1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
runOnMachineFunction(MachineFunction & MF)39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41 if (Subtarget->inMips16Mode())
42 return false;
43 return MipsDAGToDAGISel::runOnMachineFunction(MF);
44 }
45
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)46 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
47 MachineFunction &MF) {
48 MachineInstrBuilder MIB(MF, &MI);
49 unsigned Mask = MI.getOperand(1).getImm();
50 unsigned Flag =
51 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
52
53 if (Mask & 1)
54 MIB.addReg(Mips::DSPPos, Flag);
55
56 if (Mask & 2)
57 MIB.addReg(Mips::DSPSCount, Flag);
58
59 if (Mask & 4)
60 MIB.addReg(Mips::DSPCarry, Flag);
61
62 if (Mask & 8)
63 MIB.addReg(Mips::DSPOutFlag, Flag);
64
65 if (Mask & 16)
66 MIB.addReg(Mips::DSPCCond, Flag);
67
68 if (Mask & 32)
69 MIB.addReg(Mips::DSPEFI, Flag);
70 }
71
getMSACtrlReg(const SDValue RegIdx) const72 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
73 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
74 default:
75 llvm_unreachable("Could not map int to register");
76 case 0: return Mips::MSAIR;
77 case 1: return Mips::MSACSR;
78 case 2: return Mips::MSAAccess;
79 case 3: return Mips::MSASave;
80 case 4: return Mips::MSAModify;
81 case 5: return Mips::MSARequest;
82 case 6: return Mips::MSAMap;
83 case 7: return Mips::MSAUnmap;
84 }
85 }
86
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)87 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
88 const MachineInstr& MI) {
89 unsigned DstReg = 0, ZeroReg = 0;
90
91 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
92 if ((MI.getOpcode() == Mips::ADDiu) &&
93 (MI.getOperand(1).getReg() == Mips::ZERO) &&
94 (MI.getOperand(2).getImm() == 0)) {
95 DstReg = MI.getOperand(0).getReg();
96 ZeroReg = Mips::ZERO;
97 } else if ((MI.getOpcode() == Mips::DADDiu) &&
98 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
99 (MI.getOperand(2).getImm() == 0)) {
100 DstReg = MI.getOperand(0).getReg();
101 ZeroReg = Mips::ZERO_64;
102 }
103
104 if (!DstReg)
105 return false;
106
107 // Replace uses with ZeroReg.
108 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
109 E = MRI->use_end(); U != E;) {
110 MachineOperand &MO = *U;
111 unsigned OpNo = U.getOperandNo();
112 MachineInstr *MI = MO.getParent();
113 ++U;
114
115 // Do not replace if it is a phi's operand or is tied to def operand.
116 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
117 continue;
118
119 // Also, we have to check that the register class of the operand
120 // contains the zero register.
121 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
122 continue;
123
124 MO.setReg(ZeroReg);
125 }
126
127 return true;
128 }
129
initGlobalBaseReg(MachineFunction & MF)130 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
131 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
132
133 if (!MipsFI->globalBaseRegSet())
134 return;
135
136 MachineBasicBlock &MBB = MF.front();
137 MachineBasicBlock::iterator I = MBB.begin();
138 MachineRegisterInfo &RegInfo = MF.getRegInfo();
139 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
140 DebugLoc DL;
141 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
142 const TargetRegisterClass *RC;
143 const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
144 RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
145
146 V0 = RegInfo.createVirtualRegister(RC);
147 V1 = RegInfo.createVirtualRegister(RC);
148
149 if (ABI.IsN64()) {
150 MF.getRegInfo().addLiveIn(Mips::T9_64);
151 MBB.addLiveIn(Mips::T9_64);
152
153 // lui $v0, %hi(%neg(%gp_rel(fname)))
154 // daddu $v1, $v0, $t9
155 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
156 const GlobalValue *FName = MF.getFunction();
157 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
158 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
159 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
160 .addReg(Mips::T9_64);
161 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
162 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
163 return;
164 }
165
166 if (!MF.getTarget().isPositionIndependent()) {
167 // Set global register to __gnu_local_gp.
168 //
169 // lui $v0, %hi(__gnu_local_gp)
170 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
171 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
172 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
173 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
174 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
175 return;
176 }
177
178 MF.getRegInfo().addLiveIn(Mips::T9);
179 MBB.addLiveIn(Mips::T9);
180
181 if (ABI.IsN32()) {
182 // lui $v0, %hi(%neg(%gp_rel(fname)))
183 // addu $v1, $v0, $t9
184 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
185 const GlobalValue *FName = MF.getFunction();
186 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
187 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
188 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
189 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
190 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
191 return;
192 }
193
194 assert(ABI.IsO32());
195
196 // For O32 ABI, the following instruction sequence is emitted to initialize
197 // the global base register:
198 //
199 // 0. lui $2, %hi(_gp_disp)
200 // 1. addiu $2, $2, %lo(_gp_disp)
201 // 2. addu $globalbasereg, $2, $t9
202 //
203 // We emit only the last instruction here.
204 //
205 // GNU linker requires that the first two instructions appear at the beginning
206 // of a function and no instructions be inserted before or between them.
207 // The two instructions are emitted during lowering to MC layer in order to
208 // avoid any reordering.
209 //
210 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
211 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
212 // reads it.
213 MF.getRegInfo().addLiveIn(Mips::V0);
214 MBB.addLiveIn(Mips::V0);
215 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
216 .addReg(Mips::V0).addReg(Mips::T9);
217 }
218
processFunctionAfterISel(MachineFunction & MF)219 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
220 initGlobalBaseReg(MF);
221
222 MachineRegisterInfo *MRI = &MF.getRegInfo();
223
224 for (auto &MBB: MF) {
225 for (auto &MI: MBB) {
226 switch (MI.getOpcode()) {
227 case Mips::RDDSP:
228 addDSPCtrlRegOperands(false, MI, MF);
229 break;
230 case Mips::WRDSP:
231 addDSPCtrlRegOperands(true, MI, MF);
232 break;
233 default:
234 replaceUsesWithZeroReg(MRI, MI);
235 }
236 }
237 }
238 }
239
selectAddESubE(unsigned MOp,SDValue InFlag,SDValue CmpLHS,const SDLoc & DL,SDNode * Node) const240 void MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
241 SDValue CmpLHS, const SDLoc &DL,
242 SDNode *Node) const {
243 unsigned Opc = InFlag.getOpcode(); (void)Opc;
244
245 assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
246 (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
247 "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
248
249 unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
250 if (Subtarget->isGP64bit()) {
251 SLTuOp = Mips::SLTu64;
252 ADDuOp = Mips::DADDu;
253 }
254
255 SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
256 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
257 EVT VT = LHS.getValueType();
258
259 SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
260
261 if (Subtarget->isGP64bit()) {
262 // On 64-bit targets, sltu produces an i64 but our backend currently says
263 // that SLTu64 produces an i32. We need to fix this in the long run but for
264 // now, just make the DAG type-correct by asserting the upper bits are zero.
265 Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
266 CurDAG->getTargetConstant(0, DL, VT),
267 SDValue(Carry, 0),
268 CurDAG->getTargetConstant(Mips::sub_32, DL,
269 VT));
270 }
271
272 // Generate a second addition only if we know that RHS is not a
273 // constant-zero node.
274 SDNode *AddCarry = Carry;
275 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
276 if (!C || C->getZExtValue())
277 AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
278
279 CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0));
280 }
281
282 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const283 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
284 SDValue &Offset) const {
285 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
286 EVT ValTy = Addr.getValueType();
287
288 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
289 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
290 return true;
291 }
292 return false;
293 }
294
295 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits) const296 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
297 SDValue &Offset,
298 unsigned OffsetBits) const {
299 if (CurDAG->isBaseWithConstantOffset(Addr)) {
300 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
301 if (isIntN(OffsetBits, CN->getSExtValue())) {
302 EVT ValTy = Addr.getValueType();
303
304 // If the first operand is a FI, get the TargetFI Node
305 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
306 (Addr.getOperand(0)))
307 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
308 else
309 Base = Addr.getOperand(0);
310
311 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
312 ValTy);
313 return true;
314 }
315 }
316 return false;
317 }
318
319 /// ComplexPattern used on MipsInstrInfo
320 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const321 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
322 SDValue &Offset) const {
323 // if Address is FI, get the TargetFrameIndex.
324 if (selectAddrFrameIndex(Addr, Base, Offset))
325 return true;
326
327 // on PIC code Load GA
328 if (Addr.getOpcode() == MipsISD::Wrapper) {
329 Base = Addr.getOperand(0);
330 Offset = Addr.getOperand(1);
331 return true;
332 }
333
334 if (!TM.isPositionIndependent()) {
335 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
336 Addr.getOpcode() == ISD::TargetGlobalAddress))
337 return false;
338 }
339
340 // Addresses of the form FI+const or FI|const
341 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
342 return true;
343
344 // Operand is a result from an ADD.
345 if (Addr.getOpcode() == ISD::ADD) {
346 // When loading from constant pools, load the lower address part in
347 // the instruction itself. Example, instead of:
348 // lui $2, %hi($CPI1_0)
349 // addiu $2, $2, %lo($CPI1_0)
350 // lwc1 $f0, 0($2)
351 // Generate:
352 // lui $2, %hi($CPI1_0)
353 // lwc1 $f0, %lo($CPI1_0)($2)
354 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
355 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
356 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
357 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
358 isa<JumpTableSDNode>(Opnd0)) {
359 Base = Addr.getOperand(0);
360 Offset = Opnd0;
361 return true;
362 }
363 }
364 }
365
366 return false;
367 }
368
369 /// ComplexPattern used on MipsInstrInfo
370 /// Used on Mips Load/Store instructions
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const371 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
372 SDValue &Offset) const {
373 Base = Addr;
374 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
375 return true;
376 }
377
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const378 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
379 SDValue &Offset) const {
380 return selectAddrRegImm(Addr, Base, Offset) ||
381 selectAddrDefault(Addr, Base, Offset);
382 }
383
selectAddrRegImm9(SDValue Addr,SDValue & Base,SDValue & Offset) const384 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
385 SDValue &Offset) const {
386 if (selectAddrFrameIndex(Addr, Base, Offset))
387 return true;
388
389 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
390 return true;
391
392 return false;
393 }
394
selectAddrRegImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const395 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
396 SDValue &Offset) const {
397 if (selectAddrFrameIndex(Addr, Base, Offset))
398 return true;
399
400 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
401 return true;
402
403 return false;
404 }
405
406 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
selectAddrRegImm11(SDValue Addr,SDValue & Base,SDValue & Offset) const407 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
408 SDValue &Offset) const {
409 if (selectAddrFrameIndex(Addr, Base, Offset))
410 return true;
411
412 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
413 return true;
414
415 return false;
416 }
417
418 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const419 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
420 SDValue &Offset) const {
421 if (selectAddrFrameIndex(Addr, Base, Offset))
422 return true;
423
424 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
425 return true;
426
427 return false;
428 }
429
selectAddrRegImm16(SDValue Addr,SDValue & Base,SDValue & Offset) const430 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
431 SDValue &Offset) const {
432 if (selectAddrFrameIndex(Addr, Base, Offset))
433 return true;
434
435 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
436 return true;
437
438 return false;
439 }
440
selectIntAddr11MM(SDValue Addr,SDValue & Base,SDValue & Offset) const441 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
442 SDValue &Offset) const {
443 return selectAddrRegImm11(Addr, Base, Offset) ||
444 selectAddrDefault(Addr, Base, Offset);
445 }
446
selectIntAddr12MM(SDValue Addr,SDValue & Base,SDValue & Offset) const447 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
448 SDValue &Offset) const {
449 return selectAddrRegImm12(Addr, Base, Offset) ||
450 selectAddrDefault(Addr, Base, Offset);
451 }
452
selectIntAddr16MM(SDValue Addr,SDValue & Base,SDValue & Offset) const453 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
454 SDValue &Offset) const {
455 return selectAddrRegImm16(Addr, Base, Offset) ||
456 selectAddrDefault(Addr, Base, Offset);
457 }
458
selectIntAddrLSL2MM(SDValue Addr,SDValue & Base,SDValue & Offset) const459 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
460 SDValue &Offset) const {
461 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
462 if (isa<FrameIndexSDNode>(Base))
463 return false;
464
465 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
466 unsigned CnstOff = CN->getZExtValue();
467 return (CnstOff == (CnstOff & 0x3c));
468 }
469
470 return false;
471 }
472
473 // For all other cases where "lw" would be selected, don't select "lw16"
474 // because it would result in additional instructions to prepare operands.
475 if (selectAddrRegImm(Addr, Base, Offset))
476 return false;
477
478 return selectAddrDefault(Addr, Base, Offset);
479 }
480
selectIntAddrMSA(SDValue Addr,SDValue & Base,SDValue & Offset) const481 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
482 SDValue &Offset) const {
483 if (selectAddrRegImm10(Addr, Base, Offset))
484 return true;
485
486 if (selectAddrDefault(Addr, Base, Offset))
487 return true;
488
489 return false;
490 }
491
492 // Select constant vector splats.
493 //
494 // Returns true and sets Imm if:
495 // * MSA is enabled
496 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm,unsigned MinSizeInBits) const497 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
498 unsigned MinSizeInBits) const {
499 if (!Subtarget->hasMSA())
500 return false;
501
502 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
503
504 if (!Node)
505 return false;
506
507 APInt SplatValue, SplatUndef;
508 unsigned SplatBitSize;
509 bool HasAnyUndefs;
510
511 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
512 MinSizeInBits, !Subtarget->isLittle()))
513 return false;
514
515 Imm = SplatValue;
516
517 return true;
518 }
519
520 // Select constant vector splats.
521 //
522 // In addition to the requirements of selectVSplat(), this function returns
523 // true and sets Imm if:
524 // * The splat value is the same width as the elements of the vector
525 // * The splat value fits in an integer with the specified signed-ness and
526 // width.
527 //
528 // This function looks through ISD::BITCAST nodes.
529 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
530 // sometimes a shuffle in big-endian mode.
531 //
532 // It's worth noting that this function is not used as part of the selection
533 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
534 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
535 // MipsSEDAGToDAGISel::selectNode.
536 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const537 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
538 unsigned ImmBitSize) const {
539 APInt ImmValue;
540 EVT EltTy = N->getValueType(0).getVectorElementType();
541
542 if (N->getOpcode() == ISD::BITCAST)
543 N = N->getOperand(0);
544
545 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
546 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
547
548 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
549 (!Signed && ImmValue.isIntN(ImmBitSize))) {
550 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
551 return true;
552 }
553 }
554
555 return false;
556 }
557
558 // Select constant vector splats.
559 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const560 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
561 return selectVSplatCommon(N, Imm, false, 1);
562 }
563
564 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const565 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
566 return selectVSplatCommon(N, Imm, false, 2);
567 }
568
569 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const570 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
571 return selectVSplatCommon(N, Imm, false, 3);
572 }
573
574 // Select constant vector splats.
575 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const576 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
577 return selectVSplatCommon(N, Imm, false, 4);
578 }
579
580 // Select constant vector splats.
581 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const582 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
583 return selectVSplatCommon(N, Imm, false, 5);
584 }
585
586 // Select constant vector splats.
587 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const588 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
589 return selectVSplatCommon(N, Imm, false, 6);
590 }
591
592 // Select constant vector splats.
593 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const594 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
595 return selectVSplatCommon(N, Imm, false, 8);
596 }
597
598 // Select constant vector splats.
599 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const600 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
601 return selectVSplatCommon(N, Imm, true, 5);
602 }
603
604 // Select constant vector splats whose value is a power of 2.
605 //
606 // In addition to the requirements of selectVSplat(), this function returns
607 // true and sets Imm if:
608 // * The splat value is the same width as the elements of the vector
609 // * The splat value is a power of two.
610 //
611 // This function looks through ISD::BITCAST nodes.
612 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
613 // sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const614 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
615 APInt ImmValue;
616 EVT EltTy = N->getValueType(0).getVectorElementType();
617
618 if (N->getOpcode() == ISD::BITCAST)
619 N = N->getOperand(0);
620
621 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
622 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
623 int32_t Log2 = ImmValue.exactLogBase2();
624
625 if (Log2 != -1) {
626 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
627 return true;
628 }
629 }
630
631 return false;
632 }
633
634 // Select constant vector splats whose value only has a consecutive sequence
635 // of left-most bits set (e.g. 0b11...1100...00).
636 //
637 // In addition to the requirements of selectVSplat(), this function returns
638 // true and sets Imm if:
639 // * The splat value is the same width as the elements of the vector
640 // * The splat value is a consecutive sequence of left-most bits.
641 //
642 // This function looks through ISD::BITCAST nodes.
643 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
644 // sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const645 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
646 APInt ImmValue;
647 EVT EltTy = N->getValueType(0).getVectorElementType();
648
649 if (N->getOpcode() == ISD::BITCAST)
650 N = N->getOperand(0);
651
652 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
653 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
654 // Extract the run of set bits starting with bit zero from the bitwise
655 // inverse of ImmValue, and test that the inverse of this is the same
656 // as the original value.
657 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
658
659 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
660 EltTy);
661 return true;
662 }
663 }
664
665 return false;
666 }
667
668 // Select constant vector splats whose value only has a consecutive sequence
669 // of right-most bits set (e.g. 0b00...0011...11).
670 //
671 // In addition to the requirements of selectVSplat(), this function returns
672 // true and sets Imm if:
673 // * The splat value is the same width as the elements of the vector
674 // * The splat value is a consecutive sequence of right-most bits.
675 //
676 // This function looks through ISD::BITCAST nodes.
677 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
678 // sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const679 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
680 APInt ImmValue;
681 EVT EltTy = N->getValueType(0).getVectorElementType();
682
683 if (N->getOpcode() == ISD::BITCAST)
684 N = N->getOperand(0);
685
686 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
687 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
688 // Extract the run of set bits starting with bit zero, and test that the
689 // result is the same as the original value
690 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
691 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
692 EltTy);
693 return true;
694 }
695 }
696
697 return false;
698 }
699
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const700 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
701 SDValue &Imm) const {
702 APInt ImmValue;
703 EVT EltTy = N->getValueType(0).getVectorElementType();
704
705 if (N->getOpcode() == ISD::BITCAST)
706 N = N->getOperand(0);
707
708 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
709 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
710 int32_t Log2 = (~ImmValue).exactLogBase2();
711
712 if (Log2 != -1) {
713 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
714 return true;
715 }
716 }
717
718 return false;
719 }
720
trySelect(SDNode * Node)721 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
722 unsigned Opcode = Node->getOpcode();
723 SDLoc DL(Node);
724
725 ///
726 // Instruction Selection not handled by the auto-generated
727 // tablegen selection should be handled here.
728 ///
729 switch(Opcode) {
730 default: break;
731
732 case ISD::SUBE: {
733 SDValue InFlag = Node->getOperand(2);
734 unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
735 selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
736 return true;
737 }
738
739 case ISD::ADDE: {
740 if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
741 break;
742 SDValue InFlag = Node->getOperand(2);
743 unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
744 selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
745 return true;
746 }
747
748 case ISD::ConstantFP: {
749 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
750 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
751 if (Subtarget->isGP64bit()) {
752 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
753 Mips::ZERO_64, MVT::i64);
754 ReplaceNode(Node,
755 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
756 } else if (Subtarget->isFP64bit()) {
757 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
758 Mips::ZERO, MVT::i32);
759 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
760 MVT::f64, Zero, Zero));
761 } else {
762 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
763 Mips::ZERO, MVT::i32);
764 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
765 MVT::f64, Zero, Zero));
766 }
767 return true;
768 }
769 break;
770 }
771
772 case ISD::Constant: {
773 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
774 unsigned Size = CN->getValueSizeInBits(0);
775
776 if (Size == 32)
777 break;
778
779 MipsAnalyzeImmediate AnalyzeImm;
780 int64_t Imm = CN->getSExtValue();
781
782 const MipsAnalyzeImmediate::InstSeq &Seq =
783 AnalyzeImm.Analyze(Imm, Size, false);
784
785 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
786 SDLoc DL(CN);
787 SDNode *RegOpnd;
788 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
789 DL, MVT::i64);
790
791 // The first instruction can be a LUi which is different from other
792 // instructions (ADDiu, ORI and SLL) in that it does not have a register
793 // operand.
794 if (Inst->Opc == Mips::LUi64)
795 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
796 else
797 RegOpnd =
798 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
799 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
800 ImmOpnd);
801
802 // The remaining instructions in the sequence are handled here.
803 for (++Inst; Inst != Seq.end(); ++Inst) {
804 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
805 MVT::i64);
806 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
807 SDValue(RegOpnd, 0), ImmOpnd);
808 }
809
810 ReplaceNode(Node, RegOpnd);
811 return true;
812 }
813
814 case ISD::INTRINSIC_W_CHAIN: {
815 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
816 default:
817 break;
818
819 case Intrinsic::mips_cfcmsa: {
820 SDValue ChainIn = Node->getOperand(0);
821 SDValue RegIdx = Node->getOperand(2);
822 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
823 getMSACtrlReg(RegIdx), MVT::i32);
824 ReplaceNode(Node, Reg.getNode());
825 return true;
826 }
827 }
828 break;
829 }
830
831 case ISD::INTRINSIC_WO_CHAIN: {
832 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
833 default:
834 break;
835
836 case Intrinsic::mips_move_v:
837 // Like an assignment but will always produce a move.v even if
838 // unnecessary.
839 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
840 Node->getValueType(0),
841 Node->getOperand(1)));
842 return true;
843 }
844 break;
845 }
846
847 case ISD::INTRINSIC_VOID: {
848 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
849 default:
850 break;
851
852 case Intrinsic::mips_ctcmsa: {
853 SDValue ChainIn = Node->getOperand(0);
854 SDValue RegIdx = Node->getOperand(2);
855 SDValue Value = Node->getOperand(3);
856 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
857 getMSACtrlReg(RegIdx), Value);
858 ReplaceNode(Node, ChainOut.getNode());
859 return true;
860 }
861 }
862 break;
863 }
864
865 case MipsISD::ThreadPointer: {
866 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
867 unsigned RdhwrOpc, DestReg;
868
869 if (PtrVT == MVT::i32) {
870 RdhwrOpc = Mips::RDHWR;
871 DestReg = Mips::V1;
872 } else {
873 RdhwrOpc = Mips::RDHWR64;
874 DestReg = Mips::V1_64;
875 }
876
877 SDNode *Rdhwr =
878 CurDAG->getMachineNode(RdhwrOpc, DL,
879 Node->getValueType(0),
880 CurDAG->getRegister(Mips::HWR29, MVT::i32));
881 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
882 SDValue(Rdhwr, 0));
883 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
884 ReplaceNode(Node, ResNode.getNode());
885 return true;
886 }
887
888 case ISD::BUILD_VECTOR: {
889 // Select appropriate ldi.[bhwd] instructions for constant splats of
890 // 128-bit when MSA is enabled. Fixup any register class mismatches that
891 // occur as a result.
892 //
893 // This allows the compiler to use a wider range of immediates than would
894 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
895 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
896 // 0x01010101 } without using a constant pool. This would be sub-optimal
897 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
898 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
899 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
900
901 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
902 APInt SplatValue, SplatUndef;
903 unsigned SplatBitSize;
904 bool HasAnyUndefs;
905 unsigned LdiOp;
906 EVT ResVecTy = BVN->getValueType(0);
907 EVT ViaVecTy;
908
909 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
910 return false;
911
912 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
913 HasAnyUndefs, 8,
914 !Subtarget->isLittle()))
915 return false;
916
917 switch (SplatBitSize) {
918 default:
919 return false;
920 case 8:
921 LdiOp = Mips::LDI_B;
922 ViaVecTy = MVT::v16i8;
923 break;
924 case 16:
925 LdiOp = Mips::LDI_H;
926 ViaVecTy = MVT::v8i16;
927 break;
928 case 32:
929 LdiOp = Mips::LDI_W;
930 ViaVecTy = MVT::v4i32;
931 break;
932 case 64:
933 LdiOp = Mips::LDI_D;
934 ViaVecTy = MVT::v2i64;
935 break;
936 }
937
938 if (!SplatValue.isSignedIntN(10))
939 return false;
940
941 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
942 ViaVecTy.getVectorElementType());
943
944 SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
945
946 if (ResVecTy != ViaVecTy) {
947 // If LdiOp is writing to a different register class to ResVecTy, then
948 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
949 // since the source and destination register sets contain the same
950 // registers.
951 const TargetLowering *TLI = getTargetLowering();
952 MVT ResVecTySimple = ResVecTy.getSimpleVT();
953 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
954 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
955 ResVecTy, SDValue(Res, 0),
956 CurDAG->getTargetConstant(RC->getID(), DL,
957 MVT::i32));
958 }
959
960 ReplaceNode(Node, Res);
961 return true;
962 }
963
964 }
965
966 return false;
967 }
968
969 bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)970 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
971 std::vector<SDValue> &OutOps) {
972 SDValue Base, Offset;
973
974 switch(ConstraintID) {
975 default:
976 llvm_unreachable("Unexpected asm memory constraint");
977 // All memory constraints can at least accept raw pointers.
978 case InlineAsm::Constraint_i:
979 OutOps.push_back(Op);
980 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
981 return false;
982 case InlineAsm::Constraint_m:
983 if (selectAddrRegImm16(Op, Base, Offset)) {
984 OutOps.push_back(Base);
985 OutOps.push_back(Offset);
986 return false;
987 }
988 OutOps.push_back(Op);
989 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
990 return false;
991 case InlineAsm::Constraint_R:
992 // The 'R' constraint is supposed to be much more complicated than this.
993 // However, it's becoming less useful due to architectural changes and
994 // ought to be replaced by other constraints such as 'ZC'.
995 // For now, support 9-bit signed offsets which is supportable by all
996 // subtargets for all instructions.
997 if (selectAddrRegImm9(Op, Base, Offset)) {
998 OutOps.push_back(Base);
999 OutOps.push_back(Offset);
1000 return false;
1001 }
1002 OutOps.push_back(Op);
1003 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1004 return false;
1005 case InlineAsm::Constraint_ZC:
1006 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1007 // given subtarget.
1008 if (Subtarget->inMicroMipsMode()) {
1009 // On microMIPS, they can handle 12-bit offsets.
1010 if (selectAddrRegImm12(Op, Base, Offset)) {
1011 OutOps.push_back(Base);
1012 OutOps.push_back(Offset);
1013 return false;
1014 }
1015 } else if (Subtarget->hasMips32r6()) {
1016 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1017 if (selectAddrRegImm9(Op, Base, Offset)) {
1018 OutOps.push_back(Base);
1019 OutOps.push_back(Offset);
1020 return false;
1021 }
1022 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1023 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1024 OutOps.push_back(Base);
1025 OutOps.push_back(Offset);
1026 return false;
1027 }
1028 // In all cases, 0-bit offsets are acceptable.
1029 OutOps.push_back(Op);
1030 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1031 return false;
1032 }
1033 return true;
1034 }
1035
createMipsSEISelDag(MipsTargetMachine & TM,CodeGenOpt::Level OptLevel)1036 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1037 CodeGenOpt::Level OptLevel) {
1038 return new MipsSEDAGToDAGISel(TM, OptLevel);
1039 }
1040