llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1445 Type::getInt64Ty(getContext()), Offset)),
1446 TypeID}));
1447 }
1448
setSubprogram(DISubprogram * SP)1449 void Function::setSubprogram(DISubprogram *SP) {
1450 setMetadata(LLVMContext::MD_dbg, SP);
1451 }
1452
getSubprogram() const1453 DISubprogram *Function::getSubprogram() const {
1454 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1455 }
1456