1 //===-- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file defines the MIPS-specific support for the FastISel class.
12 /// Some of the target-specific code is generated by tablegen in the file
13 /// MipsGenFastISel.inc, which is #included here.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "MipsCCState.h"
18 #include "MipsInstrInfo.h"
19 #include "MipsISelLowering.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34
35 using namespace llvm;
36
37 namespace {
38
39 class MipsFastISel final : public FastISel {
40
41 // All possible address modes.
42 class Address {
43 public:
44 typedef enum { RegBase, FrameIndexBase } BaseKind;
45
46 private:
47 BaseKind Kind;
48 union {
49 unsigned Reg;
50 int FI;
51 } Base;
52
53 int64_t Offset;
54
55 const GlobalValue *GV;
56
57 public:
58 // Innocuous defaults for our address.
Address()59 Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
setKind(BaseKind K)60 void setKind(BaseKind K) { Kind = K; }
getKind() const61 BaseKind getKind() const { return Kind; }
isRegBase() const62 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const63 bool isFIBase() const { return Kind == FrameIndexBase; }
setReg(unsigned Reg)64 void setReg(unsigned Reg) {
65 assert(isRegBase() && "Invalid base register access!");
66 Base.Reg = Reg;
67 }
getReg() const68 unsigned getReg() const {
69 assert(isRegBase() && "Invalid base register access!");
70 return Base.Reg;
71 }
setFI(unsigned FI)72 void setFI(unsigned FI) {
73 assert(isFIBase() && "Invalid base frame index access!");
74 Base.FI = FI;
75 }
getFI() const76 unsigned getFI() const {
77 assert(isFIBase() && "Invalid base frame index access!");
78 return Base.FI;
79 }
80
setOffset(int64_t Offset_)81 void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const82 int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)83 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()84 const GlobalValue *getGlobalValue() { return GV; }
85 };
86
87 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
88 /// make the right decision when generating code for different targets.
89 const TargetMachine &TM;
90 const MipsSubtarget *Subtarget;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 MipsFunctionInfo *MFI;
94
95 // Convenience variables to avoid some queries.
96 LLVMContext *Context;
97
98 bool fastLowerCall(CallLoweringInfo &CLI) override;
99 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
100
101 bool TargetSupported;
102 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
103 // floating point but not reject doing fast-isel in other
104 // situations
105
106 private:
107 // Selection routines.
108 bool selectLogicalOp(const Instruction *I);
109 bool selectLoad(const Instruction *I);
110 bool selectStore(const Instruction *I);
111 bool selectBranch(const Instruction *I);
112 bool selectSelect(const Instruction *I);
113 bool selectCmp(const Instruction *I);
114 bool selectFPExt(const Instruction *I);
115 bool selectFPTrunc(const Instruction *I);
116 bool selectFPToInt(const Instruction *I, bool IsSigned);
117 bool selectRet(const Instruction *I);
118 bool selectTrunc(const Instruction *I);
119 bool selectIntExt(const Instruction *I);
120 bool selectShift(const Instruction *I);
121 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
122
123 // Utility helper routines.
124 bool isTypeLegal(Type *Ty, MVT &VT);
125 bool isTypeSupported(Type *Ty, MVT &VT);
126 bool isLoadTypeLegal(Type *Ty, MVT &VT);
127 bool computeAddress(const Value *Obj, Address &Addr);
128 bool computeCallAddress(const Value *V, Address &Addr);
129 void simplifyAddress(Address &Addr);
130
131 // Emit helper routines.
132 bool emitCmp(unsigned DestReg, const CmpInst *CI);
133 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
134 unsigned Alignment = 0);
135 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
136 MachineMemOperand *MMO = nullptr);
137 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
138 unsigned Alignment = 0);
139 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
140 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
141
142 bool IsZExt);
143 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
144
145 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
146 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
147 unsigned DestReg);
148 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
149 unsigned DestReg);
150
151 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
152
153 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
154 const Value *RHS);
155
156 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
157 unsigned materializeGV(const GlobalValue *GV, MVT VT);
158 unsigned materializeInt(const Constant *C, MVT VT);
159 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
160 unsigned materializeExternalCallSym(MCSymbol *Syn);
161
emitInst(unsigned Opc)162 MachineInstrBuilder emitInst(unsigned Opc) {
163 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
164 }
emitInst(unsigned Opc,unsigned DstReg)165 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
166 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
167 DstReg);
168 }
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)169 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
170 unsigned MemReg, int64_t MemOffset) {
171 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
172 }
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)173 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
174 unsigned MemReg, int64_t MemOffset) {
175 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
176 }
177
178 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
179 const TargetRegisterClass *RC,
180 unsigned Op0, bool Op0IsKill,
181 unsigned Op1, bool Op1IsKill);
182
183 // for some reason, this default is not generated by tablegen
184 // so we explicitly generate it here.
185 //
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t imm1,uint64_t imm2,unsigned Op3,bool Op3IsKill)186 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
187 unsigned Op0, bool Op0IsKill, uint64_t imm1,
188 uint64_t imm2, unsigned Op3, bool Op3IsKill) {
189 return 0;
190 }
191
192 // Call handling routines.
193 private:
194 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
195 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
196 unsigned &NumBytes);
197 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
198
199 public:
200 // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)201 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
202 const TargetLibraryInfo *libInfo)
203 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
204 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
205 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
206 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
207 Context = &funcInfo.Fn->getContext();
208 bool ISASupported = !Subtarget->hasMips32r6() &&
209 !Subtarget->inMicroMipsMode() && Subtarget->hasMips32();
210 TargetSupported =
211 ISASupported && TM.isPositionIndependent() &&
212 (static_cast<const MipsTargetMachine &>(TM).getABI().IsO32());
213 UnsupportedFPMode = Subtarget->isFP64bit();
214 }
215
216 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
217 unsigned fastMaterializeConstant(const Constant *C) override;
218 bool fastSelectInstruction(const Instruction *I) override;
219
220 #include "MipsGenFastISel.inc"
221 };
222 } // end anonymous namespace.
223
224 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
225 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
226 CCState &State) LLVM_ATTRIBUTE_UNUSED;
227
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)228 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
229 CCValAssign::LocInfo LocInfo,
230 ISD::ArgFlagsTy ArgFlags, CCState &State) {
231 llvm_unreachable("should not be called");
232 }
233
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)234 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
235 CCValAssign::LocInfo LocInfo,
236 ISD::ArgFlagsTy ArgFlags, CCState &State) {
237 llvm_unreachable("should not be called");
238 }
239
240 #include "MipsGenCallingConv.inc"
241
CCAssignFnForCall(CallingConv::ID CC) const242 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
243 return CC_MipsO32;
244 }
245
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)246 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
247 const Value *LHS, const Value *RHS) {
248 // Canonicalize immediates to the RHS first.
249 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
250 std::swap(LHS, RHS);
251
252 unsigned Opc;
253 switch (ISDOpc) {
254 case ISD::AND:
255 Opc = Mips::AND;
256 break;
257 case ISD::OR:
258 Opc = Mips::OR;
259 break;
260 case ISD::XOR:
261 Opc = Mips::XOR;
262 break;
263 default:
264 llvm_unreachable("unexpected opcode");
265 }
266
267 unsigned LHSReg = getRegForValue(LHS);
268 if (!LHSReg)
269 return 0;
270
271 unsigned RHSReg;
272 if (const auto *C = dyn_cast<ConstantInt>(RHS))
273 RHSReg = materializeInt(C, MVT::i32);
274 else
275 RHSReg = getRegForValue(RHS);
276 if (!RHSReg)
277 return 0;
278
279 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
280 if (!ResultReg)
281 return 0;
282
283 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
284 return ResultReg;
285 }
286
fastMaterializeAlloca(const AllocaInst * AI)287 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
288 if (!TargetSupported)
289 return 0;
290
291 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
292 "Alloca should always return a pointer.");
293
294 DenseMap<const AllocaInst *, int>::iterator SI =
295 FuncInfo.StaticAllocaMap.find(AI);
296
297 if (SI != FuncInfo.StaticAllocaMap.end()) {
298 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
300 ResultReg)
301 .addFrameIndex(SI->second)
302 .addImm(0);
303 return ResultReg;
304 }
305
306 return 0;
307 }
308
materializeInt(const Constant * C,MVT VT)309 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
310 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
311 return 0;
312 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
313 const ConstantInt *CI = cast<ConstantInt>(C);
314 return materialize32BitInt(CI->getZExtValue(), RC);
315 }
316
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)317 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
318 const TargetRegisterClass *RC) {
319 unsigned ResultReg = createResultReg(RC);
320
321 if (isInt<16>(Imm)) {
322 unsigned Opc = Mips::ADDiu;
323 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
324 return ResultReg;
325 } else if (isUInt<16>(Imm)) {
326 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
327 return ResultReg;
328 }
329 unsigned Lo = Imm & 0xFFFF;
330 unsigned Hi = (Imm >> 16) & 0xFFFF;
331 if (Lo) {
332 // Both Lo and Hi have nonzero bits.
333 unsigned TmpReg = createResultReg(RC);
334 emitInst(Mips::LUi, TmpReg).addImm(Hi);
335 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
336 } else {
337 emitInst(Mips::LUi, ResultReg).addImm(Hi);
338 }
339 return ResultReg;
340 }
341
materializeFP(const ConstantFP * CFP,MVT VT)342 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
343 if (UnsupportedFPMode)
344 return 0;
345 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
346 if (VT == MVT::f32) {
347 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
348 unsigned DestReg = createResultReg(RC);
349 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
350 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
351 return DestReg;
352 } else if (VT == MVT::f64) {
353 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
354 unsigned DestReg = createResultReg(RC);
355 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
356 unsigned TempReg2 =
357 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
358 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
359 return DestReg;
360 }
361 return 0;
362 }
363
materializeGV(const GlobalValue * GV,MVT VT)364 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
365 // For now 32-bit only.
366 if (VT != MVT::i32)
367 return 0;
368 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
369 unsigned DestReg = createResultReg(RC);
370 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
371 bool IsThreadLocal = GVar && GVar->isThreadLocal();
372 // TLS not supported at this time.
373 if (IsThreadLocal)
374 return 0;
375 emitInst(Mips::LW, DestReg)
376 .addReg(MFI->getGlobalBaseReg())
377 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
378 if ((GV->hasInternalLinkage() ||
379 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
380 unsigned TempReg = createResultReg(RC);
381 emitInst(Mips::ADDiu, TempReg)
382 .addReg(DestReg)
383 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
384 DestReg = TempReg;
385 }
386 return DestReg;
387 }
388
materializeExternalCallSym(MCSymbol * Sym)389 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
390 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
391 unsigned DestReg = createResultReg(RC);
392 emitInst(Mips::LW, DestReg)
393 .addReg(MFI->getGlobalBaseReg())
394 .addSym(Sym, MipsII::MO_GOT);
395 return DestReg;
396 }
397
398 // Materialize a constant into a register, and return the register
399 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)400 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
401 if (!TargetSupported)
402 return 0;
403
404 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
405
406 // Only handle simple types.
407 if (!CEVT.isSimple())
408 return 0;
409 MVT VT = CEVT.getSimpleVT();
410
411 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
412 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
413 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
414 return materializeGV(GV, VT);
415 else if (isa<ConstantInt>(C))
416 return materializeInt(C, VT);
417
418 return 0;
419 }
420
computeAddress(const Value * Obj,Address & Addr)421 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
422
423 const User *U = nullptr;
424 unsigned Opcode = Instruction::UserOp1;
425 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
426 // Don't walk into other basic blocks unless the object is an alloca from
427 // another block, otherwise it may not have a virtual register assigned.
428 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
429 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
430 Opcode = I->getOpcode();
431 U = I;
432 }
433 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
434 Opcode = C->getOpcode();
435 U = C;
436 }
437 switch (Opcode) {
438 default:
439 break;
440 case Instruction::BitCast: {
441 // Look through bitcasts.
442 return computeAddress(U->getOperand(0), Addr);
443 }
444 case Instruction::GetElementPtr: {
445 Address SavedAddr = Addr;
446 uint64_t TmpOffset = Addr.getOffset();
447 // Iterate through the GEP folding the constants into offsets where
448 // we can.
449 gep_type_iterator GTI = gep_type_begin(U);
450 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
451 ++i, ++GTI) {
452 const Value *Op = *i;
453 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
454 const StructLayout *SL = DL.getStructLayout(STy);
455 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
456 TmpOffset += SL->getElementOffset(Idx);
457 } else {
458 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
459 for (;;) {
460 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
461 // Constant-offset addressing.
462 TmpOffset += CI->getSExtValue() * S;
463 break;
464 }
465 if (canFoldAddIntoGEP(U, Op)) {
466 // A compatible add with a constant operand. Fold the constant.
467 ConstantInt *CI =
468 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
469 TmpOffset += CI->getSExtValue() * S;
470 // Iterate on the other operand.
471 Op = cast<AddOperator>(Op)->getOperand(0);
472 continue;
473 }
474 // Unsupported
475 goto unsupported_gep;
476 }
477 }
478 }
479 // Try to grab the base operand now.
480 Addr.setOffset(TmpOffset);
481 if (computeAddress(U->getOperand(0), Addr))
482 return true;
483 // We failed, restore everything and try the other options.
484 Addr = SavedAddr;
485 unsupported_gep:
486 break;
487 }
488 case Instruction::Alloca: {
489 const AllocaInst *AI = cast<AllocaInst>(Obj);
490 DenseMap<const AllocaInst *, int>::iterator SI =
491 FuncInfo.StaticAllocaMap.find(AI);
492 if (SI != FuncInfo.StaticAllocaMap.end()) {
493 Addr.setKind(Address::FrameIndexBase);
494 Addr.setFI(SI->second);
495 return true;
496 }
497 break;
498 }
499 }
500 Addr.setReg(getRegForValue(Obj));
501 return Addr.getReg() != 0;
502 }
503
computeCallAddress(const Value * V,Address & Addr)504 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
505 const User *U = nullptr;
506 unsigned Opcode = Instruction::UserOp1;
507
508 if (const auto *I = dyn_cast<Instruction>(V)) {
509 // Check if the value is defined in the same basic block. This information
510 // is crucial to know whether or not folding an operand is valid.
511 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
512 Opcode = I->getOpcode();
513 U = I;
514 }
515 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
516 Opcode = C->getOpcode();
517 U = C;
518 }
519
520 switch (Opcode) {
521 default:
522 break;
523 case Instruction::BitCast:
524 // Look past bitcasts if its operand is in the same BB.
525 return computeCallAddress(U->getOperand(0), Addr);
526 break;
527 case Instruction::IntToPtr:
528 // Look past no-op inttoptrs if its operand is in the same BB.
529 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
530 TLI.getPointerTy(DL))
531 return computeCallAddress(U->getOperand(0), Addr);
532 break;
533 case Instruction::PtrToInt:
534 // Look past no-op ptrtoints if its operand is in the same BB.
535 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
536 return computeCallAddress(U->getOperand(0), Addr);
537 break;
538 }
539
540 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
541 Addr.setGlobalValue(GV);
542 return true;
543 }
544
545 // If all else fails, try to materialize the value in a register.
546 if (!Addr.getGlobalValue()) {
547 Addr.setReg(getRegForValue(V));
548 return Addr.getReg() != 0;
549 }
550
551 return false;
552 }
553
isTypeLegal(Type * Ty,MVT & VT)554 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
555 EVT evt = TLI.getValueType(DL, Ty, true);
556 // Only handle simple types.
557 if (evt == MVT::Other || !evt.isSimple())
558 return false;
559 VT = evt.getSimpleVT();
560
561 // Handle all legal types, i.e. a register that will directly hold this
562 // value.
563 return TLI.isTypeLegal(VT);
564 }
565
isTypeSupported(Type * Ty,MVT & VT)566 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
567 if (Ty->isVectorTy())
568 return false;
569
570 if (isTypeLegal(Ty, VT))
571 return true;
572
573 // If this is a type than can be sign or zero-extended to a basic operation
574 // go ahead and accept it now.
575 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
576 return true;
577
578 return false;
579 }
580
isLoadTypeLegal(Type * Ty,MVT & VT)581 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
582 if (isTypeLegal(Ty, VT))
583 return true;
584 // We will extend this in a later patch:
585 // If this is a type than can be sign or zero-extended to a basic operation
586 // go ahead and accept it now.
587 if (VT == MVT::i8 || VT == MVT::i16)
588 return true;
589 return false;
590 }
591 // Because of how EmitCmp is called with fast-isel, you can
592 // end up with redundant "andi" instructions after the sequences emitted below.
593 // We should try and solve this issue in the future.
594 //
emitCmp(unsigned ResultReg,const CmpInst * CI)595 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
596 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
597 bool IsUnsigned = CI->isUnsigned();
598 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
599 if (LeftReg == 0)
600 return false;
601 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
602 if (RightReg == 0)
603 return false;
604 CmpInst::Predicate P = CI->getPredicate();
605
606 switch (P) {
607 default:
608 return false;
609 case CmpInst::ICMP_EQ: {
610 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
611 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
612 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
613 break;
614 }
615 case CmpInst::ICMP_NE: {
616 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
617 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
618 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
619 break;
620 }
621 case CmpInst::ICMP_UGT: {
622 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
623 break;
624 }
625 case CmpInst::ICMP_ULT: {
626 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
627 break;
628 }
629 case CmpInst::ICMP_UGE: {
630 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
631 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
632 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
633 break;
634 }
635 case CmpInst::ICMP_ULE: {
636 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
637 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
638 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
639 break;
640 }
641 case CmpInst::ICMP_SGT: {
642 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
643 break;
644 }
645 case CmpInst::ICMP_SLT: {
646 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
647 break;
648 }
649 case CmpInst::ICMP_SGE: {
650 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
651 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
652 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
653 break;
654 }
655 case CmpInst::ICMP_SLE: {
656 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
657 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
658 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
659 break;
660 }
661 case CmpInst::FCMP_OEQ:
662 case CmpInst::FCMP_UNE:
663 case CmpInst::FCMP_OLT:
664 case CmpInst::FCMP_OLE:
665 case CmpInst::FCMP_OGT:
666 case CmpInst::FCMP_OGE: {
667 if (UnsupportedFPMode)
668 return false;
669 bool IsFloat = Left->getType()->isFloatTy();
670 bool IsDouble = Left->getType()->isDoubleTy();
671 if (!IsFloat && !IsDouble)
672 return false;
673 unsigned Opc, CondMovOpc;
674 switch (P) {
675 case CmpInst::FCMP_OEQ:
676 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
677 CondMovOpc = Mips::MOVT_I;
678 break;
679 case CmpInst::FCMP_UNE:
680 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
681 CondMovOpc = Mips::MOVF_I;
682 break;
683 case CmpInst::FCMP_OLT:
684 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
685 CondMovOpc = Mips::MOVT_I;
686 break;
687 case CmpInst::FCMP_OLE:
688 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
689 CondMovOpc = Mips::MOVT_I;
690 break;
691 case CmpInst::FCMP_OGT:
692 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
693 CondMovOpc = Mips::MOVF_I;
694 break;
695 case CmpInst::FCMP_OGE:
696 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
697 CondMovOpc = Mips::MOVF_I;
698 break;
699 default:
700 llvm_unreachable("Only switching of a subset of CCs.");
701 }
702 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
703 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
704 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
705 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
706 emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
707 Mips::FCC0, RegState::ImplicitDefine);
708 emitInst(CondMovOpc, ResultReg)
709 .addReg(RegWithOne)
710 .addReg(Mips::FCC0)
711 .addReg(RegWithZero);
712 break;
713 }
714 }
715 return true;
716 }
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)717 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
718 unsigned Alignment) {
719 //
720 // more cases will be handled here in following patches.
721 //
722 unsigned Opc;
723 switch (VT.SimpleTy) {
724 case MVT::i32: {
725 ResultReg = createResultReg(&Mips::GPR32RegClass);
726 Opc = Mips::LW;
727 break;
728 }
729 case MVT::i16: {
730 ResultReg = createResultReg(&Mips::GPR32RegClass);
731 Opc = Mips::LHu;
732 break;
733 }
734 case MVT::i8: {
735 ResultReg = createResultReg(&Mips::GPR32RegClass);
736 Opc = Mips::LBu;
737 break;
738 }
739 case MVT::f32: {
740 if (UnsupportedFPMode)
741 return false;
742 ResultReg = createResultReg(&Mips::FGR32RegClass);
743 Opc = Mips::LWC1;
744 break;
745 }
746 case MVT::f64: {
747 if (UnsupportedFPMode)
748 return false;
749 ResultReg = createResultReg(&Mips::AFGR64RegClass);
750 Opc = Mips::LDC1;
751 break;
752 }
753 default:
754 return false;
755 }
756 if (Addr.isRegBase()) {
757 simplifyAddress(Addr);
758 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
759 return true;
760 }
761 if (Addr.isFIBase()) {
762 unsigned FI = Addr.getFI();
763 unsigned Align = 4;
764 unsigned Offset = Addr.getOffset();
765 MachineFrameInfo &MFI = *MF->getFrameInfo();
766 MachineMemOperand *MMO = MF->getMachineMemOperand(
767 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
768 MFI.getObjectSize(FI), Align);
769 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
770 .addFrameIndex(FI)
771 .addImm(Offset)
772 .addMemOperand(MMO);
773 return true;
774 }
775 return false;
776 }
777
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)778 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
779 unsigned Alignment) {
780 //
781 // more cases will be handled here in following patches.
782 //
783 unsigned Opc;
784 switch (VT.SimpleTy) {
785 case MVT::i8:
786 Opc = Mips::SB;
787 break;
788 case MVT::i16:
789 Opc = Mips::SH;
790 break;
791 case MVT::i32:
792 Opc = Mips::SW;
793 break;
794 case MVT::f32:
795 if (UnsupportedFPMode)
796 return false;
797 Opc = Mips::SWC1;
798 break;
799 case MVT::f64:
800 if (UnsupportedFPMode)
801 return false;
802 Opc = Mips::SDC1;
803 break;
804 default:
805 return false;
806 }
807 if (Addr.isRegBase()) {
808 simplifyAddress(Addr);
809 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
810 return true;
811 }
812 if (Addr.isFIBase()) {
813 unsigned FI = Addr.getFI();
814 unsigned Align = 4;
815 unsigned Offset = Addr.getOffset();
816 MachineFrameInfo &MFI = *MF->getFrameInfo();
817 MachineMemOperand *MMO = MF->getMachineMemOperand(
818 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
819 MFI.getObjectSize(FI), Align);
820 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
821 .addReg(SrcReg)
822 .addFrameIndex(FI)
823 .addImm(Offset)
824 .addMemOperand(MMO);
825 return true;
826 }
827 return false;
828 }
829
selectLogicalOp(const Instruction * I)830 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
831 MVT VT;
832 if (!isTypeSupported(I->getType(), VT))
833 return false;
834
835 unsigned ResultReg;
836 switch (I->getOpcode()) {
837 default:
838 llvm_unreachable("Unexpected instruction.");
839 case Instruction::And:
840 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
841 break;
842 case Instruction::Or:
843 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
844 break;
845 case Instruction::Xor:
846 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
847 break;
848 }
849
850 if (!ResultReg)
851 return false;
852
853 updateValueMap(I, ResultReg);
854 return true;
855 }
856
selectLoad(const Instruction * I)857 bool MipsFastISel::selectLoad(const Instruction *I) {
858 // Atomic loads need special handling.
859 if (cast<LoadInst>(I)->isAtomic())
860 return false;
861
862 // Verify we have a legal type before going any further.
863 MVT VT;
864 if (!isLoadTypeLegal(I->getType(), VT))
865 return false;
866
867 // See if we can handle this address.
868 Address Addr;
869 if (!computeAddress(I->getOperand(0), Addr))
870 return false;
871
872 unsigned ResultReg;
873 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
874 return false;
875 updateValueMap(I, ResultReg);
876 return true;
877 }
878
selectStore(const Instruction * I)879 bool MipsFastISel::selectStore(const Instruction *I) {
880 Value *Op0 = I->getOperand(0);
881 unsigned SrcReg = 0;
882
883 // Atomic stores need special handling.
884 if (cast<StoreInst>(I)->isAtomic())
885 return false;
886
887 // Verify we have a legal type before going any further.
888 MVT VT;
889 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
890 return false;
891
892 // Get the value to be stored into a register.
893 SrcReg = getRegForValue(Op0);
894 if (SrcReg == 0)
895 return false;
896
897 // See if we can handle this address.
898 Address Addr;
899 if (!computeAddress(I->getOperand(1), Addr))
900 return false;
901
902 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
903 return false;
904 return true;
905 }
906
907 //
908 // This can cause a redundant sltiu to be generated.
909 // FIXME: try and eliminate this in a future patch.
910 //
selectBranch(const Instruction * I)911 bool MipsFastISel::selectBranch(const Instruction *I) {
912 const BranchInst *BI = cast<BranchInst>(I);
913 MachineBasicBlock *BrBB = FuncInfo.MBB;
914 //
915 // TBB is the basic block for the case where the comparison is true.
916 // FBB is the basic block for the case where the comparison is false.
917 // if (cond) goto TBB
918 // goto FBB
919 // TBB:
920 //
921 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
922 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
923 BI->getCondition();
924 // For now, just try the simplest case where it's fed by a compare.
925 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
926 unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
927 if (!emitCmp(CondReg, CI))
928 return false;
929 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
930 .addReg(CondReg)
931 .addMBB(TBB);
932 finishCondBranch(BI->getParent(), TBB, FBB);
933 return true;
934 }
935 return false;
936 }
937
selectCmp(const Instruction * I)938 bool MipsFastISel::selectCmp(const Instruction *I) {
939 const CmpInst *CI = cast<CmpInst>(I);
940 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
941 if (!emitCmp(ResultReg, CI))
942 return false;
943 updateValueMap(I, ResultReg);
944 return true;
945 }
946
947 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)948 bool MipsFastISel::selectFPExt(const Instruction *I) {
949 if (UnsupportedFPMode)
950 return false;
951 Value *Src = I->getOperand(0);
952 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
953 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
954
955 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
956 return false;
957
958 unsigned SrcReg =
959 getRegForValue(Src); // this must be a 32bit floating point register class
960 // maybe we should handle this differently
961 if (!SrcReg)
962 return false;
963
964 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
965 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
966 updateValueMap(I, DestReg);
967 return true;
968 }
969
selectSelect(const Instruction * I)970 bool MipsFastISel::selectSelect(const Instruction *I) {
971 assert(isa<SelectInst>(I) && "Expected a select instruction.");
972
973 MVT VT;
974 if (!isTypeSupported(I->getType(), VT))
975 return false;
976
977 unsigned CondMovOpc;
978 const TargetRegisterClass *RC;
979
980 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
981 CondMovOpc = Mips::MOVN_I_I;
982 RC = &Mips::GPR32RegClass;
983 } else if (VT == MVT::f32) {
984 CondMovOpc = Mips::MOVN_I_S;
985 RC = &Mips::FGR32RegClass;
986 } else if (VT == MVT::f64) {
987 CondMovOpc = Mips::MOVN_I_D32;
988 RC = &Mips::AFGR64RegClass;
989 } else
990 return false;
991
992 const SelectInst *SI = cast<SelectInst>(I);
993 const Value *Cond = SI->getCondition();
994 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
995 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
996 unsigned CondReg = getRegForValue(Cond);
997
998 if (!Src1Reg || !Src2Reg || !CondReg)
999 return false;
1000
1001 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1002 if (!ZExtCondReg)
1003 return false;
1004
1005 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1006 return false;
1007
1008 unsigned ResultReg = createResultReg(RC);
1009 unsigned TempReg = createResultReg(RC);
1010
1011 if (!ResultReg || !TempReg)
1012 return false;
1013
1014 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1015 emitInst(CondMovOpc, ResultReg)
1016 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1017 updateValueMap(I, ResultReg);
1018 return true;
1019 }
1020
1021 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1022 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1023 if (UnsupportedFPMode)
1024 return false;
1025 Value *Src = I->getOperand(0);
1026 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1027 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1028
1029 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1030 return false;
1031
1032 unsigned SrcReg = getRegForValue(Src);
1033 if (!SrcReg)
1034 return false;
1035
1036 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1037 if (!DestReg)
1038 return false;
1039
1040 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1041 updateValueMap(I, DestReg);
1042 return true;
1043 }
1044
1045 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1046 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1047 if (UnsupportedFPMode)
1048 return false;
1049 MVT DstVT, SrcVT;
1050 if (!IsSigned)
1051 return false; // We don't handle this case yet. There is no native
1052 // instruction for this but it can be synthesized.
1053 Type *DstTy = I->getType();
1054 if (!isTypeLegal(DstTy, DstVT))
1055 return false;
1056
1057 if (DstVT != MVT::i32)
1058 return false;
1059
1060 Value *Src = I->getOperand(0);
1061 Type *SrcTy = Src->getType();
1062 if (!isTypeLegal(SrcTy, SrcVT))
1063 return false;
1064
1065 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1066 return false;
1067
1068 unsigned SrcReg = getRegForValue(Src);
1069 if (SrcReg == 0)
1070 return false;
1071
1072 // Determine the opcode for the conversion, which takes place
1073 // entirely within FPRs.
1074 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1075 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1076 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1077
1078 // Generate the convert.
1079 emitInst(Opc, TempReg).addReg(SrcReg);
1080 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1081
1082 updateValueMap(I, DestReg);
1083 return true;
1084 }
1085
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1086 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1087 SmallVectorImpl<MVT> &OutVTs,
1088 unsigned &NumBytes) {
1089 CallingConv::ID CC = CLI.CallConv;
1090 SmallVector<CCValAssign, 16> ArgLocs;
1091 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1092 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1093 // Get a count of how many bytes are to be pushed on the stack.
1094 NumBytes = CCInfo.getNextStackOffset();
1095 // This is the minimum argument area used for A0-A3.
1096 if (NumBytes < 16)
1097 NumBytes = 16;
1098
1099 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
1100 // Process the args.
1101 MVT firstMVT;
1102 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1103 CCValAssign &VA = ArgLocs[i];
1104 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1105 MVT ArgVT = OutVTs[VA.getValNo()];
1106
1107 if (i == 0) {
1108 firstMVT = ArgVT;
1109 if (ArgVT == MVT::f32) {
1110 VA.convertToReg(Mips::F12);
1111 } else if (ArgVT == MVT::f64) {
1112 VA.convertToReg(Mips::D6);
1113 }
1114 } else if (i == 1) {
1115 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1116 if (ArgVT == MVT::f32) {
1117 VA.convertToReg(Mips::F14);
1118 } else if (ArgVT == MVT::f64) {
1119 VA.convertToReg(Mips::D7);
1120 }
1121 }
1122 }
1123 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1124 (ArgVT == MVT::i8)) &&
1125 VA.isMemLoc()) {
1126 switch (VA.getLocMemOffset()) {
1127 case 0:
1128 VA.convertToReg(Mips::A0);
1129 break;
1130 case 4:
1131 VA.convertToReg(Mips::A1);
1132 break;
1133 case 8:
1134 VA.convertToReg(Mips::A2);
1135 break;
1136 case 12:
1137 VA.convertToReg(Mips::A3);
1138 break;
1139 default:
1140 break;
1141 }
1142 }
1143 unsigned ArgReg = getRegForValue(ArgVal);
1144 if (!ArgReg)
1145 return false;
1146
1147 // Handle arg promotion: SExt, ZExt, AExt.
1148 switch (VA.getLocInfo()) {
1149 case CCValAssign::Full:
1150 break;
1151 case CCValAssign::AExt:
1152 case CCValAssign::SExt: {
1153 MVT DestVT = VA.getLocVT();
1154 MVT SrcVT = ArgVT;
1155 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1156 if (!ArgReg)
1157 return false;
1158 break;
1159 }
1160 case CCValAssign::ZExt: {
1161 MVT DestVT = VA.getLocVT();
1162 MVT SrcVT = ArgVT;
1163 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1164 if (!ArgReg)
1165 return false;
1166 break;
1167 }
1168 default:
1169 llvm_unreachable("Unknown arg promotion!");
1170 }
1171
1172 // Now copy/store arg to correct locations.
1173 if (VA.isRegLoc() && !VA.needsCustom()) {
1174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1175 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1176 CLI.OutRegs.push_back(VA.getLocReg());
1177 } else if (VA.needsCustom()) {
1178 llvm_unreachable("Mips does not use custom args.");
1179 return false;
1180 } else {
1181 //
1182 // FIXME: This path will currently return false. It was copied
1183 // from the AArch64 port and should be essentially fine for Mips too.
1184 // The work to finish up this path will be done in a follow-on patch.
1185 //
1186 assert(VA.isMemLoc() && "Assuming store on stack.");
1187 // Don't emit stores for undef values.
1188 if (isa<UndefValue>(ArgVal))
1189 continue;
1190
1191 // Need to store on the stack.
1192 // FIXME: This alignment is incorrect but this path is disabled
1193 // for now (will return false). We need to determine the right alignment
1194 // based on the normal alignment for the underlying machine type.
1195 //
1196 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1197
1198 unsigned BEAlign = 0;
1199 if (ArgSize < 8 && !Subtarget->isLittle())
1200 BEAlign = 8 - ArgSize;
1201
1202 Address Addr;
1203 Addr.setKind(Address::RegBase);
1204 Addr.setReg(Mips::SP);
1205 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1206
1207 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1208 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1209 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1210 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1211 (void)(MMO);
1212 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1213 return false; // can't store on the stack yet.
1214 }
1215 }
1216
1217 return true;
1218 }
1219
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1220 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1221 unsigned NumBytes) {
1222 CallingConv::ID CC = CLI.CallConv;
1223 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1224 if (RetVT != MVT::isVoid) {
1225 SmallVector<CCValAssign, 16> RVLocs;
1226 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1227 CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
1228
1229 // Only handle a single return value.
1230 if (RVLocs.size() != 1)
1231 return false;
1232 // Copy all of the result registers out of their specified physreg.
1233 MVT CopyVT = RVLocs[0].getValVT();
1234 // Special handling for extended integers.
1235 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1236 CopyVT = MVT::i32;
1237
1238 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1239 if (!ResultReg)
1240 return false;
1241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1242 TII.get(TargetOpcode::COPY),
1243 ResultReg).addReg(RVLocs[0].getLocReg());
1244 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1245
1246 CLI.ResultReg = ResultReg;
1247 CLI.NumResultRegs = 1;
1248 }
1249 return true;
1250 }
1251
fastLowerCall(CallLoweringInfo & CLI)1252 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1253 if (!TargetSupported)
1254 return false;
1255
1256 CallingConv::ID CC = CLI.CallConv;
1257 bool IsTailCall = CLI.IsTailCall;
1258 bool IsVarArg = CLI.IsVarArg;
1259 const Value *Callee = CLI.Callee;
1260 MCSymbol *Symbol = CLI.Symbol;
1261
1262 // Do not handle FastCC.
1263 if (CC == CallingConv::Fast)
1264 return false;
1265
1266 // Allow SelectionDAG isel to handle tail calls.
1267 if (IsTailCall)
1268 return false;
1269
1270 // Let SDISel handle vararg functions.
1271 if (IsVarArg)
1272 return false;
1273
1274 // FIXME: Only handle *simple* calls for now.
1275 MVT RetVT;
1276 if (CLI.RetTy->isVoidTy())
1277 RetVT = MVT::isVoid;
1278 else if (!isTypeSupported(CLI.RetTy, RetVT))
1279 return false;
1280
1281 for (auto Flag : CLI.OutFlags)
1282 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1283 return false;
1284
1285 // Set up the argument vectors.
1286 SmallVector<MVT, 16> OutVTs;
1287 OutVTs.reserve(CLI.OutVals.size());
1288
1289 for (auto *Val : CLI.OutVals) {
1290 MVT VT;
1291 if (!isTypeLegal(Val->getType(), VT) &&
1292 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1293 return false;
1294
1295 // We don't handle vector parameters yet.
1296 if (VT.isVector() || VT.getSizeInBits() > 64)
1297 return false;
1298
1299 OutVTs.push_back(VT);
1300 }
1301
1302 Address Addr;
1303 if (!computeCallAddress(Callee, Addr))
1304 return false;
1305
1306 // Handle the arguments now that we've gotten them.
1307 unsigned NumBytes;
1308 if (!processCallArgs(CLI, OutVTs, NumBytes))
1309 return false;
1310
1311 if (!Addr.getGlobalValue())
1312 return false;
1313
1314 // Issue the call.
1315 unsigned DestAddress;
1316 if (Symbol)
1317 DestAddress = materializeExternalCallSym(Symbol);
1318 else
1319 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1320 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1321 MachineInstrBuilder MIB =
1322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1323 Mips::RA).addReg(Mips::T9);
1324
1325 // Add implicit physical register uses to the call.
1326 for (auto Reg : CLI.OutRegs)
1327 MIB.addReg(Reg, RegState::Implicit);
1328
1329 // Add a register mask with the call-preserved registers.
1330 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1331 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1332
1333 CLI.Call = MIB;
1334
1335 // Finish off the call including any return values.
1336 return finishCall(CLI, RetVT, NumBytes);
1337 }
1338
fastLowerIntrinsicCall(const IntrinsicInst * II)1339 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1340 if (!TargetSupported)
1341 return false;
1342
1343 switch (II->getIntrinsicID()) {
1344 default:
1345 return false;
1346 case Intrinsic::bswap: {
1347 Type *RetTy = II->getCalledFunction()->getReturnType();
1348
1349 MVT VT;
1350 if (!isTypeSupported(RetTy, VT))
1351 return false;
1352
1353 unsigned SrcReg = getRegForValue(II->getOperand(0));
1354 if (SrcReg == 0)
1355 return false;
1356 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1357 if (DestReg == 0)
1358 return false;
1359 if (VT == MVT::i16) {
1360 if (Subtarget->hasMips32r2()) {
1361 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1362 updateValueMap(II, DestReg);
1363 return true;
1364 } else {
1365 unsigned TempReg[3];
1366 for (int i = 0; i < 3; i++) {
1367 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1368 if (TempReg[i] == 0)
1369 return false;
1370 }
1371 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1372 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1373 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1374 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1375 updateValueMap(II, DestReg);
1376 return true;
1377 }
1378 } else if (VT == MVT::i32) {
1379 if (Subtarget->hasMips32r2()) {
1380 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1381 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1382 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1383 updateValueMap(II, DestReg);
1384 return true;
1385 } else {
1386 unsigned TempReg[8];
1387 for (int i = 0; i < 8; i++) {
1388 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1389 if (TempReg[i] == 0)
1390 return false;
1391 }
1392
1393 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1394 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1395 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1396 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1397
1398 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1399 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1400
1401 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1402 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1403 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1404 updateValueMap(II, DestReg);
1405 return true;
1406 }
1407 }
1408 return false;
1409 }
1410 case Intrinsic::memcpy:
1411 case Intrinsic::memmove: {
1412 const auto *MTI = cast<MemTransferInst>(II);
1413 // Don't handle volatile.
1414 if (MTI->isVolatile())
1415 return false;
1416 if (!MTI->getLength()->getType()->isIntegerTy(32))
1417 return false;
1418 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1419 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
1420 }
1421 case Intrinsic::memset: {
1422 const MemSetInst *MSI = cast<MemSetInst>(II);
1423 // Don't handle volatile.
1424 if (MSI->isVolatile())
1425 return false;
1426 if (!MSI->getLength()->getType()->isIntegerTy(32))
1427 return false;
1428 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
1429 }
1430 }
1431 return false;
1432 }
1433
selectRet(const Instruction * I)1434 bool MipsFastISel::selectRet(const Instruction *I) {
1435 const Function &F = *I->getParent()->getParent();
1436 const ReturnInst *Ret = cast<ReturnInst>(I);
1437
1438 if (!FuncInfo.CanLowerReturn)
1439 return false;
1440
1441 // Build a list of return value registers.
1442 SmallVector<unsigned, 4> RetRegs;
1443
1444 if (Ret->getNumOperands() > 0) {
1445 CallingConv::ID CC = F.getCallingConv();
1446
1447 // Do not handle FastCC.
1448 if (CC == CallingConv::Fast)
1449 return false;
1450
1451 SmallVector<ISD::OutputArg, 4> Outs;
1452 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1453
1454 // Analyze operands of the call, assigning locations to each operand.
1455 SmallVector<CCValAssign, 16> ValLocs;
1456 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1457 I->getContext());
1458 CCAssignFn *RetCC = RetCC_Mips;
1459 CCInfo.AnalyzeReturn(Outs, RetCC);
1460
1461 // Only handle a single return value for now.
1462 if (ValLocs.size() != 1)
1463 return false;
1464
1465 CCValAssign &VA = ValLocs[0];
1466 const Value *RV = Ret->getOperand(0);
1467
1468 // Don't bother handling odd stuff for now.
1469 if ((VA.getLocInfo() != CCValAssign::Full) &&
1470 (VA.getLocInfo() != CCValAssign::BCvt))
1471 return false;
1472
1473 // Only handle register returns for now.
1474 if (!VA.isRegLoc())
1475 return false;
1476
1477 unsigned Reg = getRegForValue(RV);
1478 if (Reg == 0)
1479 return false;
1480
1481 unsigned SrcReg = Reg + VA.getValNo();
1482 unsigned DestReg = VA.getLocReg();
1483 // Avoid a cross-class copy. This is very unlikely.
1484 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1485 return false;
1486
1487 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1488 if (!RVEVT.isSimple())
1489 return false;
1490
1491 if (RVEVT.isVector())
1492 return false;
1493
1494 MVT RVVT = RVEVT.getSimpleVT();
1495 if (RVVT == MVT::f128)
1496 return false;
1497
1498 MVT DestVT = VA.getValVT();
1499 // Special handling for extended integers.
1500 if (RVVT != DestVT) {
1501 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1502 return false;
1503
1504 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1505 bool IsZExt = Outs[0].Flags.isZExt();
1506 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1507 if (SrcReg == 0)
1508 return false;
1509 }
1510 }
1511
1512 // Make the copy.
1513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1514 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1515
1516 // Add register to return instruction.
1517 RetRegs.push_back(VA.getLocReg());
1518 }
1519 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1520 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1521 MIB.addReg(RetRegs[i], RegState::Implicit);
1522 return true;
1523 }
1524
selectTrunc(const Instruction * I)1525 bool MipsFastISel::selectTrunc(const Instruction *I) {
1526 // The high bits for a type smaller than the register size are assumed to be
1527 // undefined.
1528 Value *Op = I->getOperand(0);
1529
1530 EVT SrcVT, DestVT;
1531 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1532 DestVT = TLI.getValueType(DL, I->getType(), true);
1533
1534 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1535 return false;
1536 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1537 return false;
1538
1539 unsigned SrcReg = getRegForValue(Op);
1540 if (!SrcReg)
1541 return false;
1542
1543 // Because the high bits are undefined, a truncate doesn't generate
1544 // any code.
1545 updateValueMap(I, SrcReg);
1546 return true;
1547 }
selectIntExt(const Instruction * I)1548 bool MipsFastISel::selectIntExt(const Instruction *I) {
1549 Type *DestTy = I->getType();
1550 Value *Src = I->getOperand(0);
1551 Type *SrcTy = Src->getType();
1552
1553 bool isZExt = isa<ZExtInst>(I);
1554 unsigned SrcReg = getRegForValue(Src);
1555 if (!SrcReg)
1556 return false;
1557
1558 EVT SrcEVT, DestEVT;
1559 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1560 DestEVT = TLI.getValueType(DL, DestTy, true);
1561 if (!SrcEVT.isSimple())
1562 return false;
1563 if (!DestEVT.isSimple())
1564 return false;
1565
1566 MVT SrcVT = SrcEVT.getSimpleVT();
1567 MVT DestVT = DestEVT.getSimpleVT();
1568 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1569
1570 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1571 return false;
1572 updateValueMap(I, ResultReg);
1573 return true;
1574 }
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1575 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1576 unsigned DestReg) {
1577 unsigned ShiftAmt;
1578 switch (SrcVT.SimpleTy) {
1579 default:
1580 return false;
1581 case MVT::i8:
1582 ShiftAmt = 24;
1583 break;
1584 case MVT::i16:
1585 ShiftAmt = 16;
1586 break;
1587 }
1588 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1589 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1590 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1591 return true;
1592 }
1593
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1594 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1595 unsigned DestReg) {
1596 switch (SrcVT.SimpleTy) {
1597 default:
1598 return false;
1599 case MVT::i8:
1600 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1601 break;
1602 case MVT::i16:
1603 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1604 break;
1605 }
1606 return true;
1607 }
1608
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1609 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1610 unsigned DestReg) {
1611 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1612 return false;
1613 if (Subtarget->hasMips32r2())
1614 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1615 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1616 }
1617
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1618 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1619 unsigned DestReg) {
1620 int64_t Imm;
1621
1622 switch (SrcVT.SimpleTy) {
1623 default:
1624 return false;
1625 case MVT::i1:
1626 Imm = 1;
1627 break;
1628 case MVT::i8:
1629 Imm = 0xff;
1630 break;
1631 case MVT::i16:
1632 Imm = 0xffff;
1633 break;
1634 }
1635
1636 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1637 return true;
1638 }
1639
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1640 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1641 unsigned DestReg, bool IsZExt) {
1642 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1643 // DestVT are odd things, so test to make sure that they are both types we can
1644 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1645 // bail out to SelectionDAG.
1646 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1647 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1648 return false;
1649 if (IsZExt)
1650 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1651 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1652 }
1653
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1654 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1655 bool isZExt) {
1656 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1657 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1658 return Success ? DestReg : 0;
1659 }
1660
selectDivRem(const Instruction * I,unsigned ISDOpcode)1661 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1662 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1663 if (!DestEVT.isSimple())
1664 return false;
1665
1666 MVT DestVT = DestEVT.getSimpleVT();
1667 if (DestVT != MVT::i32)
1668 return false;
1669
1670 unsigned DivOpc;
1671 switch (ISDOpcode) {
1672 default:
1673 return false;
1674 case ISD::SDIV:
1675 case ISD::SREM:
1676 DivOpc = Mips::SDIV;
1677 break;
1678 case ISD::UDIV:
1679 case ISD::UREM:
1680 DivOpc = Mips::UDIV;
1681 break;
1682 }
1683
1684 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1685 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1686 if (!Src0Reg || !Src1Reg)
1687 return false;
1688
1689 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1690 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1691
1692 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1693 if (!ResultReg)
1694 return false;
1695
1696 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1697 ? Mips::MFHI
1698 : Mips::MFLO;
1699 emitInst(MFOpc, ResultReg);
1700
1701 updateValueMap(I, ResultReg);
1702 return true;
1703 }
1704
selectShift(const Instruction * I)1705 bool MipsFastISel::selectShift(const Instruction *I) {
1706 MVT RetVT;
1707
1708 if (!isTypeSupported(I->getType(), RetVT))
1709 return false;
1710
1711 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1712 if (!ResultReg)
1713 return false;
1714
1715 unsigned Opcode = I->getOpcode();
1716 const Value *Op0 = I->getOperand(0);
1717 unsigned Op0Reg = getRegForValue(Op0);
1718 if (!Op0Reg)
1719 return false;
1720
1721 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1722 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1723 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1724 if (!TempReg)
1725 return false;
1726
1727 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1728 bool IsZExt = Opcode == Instruction::LShr;
1729 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1730 return false;
1731
1732 Op0Reg = TempReg;
1733 }
1734
1735 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1736 uint64_t ShiftVal = C->getZExtValue();
1737
1738 switch (Opcode) {
1739 default:
1740 llvm_unreachable("Unexpected instruction.");
1741 case Instruction::Shl:
1742 Opcode = Mips::SLL;
1743 break;
1744 case Instruction::AShr:
1745 Opcode = Mips::SRA;
1746 break;
1747 case Instruction::LShr:
1748 Opcode = Mips::SRL;
1749 break;
1750 }
1751
1752 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
1753 updateValueMap(I, ResultReg);
1754 return true;
1755 }
1756
1757 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1758 if (!Op1Reg)
1759 return false;
1760
1761 switch (Opcode) {
1762 default:
1763 llvm_unreachable("Unexpected instruction.");
1764 case Instruction::Shl:
1765 Opcode = Mips::SLLV;
1766 break;
1767 case Instruction::AShr:
1768 Opcode = Mips::SRAV;
1769 break;
1770 case Instruction::LShr:
1771 Opcode = Mips::SRLV;
1772 break;
1773 }
1774
1775 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1776 updateValueMap(I, ResultReg);
1777 return true;
1778 }
1779
fastSelectInstruction(const Instruction * I)1780 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
1781 if (!TargetSupported)
1782 return false;
1783 switch (I->getOpcode()) {
1784 default:
1785 break;
1786 case Instruction::Load:
1787 return selectLoad(I);
1788 case Instruction::Store:
1789 return selectStore(I);
1790 case Instruction::SDiv:
1791 if (!selectBinaryOp(I, ISD::SDIV))
1792 return selectDivRem(I, ISD::SDIV);
1793 return true;
1794 case Instruction::UDiv:
1795 if (!selectBinaryOp(I, ISD::UDIV))
1796 return selectDivRem(I, ISD::UDIV);
1797 return true;
1798 case Instruction::SRem:
1799 if (!selectBinaryOp(I, ISD::SREM))
1800 return selectDivRem(I, ISD::SREM);
1801 return true;
1802 case Instruction::URem:
1803 if (!selectBinaryOp(I, ISD::UREM))
1804 return selectDivRem(I, ISD::UREM);
1805 return true;
1806 case Instruction::Shl:
1807 case Instruction::LShr:
1808 case Instruction::AShr:
1809 return selectShift(I);
1810 case Instruction::And:
1811 case Instruction::Or:
1812 case Instruction::Xor:
1813 return selectLogicalOp(I);
1814 case Instruction::Br:
1815 return selectBranch(I);
1816 case Instruction::Ret:
1817 return selectRet(I);
1818 case Instruction::Trunc:
1819 return selectTrunc(I);
1820 case Instruction::ZExt:
1821 case Instruction::SExt:
1822 return selectIntExt(I);
1823 case Instruction::FPTrunc:
1824 return selectFPTrunc(I);
1825 case Instruction::FPExt:
1826 return selectFPExt(I);
1827 case Instruction::FPToSI:
1828 return selectFPToInt(I, /*isSigned*/ true);
1829 case Instruction::FPToUI:
1830 return selectFPToInt(I, /*isSigned*/ false);
1831 case Instruction::ICmp:
1832 case Instruction::FCmp:
1833 return selectCmp(I);
1834 case Instruction::Select:
1835 return selectSelect(I);
1836 }
1837 return false;
1838 }
1839
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)1840 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
1841 bool IsUnsigned) {
1842 unsigned VReg = getRegForValue(V);
1843 if (VReg == 0)
1844 return 0;
1845 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
1846 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
1847 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1848 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
1849 return 0;
1850 VReg = TempReg;
1851 }
1852 return VReg;
1853 }
1854
simplifyAddress(Address & Addr)1855 void MipsFastISel::simplifyAddress(Address &Addr) {
1856 if (!isInt<16>(Addr.getOffset())) {
1857 unsigned TempReg =
1858 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
1859 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1860 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
1861 Addr.setReg(DestReg);
1862 Addr.setOffset(0);
1863 }
1864 }
1865
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)1866 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1867 const TargetRegisterClass *RC,
1868 unsigned Op0, bool Op0IsKill,
1869 unsigned Op1, bool Op1IsKill) {
1870 // We treat the MUL instruction in a special way because it clobbers
1871 // the HI0 & LO0 registers. The TableGen definition of this instruction can
1872 // mark these registers only as implicitly defined. As a result, the
1873 // register allocator runs out of registers when this instruction is
1874 // followed by another instruction that defines the same registers too.
1875 // We can fix this by explicitly marking those registers as dead.
1876 if (MachineInstOpcode == Mips::MUL) {
1877 unsigned ResultReg = createResultReg(RC);
1878 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1879 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1880 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1882 .addReg(Op0, getKillRegState(Op0IsKill))
1883 .addReg(Op1, getKillRegState(Op1IsKill))
1884 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
1885 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
1886 return ResultReg;
1887 }
1888
1889 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
1890 Op1IsKill);
1891 }
1892
1893 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)1894 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
1895 const TargetLibraryInfo *libInfo) {
1896 return new MipsFastISel(funcInfo, libInfo);
1897 }
1898 }
1899