1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Support/CommandLine.h"
44 #include <algorithm>
45
46 using namespace llvm;
47
48 static cl::opt<bool>
49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50 cl::Hidden,
51 cl::desc("Convert noalias attributes to metadata during inlining."));
52
53 static cl::opt<bool>
54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55 cl::init(true), cl::Hidden,
56 cl::desc("Convert align attributes to assumptions during inlining."));
57
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59 AAResults *CalleeAAR, bool InsertLifetime) {
60 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61 }
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63 AAResults *CalleeAAR, bool InsertLifetime) {
64 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65 }
66
67 namespace {
68 /// A class for recording information about inlining a landing pad.
69 class LandingPadInliningInfo {
70 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
73 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
74 SmallVector<Value*, 8> UnwindDestPHIValues;
75
76 public:
LandingPadInliningInfo(InvokeInst * II)77 LandingPadInliningInfo(InvokeInst *II)
78 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80 // If there are PHI nodes in the unwind destination block, we need to keep
81 // track of which values came into them from the invoke before removing
82 // the edge from this block.
83 llvm::BasicBlock *InvokeBB = II->getParent();
84 BasicBlock::iterator I = OuterResumeDest->begin();
85 for (; isa<PHINode>(I); ++I) {
86 // Save the value to use for this edge.
87 PHINode *PHI = cast<PHINode>(I);
88 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89 }
90
91 CallerLPad = cast<LandingPadInst>(I);
92 }
93
94 /// The outer unwind destination is the target of
95 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const96 BasicBlock *getOuterResumeDest() const {
97 return OuterResumeDest;
98 }
99
100 BasicBlock *getInnerResumeDest();
101
getLandingPadInst() const102 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103
104 /// Forward the 'resume' instruction to the caller's landing pad block.
105 /// When the landing pad block has only one predecessor, this is
106 /// a simple branch. When there is more than one predecessor, we need to
107 /// split the landing pad block after the landingpad instruction and jump
108 /// to there.
109 void forwardResume(ResumeInst *RI,
110 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111
112 /// Add incoming-PHI values to the unwind destination block for the given
113 /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const114 void addIncomingPHIValuesFor(BasicBlock *BB) const {
115 addIncomingPHIValuesForInto(BB, OuterResumeDest);
116 }
117
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const118 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119 BasicBlock::iterator I = dest->begin();
120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121 PHINode *phi = cast<PHINode>(I);
122 phi->addIncoming(UnwindDestPHIValues[i], src);
123 }
124 }
125 };
126 } // anonymous namespace
127
128 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130 if (InnerResumeDest) return InnerResumeDest;
131
132 // Split the landing pad.
133 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134 InnerResumeDest =
135 OuterResumeDest->splitBasicBlock(SplitPoint,
136 OuterResumeDest->getName() + ".body");
137
138 // The number of incoming edges we expect to the inner landing pad.
139 const unsigned PHICapacity = 2;
140
141 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142 Instruction *InsertPoint = &InnerResumeDest->front();
143 BasicBlock::iterator I = OuterResumeDest->begin();
144 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145 PHINode *OuterPHI = cast<PHINode>(I);
146 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147 OuterPHI->getName() + ".lpad-body",
148 InsertPoint);
149 OuterPHI->replaceAllUsesWith(InnerPHI);
150 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151 }
152
153 // Create a PHI for the exception values.
154 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155 "eh.lpad-body", InsertPoint);
156 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158
159 // All done.
160 return InnerResumeDest;
161 }
162
163 /// Forward the 'resume' instruction to the caller's landing pad block.
164 /// When the landing pad block has only one predecessor, this is a simple
165 /// branch. When there is more than one predecessor, we need to split the
166 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)167 void LandingPadInliningInfo::forwardResume(
168 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169 BasicBlock *Dest = getInnerResumeDest();
170 BasicBlock *Src = RI->getParent();
171
172 BranchInst::Create(Dest, Src);
173
174 // Update the PHIs in the destination. They were inserted in an order which
175 // makes this work.
176 addIncomingPHIValuesForInto(Src, Dest);
177
178 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179 RI->eraseFromParent();
180 }
181
182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)183 static Value *getParentPad(Value *EHPad) {
184 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
185 return FPI->getParentPad();
186 return cast<CatchSwitchInst>(EHPad)->getParentPad();
187 }
188
189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
190
191 /// Helper for getUnwindDestToken that does the descendant-ward part of
192 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)193 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
194 UnwindDestMemoTy &MemoMap) {
195 SmallVector<Instruction *, 8> Worklist(1, EHPad);
196
197 while (!Worklist.empty()) {
198 Instruction *CurrentPad = Worklist.pop_back_val();
199 // We only put pads on the worklist that aren't in the MemoMap. When
200 // we find an unwind dest for a pad we may update its ancestors, but
201 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
202 // so they should never get updated while queued on the worklist.
203 assert(!MemoMap.count(CurrentPad));
204 Value *UnwindDestToken = nullptr;
205 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
206 if (CatchSwitch->hasUnwindDest()) {
207 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
208 } else {
209 // Catchswitch doesn't have a 'nounwind' variant, and one might be
210 // annotated as "unwinds to caller" when really it's nounwind (see
211 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
212 // parent's unwind dest from this. We can check its catchpads'
213 // descendants, since they might include a cleanuppad with an
214 // "unwinds to caller" cleanupret, which can be trusted.
215 for (auto HI = CatchSwitch->handler_begin(),
216 HE = CatchSwitch->handler_end();
217 HI != HE && !UnwindDestToken; ++HI) {
218 BasicBlock *HandlerBlock = *HI;
219 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
220 for (User *Child : CatchPad->users()) {
221 // Intentionally ignore invokes here -- since the catchswitch is
222 // marked "unwind to caller", it would be a verifier error if it
223 // contained an invoke which unwinds out of it, so any invoke we'd
224 // encounter must unwind to some child of the catch.
225 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
226 continue;
227
228 Instruction *ChildPad = cast<Instruction>(Child);
229 auto Memo = MemoMap.find(ChildPad);
230 if (Memo == MemoMap.end()) {
231 // Haven't figure out this child pad yet; queue it.
232 Worklist.push_back(ChildPad);
233 continue;
234 }
235 // We've already checked this child, but might have found that
236 // it offers no proof either way.
237 Value *ChildUnwindDestToken = Memo->second;
238 if (!ChildUnwindDestToken)
239 continue;
240 // We already know the child's unwind dest, which can either
241 // be ConstantTokenNone to indicate unwind to caller, or can
242 // be another child of the catchpad. Only the former indicates
243 // the unwind dest of the catchswitch.
244 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
245 UnwindDestToken = ChildUnwindDestToken;
246 break;
247 }
248 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
249 }
250 }
251 }
252 } else {
253 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
254 for (User *U : CleanupPad->users()) {
255 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
256 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
257 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
258 else
259 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
260 break;
261 }
262 Value *ChildUnwindDestToken;
263 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
264 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
265 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
266 Instruction *ChildPad = cast<Instruction>(U);
267 auto Memo = MemoMap.find(ChildPad);
268 if (Memo == MemoMap.end()) {
269 // Haven't resolved this child yet; queue it and keep searching.
270 Worklist.push_back(ChildPad);
271 continue;
272 }
273 // We've checked this child, but still need to ignore it if it
274 // had no proof either way.
275 ChildUnwindDestToken = Memo->second;
276 if (!ChildUnwindDestToken)
277 continue;
278 } else {
279 // Not a relevant user of the cleanuppad
280 continue;
281 }
282 // In a well-formed program, the child/invoke must either unwind to
283 // an(other) child of the cleanup, or exit the cleanup. In the
284 // first case, continue searching.
285 if (isa<Instruction>(ChildUnwindDestToken) &&
286 getParentPad(ChildUnwindDestToken) == CleanupPad)
287 continue;
288 UnwindDestToken = ChildUnwindDestToken;
289 break;
290 }
291 }
292 // If we haven't found an unwind dest for CurrentPad, we may have queued its
293 // children, so move on to the next in the worklist.
294 if (!UnwindDestToken)
295 continue;
296
297 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
298 // any ancestors of CurrentPad up to but not including UnwindDestToken's
299 // parent pad. Record this in the memo map, and check to see if the
300 // original EHPad being queried is one of the ones exited.
301 Value *UnwindParent;
302 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
303 UnwindParent = getParentPad(UnwindPad);
304 else
305 UnwindParent = nullptr;
306 bool ExitedOriginalPad = false;
307 for (Instruction *ExitedPad = CurrentPad;
308 ExitedPad && ExitedPad != UnwindParent;
309 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
310 // Skip over catchpads since they just follow their catchswitches.
311 if (isa<CatchPadInst>(ExitedPad))
312 continue;
313 MemoMap[ExitedPad] = UnwindDestToken;
314 ExitedOriginalPad |= (ExitedPad == EHPad);
315 }
316
317 if (ExitedOriginalPad)
318 return UnwindDestToken;
319
320 // Continue the search.
321 }
322
323 // No definitive information is contained within this funclet.
324 return nullptr;
325 }
326
327 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
328 /// return that pad instruction. If it unwinds to caller, return
329 /// ConstantTokenNone. If it does not have a definitive unwind destination,
330 /// return nullptr.
331 ///
332 /// This routine gets invoked for calls in funclets in inlinees when inlining
333 /// an invoke. Since many funclets don't have calls inside them, it's queried
334 /// on-demand rather than building a map of pads to unwind dests up front.
335 /// Determining a funclet's unwind dest may require recursively searching its
336 /// descendants, and also ancestors and cousins if the descendants don't provide
337 /// an answer. Since most funclets will have their unwind dest immediately
338 /// available as the unwind dest of a catchswitch or cleanupret, this routine
339 /// searches top-down from the given pad and then up. To avoid worst-case
340 /// quadratic run-time given that approach, it uses a memo map to avoid
341 /// re-processing funclet trees. The callers that rewrite the IR as they go
342 /// take advantage of this, for correctness, by checking/forcing rewritten
343 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)344 static Value *getUnwindDestToken(Instruction *EHPad,
345 UnwindDestMemoTy &MemoMap) {
346 // Catchpads unwind to the same place as their catchswitch;
347 // redirct any queries on catchpads so the code below can
348 // deal with just catchswitches and cleanuppads.
349 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
350 EHPad = CPI->getCatchSwitch();
351
352 // Check if we've already determined the unwind dest for this pad.
353 auto Memo = MemoMap.find(EHPad);
354 if (Memo != MemoMap.end())
355 return Memo->second;
356
357 // Search EHPad and, if necessary, its descendants.
358 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
359 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
360 if (UnwindDestToken)
361 return UnwindDestToken;
362
363 // No information is available for this EHPad from itself or any of its
364 // descendants. An unwind all the way out to a pad in the caller would
365 // need also to agree with the unwind dest of the parent funclet, so
366 // search up the chain to try to find a funclet with information. Put
367 // null entries in the memo map to avoid re-processing as we go up.
368 MemoMap[EHPad] = nullptr;
369 Instruction *LastUselessPad = EHPad;
370 Value *AncestorToken;
371 for (AncestorToken = getParentPad(EHPad);
372 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
373 AncestorToken = getParentPad(AncestorToken)) {
374 // Skip over catchpads since they just follow their catchswitches.
375 if (isa<CatchPadInst>(AncestorPad))
376 continue;
377 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
378 auto AncestorMemo = MemoMap.find(AncestorPad);
379 if (AncestorMemo == MemoMap.end()) {
380 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
381 } else {
382 UnwindDestToken = AncestorMemo->second;
383 }
384 if (UnwindDestToken)
385 break;
386 LastUselessPad = AncestorPad;
387 }
388
389 // Since the whole tree under LastUselessPad has no information, it all must
390 // match UnwindDestToken; record that to avoid repeating the search.
391 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
392 while (!Worklist.empty()) {
393 Instruction *UselessPad = Worklist.pop_back_val();
394 assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
395 MemoMap[UselessPad] = UnwindDestToken;
396 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
397 for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
398 for (User *U : HandlerBlock->getFirstNonPHI()->users())
399 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
400 Worklist.push_back(cast<Instruction>(U));
401 } else {
402 assert(isa<CleanupPadInst>(UselessPad));
403 for (User *U : UselessPad->users())
404 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
405 Worklist.push_back(cast<Instruction>(U));
406 }
407 }
408
409 return UnwindDestToken;
410 }
411
412 /// When we inline a basic block into an invoke,
413 /// we have to turn all of the calls that can throw into invokes.
414 /// This function analyze BB to see if there are any calls, and if so,
415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
416 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
418 BasicBlock *BB, BasicBlock *UnwindEdge,
419 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
420 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
421 Instruction *I = &*BBI++;
422
423 // We only need to check for function calls: inlined invoke
424 // instructions require no special handling.
425 CallInst *CI = dyn_cast<CallInst>(I);
426
427 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
428 continue;
429
430 // We do not need to (and in fact, cannot) convert possibly throwing calls
431 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
432 // invokes. The caller's "segment" of the deoptimization continuation
433 // attached to the newly inlined @llvm.experimental_deoptimize
434 // (resp. @llvm.experimental.guard) call should contain the exception
435 // handling logic, if any.
436 if (auto *F = CI->getCalledFunction())
437 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
438 F->getIntrinsicID() == Intrinsic::experimental_guard)
439 continue;
440
441 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
442 // This call is nested inside a funclet. If that funclet has an unwind
443 // destination within the inlinee, then unwinding out of this call would
444 // be UB. Rewriting this call to an invoke which targets the inlined
445 // invoke's unwind dest would give the call's parent funclet multiple
446 // unwind destinations, which is something that subsequent EH table
447 // generation can't handle and that the veirifer rejects. So when we
448 // see such a call, leave it as a call.
449 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
450 Value *UnwindDestToken =
451 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
452 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
453 continue;
454 #ifndef NDEBUG
455 Instruction *MemoKey;
456 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
457 MemoKey = CatchPad->getCatchSwitch();
458 else
459 MemoKey = FuncletPad;
460 assert(FuncletUnwindMap->count(MemoKey) &&
461 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
462 "must get memoized to avoid confusing later searches");
463 #endif // NDEBUG
464 }
465
466 // Convert this function call into an invoke instruction. First, split the
467 // basic block.
468 BasicBlock *Split =
469 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
470
471 // Delete the unconditional branch inserted by splitBasicBlock
472 BB->getInstList().pop_back();
473
474 // Create the new invoke instruction.
475 SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
476 SmallVector<OperandBundleDef, 1> OpBundles;
477
478 CI->getOperandBundlesAsDefs(OpBundles);
479
480 // Note: we're round tripping operand bundles through memory here, and that
481 // can potentially be avoided with a cleverer API design that we do not have
482 // as of this time.
483
484 InvokeInst *II =
485 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
486 OpBundles, CI->getName(), BB);
487 II->setDebugLoc(CI->getDebugLoc());
488 II->setCallingConv(CI->getCallingConv());
489 II->setAttributes(CI->getAttributes());
490
491 // Make sure that anything using the call now uses the invoke! This also
492 // updates the CallGraph if present, because it uses a WeakVH.
493 CI->replaceAllUsesWith(II);
494
495 // Delete the original call
496 Split->getInstList().pop_front();
497 return BB;
498 }
499 return nullptr;
500 }
501
502 /// If we inlined an invoke site, we need to convert calls
503 /// in the body of the inlined function into invokes.
504 ///
505 /// II is the invoke instruction being inlined. FirstNewBlock is the first
506 /// block of the inlined code (the last block is the end of the function),
507 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)508 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
509 ClonedCodeInfo &InlinedCodeInfo) {
510 BasicBlock *InvokeDest = II->getUnwindDest();
511
512 Function *Caller = FirstNewBlock->getParent();
513
514 // The inlined code is currently at the end of the function, scan from the
515 // start of the inlined code to its end, checking for stuff we need to
516 // rewrite.
517 LandingPadInliningInfo Invoke(II);
518
519 // Get all of the inlined landing pad instructions.
520 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
521 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
522 I != E; ++I)
523 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
524 InlinedLPads.insert(II->getLandingPadInst());
525
526 // Append the clauses from the outer landing pad instruction into the inlined
527 // landing pad instructions.
528 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
529 for (LandingPadInst *InlinedLPad : InlinedLPads) {
530 unsigned OuterNum = OuterLPad->getNumClauses();
531 InlinedLPad->reserveClauses(OuterNum);
532 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
533 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
534 if (OuterLPad->isCleanup())
535 InlinedLPad->setCleanup(true);
536 }
537
538 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
539 BB != E; ++BB) {
540 if (InlinedCodeInfo.ContainsCalls)
541 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
542 &*BB, Invoke.getOuterResumeDest()))
543 // Update any PHI nodes in the exceptional block to indicate that there
544 // is now a new entry in them.
545 Invoke.addIncomingPHIValuesFor(NewBB);
546
547 // Forward any resumes that are remaining here.
548 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
549 Invoke.forwardResume(RI, InlinedLPads);
550 }
551
552 // Now that everything is happy, we have one final detail. The PHI nodes in
553 // the exception destination block still have entries due to the original
554 // invoke instruction. Eliminate these entries (which might even delete the
555 // PHI node) now.
556 InvokeDest->removePredecessor(II->getParent());
557 }
558
559 /// If we inlined an invoke site, we need to convert calls
560 /// in the body of the inlined function into invokes.
561 ///
562 /// II is the invoke instruction being inlined. FirstNewBlock is the first
563 /// block of the inlined code (the last block is the end of the function),
564 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)565 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
566 ClonedCodeInfo &InlinedCodeInfo) {
567 BasicBlock *UnwindDest = II->getUnwindDest();
568 Function *Caller = FirstNewBlock->getParent();
569
570 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
571
572 // If there are PHI nodes in the unwind destination block, we need to keep
573 // track of which values came into them from the invoke before removing the
574 // edge from this block.
575 SmallVector<Value *, 8> UnwindDestPHIValues;
576 llvm::BasicBlock *InvokeBB = II->getParent();
577 for (Instruction &I : *UnwindDest) {
578 // Save the value to use for this edge.
579 PHINode *PHI = dyn_cast<PHINode>(&I);
580 if (!PHI)
581 break;
582 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
583 }
584
585 // Add incoming-PHI values to the unwind destination block for the given basic
586 // block, using the values for the original invoke's source block.
587 auto UpdatePHINodes = [&](BasicBlock *Src) {
588 BasicBlock::iterator I = UnwindDest->begin();
589 for (Value *V : UnwindDestPHIValues) {
590 PHINode *PHI = cast<PHINode>(I);
591 PHI->addIncoming(V, Src);
592 ++I;
593 }
594 };
595
596 // This connects all the instructions which 'unwind to caller' to the invoke
597 // destination.
598 UnwindDestMemoTy FuncletUnwindMap;
599 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
600 BB != E; ++BB) {
601 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
602 if (CRI->unwindsToCaller()) {
603 auto *CleanupPad = CRI->getCleanupPad();
604 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
605 CRI->eraseFromParent();
606 UpdatePHINodes(&*BB);
607 // Finding a cleanupret with an unwind destination would confuse
608 // subsequent calls to getUnwindDestToken, so map the cleanuppad
609 // to short-circuit any such calls and recognize this as an "unwind
610 // to caller" cleanup.
611 assert(!FuncletUnwindMap.count(CleanupPad) ||
612 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
613 FuncletUnwindMap[CleanupPad] =
614 ConstantTokenNone::get(Caller->getContext());
615 }
616 }
617
618 Instruction *I = BB->getFirstNonPHI();
619 if (!I->isEHPad())
620 continue;
621
622 Instruction *Replacement = nullptr;
623 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
624 if (CatchSwitch->unwindsToCaller()) {
625 Value *UnwindDestToken;
626 if (auto *ParentPad =
627 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
628 // This catchswitch is nested inside another funclet. If that
629 // funclet has an unwind destination within the inlinee, then
630 // unwinding out of this catchswitch would be UB. Rewriting this
631 // catchswitch to unwind to the inlined invoke's unwind dest would
632 // give the parent funclet multiple unwind destinations, which is
633 // something that subsequent EH table generation can't handle and
634 // that the veirifer rejects. So when we see such a call, leave it
635 // as "unwind to caller".
636 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
637 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
638 continue;
639 } else {
640 // This catchswitch has no parent to inherit constraints from, and
641 // none of its descendants can have an unwind edge that exits it and
642 // targets another funclet in the inlinee. It may or may not have a
643 // descendant that definitively has an unwind to caller. In either
644 // case, we'll have to assume that any unwinds out of it may need to
645 // be routed to the caller, so treat it as though it has a definitive
646 // unwind to caller.
647 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
648 }
649 auto *NewCatchSwitch = CatchSwitchInst::Create(
650 CatchSwitch->getParentPad(), UnwindDest,
651 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
652 CatchSwitch);
653 for (BasicBlock *PadBB : CatchSwitch->handlers())
654 NewCatchSwitch->addHandler(PadBB);
655 // Propagate info for the old catchswitch over to the new one in
656 // the unwind map. This also serves to short-circuit any subsequent
657 // checks for the unwind dest of this catchswitch, which would get
658 // confused if they found the outer handler in the callee.
659 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
660 Replacement = NewCatchSwitch;
661 }
662 } else if (!isa<FuncletPadInst>(I)) {
663 llvm_unreachable("unexpected EHPad!");
664 }
665
666 if (Replacement) {
667 Replacement->takeName(I);
668 I->replaceAllUsesWith(Replacement);
669 I->eraseFromParent();
670 UpdatePHINodes(&*BB);
671 }
672 }
673
674 if (InlinedCodeInfo.ContainsCalls)
675 for (Function::iterator BB = FirstNewBlock->getIterator(),
676 E = Caller->end();
677 BB != E; ++BB)
678 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
679 &*BB, UnwindDest, &FuncletUnwindMap))
680 // Update any PHI nodes in the exceptional block to indicate that there
681 // is now a new entry in them.
682 UpdatePHINodes(NewBB);
683
684 // Now that everything is happy, we have one final detail. The PHI nodes in
685 // the exception destination block still have entries due to the original
686 // invoke instruction. Eliminate these entries (which might even delete the
687 // PHI node) now.
688 UnwindDest->removePredecessor(InvokeBB);
689 }
690
691 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
692 /// that metadata should be propagated to all memory-accessing cloned
693 /// instructions.
PropagateParallelLoopAccessMetadata(CallSite CS,ValueToValueMapTy & VMap)694 static void PropagateParallelLoopAccessMetadata(CallSite CS,
695 ValueToValueMapTy &VMap) {
696 MDNode *M =
697 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
698 if (!M)
699 return;
700
701 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
702 VMI != VMIE; ++VMI) {
703 if (!VMI->second)
704 continue;
705
706 Instruction *NI = dyn_cast<Instruction>(VMI->second);
707 if (!NI)
708 continue;
709
710 if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
711 M = MDNode::concatenate(PM, M);
712 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
713 } else if (NI->mayReadOrWriteMemory()) {
714 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
715 }
716 }
717 }
718
719 /// When inlining a function that contains noalias scope metadata,
720 /// this metadata needs to be cloned so that the inlined blocks
721 /// have different "unqiue scopes" at every call site. Were this not done, then
722 /// aliasing scopes from a function inlined into a caller multiple times could
723 /// not be differentiated (and this would lead to miscompiles because the
724 /// non-aliasing property communicated by the metadata could have
725 /// call-site-specific control dependencies).
CloneAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap)726 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
727 const Function *CalledFunc = CS.getCalledFunction();
728 SetVector<const MDNode *> MD;
729
730 // Note: We could only clone the metadata if it is already used in the
731 // caller. I'm omitting that check here because it might confuse
732 // inter-procedural alias analysis passes. We can revisit this if it becomes
733 // an efficiency or overhead problem.
734
735 for (const BasicBlock &I : *CalledFunc)
736 for (const Instruction &J : I) {
737 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
738 MD.insert(M);
739 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
740 MD.insert(M);
741 }
742
743 if (MD.empty())
744 return;
745
746 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
747 // the set.
748 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
749 while (!Queue.empty()) {
750 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
751 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
752 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
753 if (MD.insert(M1))
754 Queue.push_back(M1);
755 }
756
757 // Now we have a complete set of all metadata in the chains used to specify
758 // the noalias scopes and the lists of those scopes.
759 SmallVector<TempMDTuple, 16> DummyNodes;
760 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
761 for (const MDNode *I : MD) {
762 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
763 MDMap[I].reset(DummyNodes.back().get());
764 }
765
766 // Create new metadata nodes to replace the dummy nodes, replacing old
767 // metadata references with either a dummy node or an already-created new
768 // node.
769 for (const MDNode *I : MD) {
770 SmallVector<Metadata *, 4> NewOps;
771 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
772 const Metadata *V = I->getOperand(i);
773 if (const MDNode *M = dyn_cast<MDNode>(V))
774 NewOps.push_back(MDMap[M]);
775 else
776 NewOps.push_back(const_cast<Metadata *>(V));
777 }
778
779 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
780 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
781 assert(TempM->isTemporary() && "Expected temporary node");
782
783 TempM->replaceAllUsesWith(NewM);
784 }
785
786 // Now replace the metadata in the new inlined instructions with the
787 // repacements from the map.
788 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
789 VMI != VMIE; ++VMI) {
790 if (!VMI->second)
791 continue;
792
793 Instruction *NI = dyn_cast<Instruction>(VMI->second);
794 if (!NI)
795 continue;
796
797 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
798 MDNode *NewMD = MDMap[M];
799 // If the call site also had alias scope metadata (a list of scopes to
800 // which instructions inside it might belong), propagate those scopes to
801 // the inlined instructions.
802 if (MDNode *CSM =
803 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
804 NewMD = MDNode::concatenate(NewMD, CSM);
805 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
806 } else if (NI->mayReadOrWriteMemory()) {
807 if (MDNode *M =
808 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
809 NI->setMetadata(LLVMContext::MD_alias_scope, M);
810 }
811
812 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
813 MDNode *NewMD = MDMap[M];
814 // If the call site also had noalias metadata (a list of scopes with
815 // which instructions inside it don't alias), propagate those scopes to
816 // the inlined instructions.
817 if (MDNode *CSM =
818 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
819 NewMD = MDNode::concatenate(NewMD, CSM);
820 NI->setMetadata(LLVMContext::MD_noalias, NewMD);
821 } else if (NI->mayReadOrWriteMemory()) {
822 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
823 NI->setMetadata(LLVMContext::MD_noalias, M);
824 }
825 }
826 }
827
828 /// If the inlined function has noalias arguments,
829 /// then add new alias scopes for each noalias argument, tag the mapped noalias
830 /// parameters with noalias metadata specifying the new scope, and tag all
831 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)832 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
833 const DataLayout &DL, AAResults *CalleeAAR) {
834 if (!EnableNoAliasConversion)
835 return;
836
837 const Function *CalledFunc = CS.getCalledFunction();
838 SmallVector<const Argument *, 4> NoAliasArgs;
839
840 for (const Argument &Arg : CalledFunc->args())
841 if (Arg.hasNoAliasAttr() && !Arg.use_empty())
842 NoAliasArgs.push_back(&Arg);
843
844 if (NoAliasArgs.empty())
845 return;
846
847 // To do a good job, if a noalias variable is captured, we need to know if
848 // the capture point dominates the particular use we're considering.
849 DominatorTree DT;
850 DT.recalculate(const_cast<Function&>(*CalledFunc));
851
852 // noalias indicates that pointer values based on the argument do not alias
853 // pointer values which are not based on it. So we add a new "scope" for each
854 // noalias function argument. Accesses using pointers based on that argument
855 // become part of that alias scope, accesses using pointers not based on that
856 // argument are tagged as noalias with that scope.
857
858 DenseMap<const Argument *, MDNode *> NewScopes;
859 MDBuilder MDB(CalledFunc->getContext());
860
861 // Create a new scope domain for this function.
862 MDNode *NewDomain =
863 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
864 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
865 const Argument *A = NoAliasArgs[i];
866
867 std::string Name = CalledFunc->getName();
868 if (A->hasName()) {
869 Name += ": %";
870 Name += A->getName();
871 } else {
872 Name += ": argument ";
873 Name += utostr(i);
874 }
875
876 // Note: We always create a new anonymous root here. This is true regardless
877 // of the linkage of the callee because the aliasing "scope" is not just a
878 // property of the callee, but also all control dependencies in the caller.
879 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
880 NewScopes.insert(std::make_pair(A, NewScope));
881 }
882
883 // Iterate over all new instructions in the map; for all memory-access
884 // instructions, add the alias scope metadata.
885 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
886 VMI != VMIE; ++VMI) {
887 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
888 if (!VMI->second)
889 continue;
890
891 Instruction *NI = dyn_cast<Instruction>(VMI->second);
892 if (!NI)
893 continue;
894
895 bool IsArgMemOnlyCall = false, IsFuncCall = false;
896 SmallVector<const Value *, 2> PtrArgs;
897
898 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
899 PtrArgs.push_back(LI->getPointerOperand());
900 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
901 PtrArgs.push_back(SI->getPointerOperand());
902 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
903 PtrArgs.push_back(VAAI->getPointerOperand());
904 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
905 PtrArgs.push_back(CXI->getPointerOperand());
906 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
907 PtrArgs.push_back(RMWI->getPointerOperand());
908 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
909 // If we know that the call does not access memory, then we'll still
910 // know that about the inlined clone of this call site, and we don't
911 // need to add metadata.
912 if (ICS.doesNotAccessMemory())
913 continue;
914
915 IsFuncCall = true;
916 if (CalleeAAR) {
917 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
918 if (MRB == FMRB_OnlyAccessesArgumentPointees ||
919 MRB == FMRB_OnlyReadsArgumentPointees)
920 IsArgMemOnlyCall = true;
921 }
922
923 for (Value *Arg : ICS.args()) {
924 // We need to check the underlying objects of all arguments, not just
925 // the pointer arguments, because we might be passing pointers as
926 // integers, etc.
927 // However, if we know that the call only accesses pointer arguments,
928 // then we only need to check the pointer arguments.
929 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
930 continue;
931
932 PtrArgs.push_back(Arg);
933 }
934 }
935
936 // If we found no pointers, then this instruction is not suitable for
937 // pairing with an instruction to receive aliasing metadata.
938 // However, if this is a call, this we might just alias with none of the
939 // noalias arguments.
940 if (PtrArgs.empty() && !IsFuncCall)
941 continue;
942
943 // It is possible that there is only one underlying object, but you
944 // need to go through several PHIs to see it, and thus could be
945 // repeated in the Objects list.
946 SmallPtrSet<const Value *, 4> ObjSet;
947 SmallVector<Metadata *, 4> Scopes, NoAliases;
948
949 SmallSetVector<const Argument *, 4> NAPtrArgs;
950 for (const Value *V : PtrArgs) {
951 SmallVector<Value *, 4> Objects;
952 GetUnderlyingObjects(const_cast<Value*>(V),
953 Objects, DL, /* LI = */ nullptr);
954
955 for (Value *O : Objects)
956 ObjSet.insert(O);
957 }
958
959 // Figure out if we're derived from anything that is not a noalias
960 // argument.
961 bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
962 for (const Value *V : ObjSet) {
963 // Is this value a constant that cannot be derived from any pointer
964 // value (we need to exclude constant expressions, for example, that
965 // are formed from arithmetic on global symbols).
966 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
967 isa<ConstantPointerNull>(V) ||
968 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
969 if (IsNonPtrConst)
970 continue;
971
972 // If this is anything other than a noalias argument, then we cannot
973 // completely describe the aliasing properties using alias.scope
974 // metadata (and, thus, won't add any).
975 if (const Argument *A = dyn_cast<Argument>(V)) {
976 if (!A->hasNoAliasAttr())
977 UsesAliasingPtr = true;
978 } else {
979 UsesAliasingPtr = true;
980 }
981
982 // If this is not some identified function-local object (which cannot
983 // directly alias a noalias argument), or some other argument (which,
984 // by definition, also cannot alias a noalias argument), then we could
985 // alias a noalias argument that has been captured).
986 if (!isa<Argument>(V) &&
987 !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
988 CanDeriveViaCapture = true;
989 }
990
991 // A function call can always get captured noalias pointers (via other
992 // parameters, globals, etc.).
993 if (IsFuncCall && !IsArgMemOnlyCall)
994 CanDeriveViaCapture = true;
995
996 // First, we want to figure out all of the sets with which we definitely
997 // don't alias. Iterate over all noalias set, and add those for which:
998 // 1. The noalias argument is not in the set of objects from which we
999 // definitely derive.
1000 // 2. The noalias argument has not yet been captured.
1001 // An arbitrary function that might load pointers could see captured
1002 // noalias arguments via other noalias arguments or globals, and so we
1003 // must always check for prior capture.
1004 for (const Argument *A : NoAliasArgs) {
1005 if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1006 // It might be tempting to skip the
1007 // PointerMayBeCapturedBefore check if
1008 // A->hasNoCaptureAttr() is true, but this is
1009 // incorrect because nocapture only guarantees
1010 // that no copies outlive the function, not
1011 // that the value cannot be locally captured.
1012 !PointerMayBeCapturedBefore(A,
1013 /* ReturnCaptures */ false,
1014 /* StoreCaptures */ false, I, &DT)))
1015 NoAliases.push_back(NewScopes[A]);
1016 }
1017
1018 if (!NoAliases.empty())
1019 NI->setMetadata(LLVMContext::MD_noalias,
1020 MDNode::concatenate(
1021 NI->getMetadata(LLVMContext::MD_noalias),
1022 MDNode::get(CalledFunc->getContext(), NoAliases)));
1023
1024 // Next, we want to figure out all of the sets to which we might belong.
1025 // We might belong to a set if the noalias argument is in the set of
1026 // underlying objects. If there is some non-noalias argument in our list
1027 // of underlying objects, then we cannot add a scope because the fact
1028 // that some access does not alias with any set of our noalias arguments
1029 // cannot itself guarantee that it does not alias with this access
1030 // (because there is some pointer of unknown origin involved and the
1031 // other access might also depend on this pointer). We also cannot add
1032 // scopes to arbitrary functions unless we know they don't access any
1033 // non-parameter pointer-values.
1034 bool CanAddScopes = !UsesAliasingPtr;
1035 if (CanAddScopes && IsFuncCall)
1036 CanAddScopes = IsArgMemOnlyCall;
1037
1038 if (CanAddScopes)
1039 for (const Argument *A : NoAliasArgs) {
1040 if (ObjSet.count(A))
1041 Scopes.push_back(NewScopes[A]);
1042 }
1043
1044 if (!Scopes.empty())
1045 NI->setMetadata(
1046 LLVMContext::MD_alias_scope,
1047 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1048 MDNode::get(CalledFunc->getContext(), Scopes)));
1049 }
1050 }
1051 }
1052
1053 /// If the inlined function has non-byval align arguments, then
1054 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallSite CS,InlineFunctionInfo & IFI)1055 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1056 if (!PreserveAlignmentAssumptions)
1057 return;
1058 auto &DL = CS.getCaller()->getParent()->getDataLayout();
1059
1060 // To avoid inserting redundant assumptions, we should check for assumptions
1061 // already in the caller. To do this, we might need a DT of the caller.
1062 DominatorTree DT;
1063 bool DTCalculated = false;
1064
1065 Function *CalledFunc = CS.getCalledFunction();
1066 for (Function::arg_iterator I = CalledFunc->arg_begin(),
1067 E = CalledFunc->arg_end();
1068 I != E; ++I) {
1069 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1070 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1071 if (!DTCalculated) {
1072 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1073 ->getParent()));
1074 DTCalculated = true;
1075 }
1076
1077 // If we can already prove the asserted alignment in the context of the
1078 // caller, then don't bother inserting the assumption.
1079 Value *Arg = CS.getArgument(I->getArgNo());
1080 if (getKnownAlignment(Arg, DL, CS.getInstruction(),
1081 &IFI.ACT->getAssumptionCache(*CS.getCaller()),
1082 &DT) >= Align)
1083 continue;
1084
1085 IRBuilder<>(CS.getInstruction())
1086 .CreateAlignmentAssumption(DL, Arg, Align);
1087 }
1088 }
1089 }
1090
1091 /// Once we have cloned code over from a callee into the caller,
1092 /// update the specified callgraph to reflect the changes we made.
1093 /// Note that it's possible that not all code was copied over, so only
1094 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1095 static void UpdateCallGraphAfterInlining(CallSite CS,
1096 Function::iterator FirstNewBlock,
1097 ValueToValueMapTy &VMap,
1098 InlineFunctionInfo &IFI) {
1099 CallGraph &CG = *IFI.CG;
1100 const Function *Caller = CS.getInstruction()->getParent()->getParent();
1101 const Function *Callee = CS.getCalledFunction();
1102 CallGraphNode *CalleeNode = CG[Callee];
1103 CallGraphNode *CallerNode = CG[Caller];
1104
1105 // Since we inlined some uninlined call sites in the callee into the caller,
1106 // add edges from the caller to all of the callees of the callee.
1107 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1108
1109 // Consider the case where CalleeNode == CallerNode.
1110 CallGraphNode::CalledFunctionsVector CallCache;
1111 if (CalleeNode == CallerNode) {
1112 CallCache.assign(I, E);
1113 I = CallCache.begin();
1114 E = CallCache.end();
1115 }
1116
1117 for (; I != E; ++I) {
1118 const Value *OrigCall = I->first;
1119
1120 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1121 // Only copy the edge if the call was inlined!
1122 if (VMI == VMap.end() || VMI->second == nullptr)
1123 continue;
1124
1125 // If the call was inlined, but then constant folded, there is no edge to
1126 // add. Check for this case.
1127 Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1128 if (!NewCall)
1129 continue;
1130
1131 // We do not treat intrinsic calls like real function calls because we
1132 // expect them to become inline code; do not add an edge for an intrinsic.
1133 CallSite CS = CallSite(NewCall);
1134 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1135 continue;
1136
1137 // Remember that this call site got inlined for the client of
1138 // InlineFunction.
1139 IFI.InlinedCalls.push_back(NewCall);
1140
1141 // It's possible that inlining the callsite will cause it to go from an
1142 // indirect to a direct call by resolving a function pointer. If this
1143 // happens, set the callee of the new call site to a more precise
1144 // destination. This can also happen if the call graph node of the caller
1145 // was just unnecessarily imprecise.
1146 if (!I->second->getFunction())
1147 if (Function *F = CallSite(NewCall).getCalledFunction()) {
1148 // Indirect call site resolved to direct call.
1149 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1150
1151 continue;
1152 }
1153
1154 CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1155 }
1156
1157 // Update the call graph by deleting the edge from Callee to Caller. We must
1158 // do this after the loop above in case Caller and Callee are the same.
1159 CallerNode->removeCallEdgeFor(CS);
1160 }
1161
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1162 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1163 BasicBlock *InsertBlock,
1164 InlineFunctionInfo &IFI) {
1165 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1166 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1167
1168 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1169
1170 // Always generate a memcpy of alignment 1 here because we don't know
1171 // the alignment of the src pointer. Other optimizations can infer
1172 // better alignment.
1173 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1174 }
1175
1176 /// When inlining a call site that has a byval argument,
1177 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1178 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1179 const Function *CalledFunc,
1180 InlineFunctionInfo &IFI,
1181 unsigned ByValAlignment) {
1182 PointerType *ArgTy = cast<PointerType>(Arg->getType());
1183 Type *AggTy = ArgTy->getElementType();
1184
1185 Function *Caller = TheCall->getParent()->getParent();
1186
1187 // If the called function is readonly, then it could not mutate the caller's
1188 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1189 // temporary.
1190 if (CalledFunc->onlyReadsMemory()) {
1191 // If the byval argument has a specified alignment that is greater than the
1192 // passed in pointer, then we either have to round up the input pointer or
1193 // give up on this transformation.
1194 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
1195 return Arg;
1196
1197 const DataLayout &DL = Caller->getParent()->getDataLayout();
1198
1199 // If the pointer is already known to be sufficiently aligned, or if we can
1200 // round it up to a larger alignment, then we don't need a temporary.
1201 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
1202 &IFI.ACT->getAssumptionCache(*Caller)) >=
1203 ByValAlignment)
1204 return Arg;
1205
1206 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1207 // for code quality, but rarely happens and is required for correctness.
1208 }
1209
1210 // Create the alloca. If we have DataLayout, use nice alignment.
1211 unsigned Align =
1212 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1213
1214 // If the byval had an alignment specified, we *must* use at least that
1215 // alignment, as it is required by the byval argument (and uses of the
1216 // pointer inside the callee).
1217 Align = std::max(Align, ByValAlignment);
1218
1219 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1220 &*Caller->begin()->begin());
1221 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1222
1223 // Uses of the argument in the function should use our new alloca
1224 // instead.
1225 return NewAlloca;
1226 }
1227
1228 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1229 static bool isUsedByLifetimeMarker(Value *V) {
1230 for (User *U : V->users()) {
1231 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1232 switch (II->getIntrinsicID()) {
1233 default: break;
1234 case Intrinsic::lifetime_start:
1235 case Intrinsic::lifetime_end:
1236 return true;
1237 }
1238 }
1239 }
1240 return false;
1241 }
1242
1243 // Check whether the given alloca already has
1244 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1245 static bool hasLifetimeMarkers(AllocaInst *AI) {
1246 Type *Ty = AI->getType();
1247 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1248 Ty->getPointerAddressSpace());
1249 if (Ty == Int8PtrTy)
1250 return isUsedByLifetimeMarker(AI);
1251
1252 // Do a scan to find all the casts to i8*.
1253 for (User *U : AI->users()) {
1254 if (U->getType() != Int8PtrTy) continue;
1255 if (U->stripPointerCasts() != AI) continue;
1256 if (isUsedByLifetimeMarker(U))
1257 return true;
1258 }
1259 return false;
1260 }
1261
1262 /// Rebuild the entire inlined-at chain for this instruction so that the top of
1263 /// the chain now is inlined-at the new call site.
1264 static DebugLoc
updateInlinedAtInfo(const DebugLoc & DL,DILocation * InlinedAtNode,LLVMContext & Ctx,DenseMap<const DILocation *,DILocation * > & IANodes)1265 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode,
1266 LLVMContext &Ctx,
1267 DenseMap<const DILocation *, DILocation *> &IANodes) {
1268 SmallVector<DILocation *, 3> InlinedAtLocations;
1269 DILocation *Last = InlinedAtNode;
1270 DILocation *CurInlinedAt = DL;
1271
1272 // Gather all the inlined-at nodes
1273 while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1274 // Skip any we've already built nodes for
1275 if (DILocation *Found = IANodes[IA]) {
1276 Last = Found;
1277 break;
1278 }
1279
1280 InlinedAtLocations.push_back(IA);
1281 CurInlinedAt = IA;
1282 }
1283
1284 // Starting from the top, rebuild the nodes to point to the new inlined-at
1285 // location (then rebuilding the rest of the chain behind it) and update the
1286 // map of already-constructed inlined-at nodes.
1287 for (const DILocation *MD : reverse(InlinedAtLocations)) {
1288 Last = IANodes[MD] = DILocation::getDistinct(
1289 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1290 }
1291
1292 // And finally create the normal location for this instruction, referring to
1293 // the new inlined-at chain.
1294 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1295 }
1296
1297 /// Update inlined instructions' line numbers to
1298 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall)1299 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1300 Instruction *TheCall) {
1301 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1302 if (!TheCallDL)
1303 return;
1304
1305 auto &Ctx = Fn->getContext();
1306 DILocation *InlinedAtNode = TheCallDL;
1307
1308 // Create a unique call site, not to be confused with any other call from the
1309 // same location.
1310 InlinedAtNode = DILocation::getDistinct(
1311 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1312 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1313
1314 // Cache the inlined-at nodes as they're built so they are reused, without
1315 // this every instruction's inlined-at chain would become distinct from each
1316 // other.
1317 DenseMap<const DILocation *, DILocation *> IANodes;
1318
1319 for (; FI != Fn->end(); ++FI) {
1320 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1321 BI != BE; ++BI) {
1322 DebugLoc DL = BI->getDebugLoc();
1323 if (!DL) {
1324 // If the inlined instruction has no line number, make it look as if it
1325 // originates from the call location. This is important for
1326 // ((__always_inline__, __nodebug__)) functions which must use caller
1327 // location for all instructions in their function body.
1328
1329 // Don't update static allocas, as they may get moved later.
1330 if (auto *AI = dyn_cast<AllocaInst>(BI))
1331 if (isa<Constant>(AI->getArraySize()))
1332 continue;
1333
1334 BI->setDebugLoc(TheCallDL);
1335 } else {
1336 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1337 }
1338 }
1339 }
1340 }
1341
1342 /// This function inlines the called function into the basic block of the
1343 /// caller. This returns false if it is not possible to inline this call.
1344 /// The program is still in a well defined state if this occurs though.
1345 ///
1346 /// Note that this only does one level of inlining. For example, if the
1347 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1348 /// exists in the instruction stream. Similarly this will inline a recursive
1349 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)1350 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1351 AAResults *CalleeAAR, bool InsertLifetime) {
1352 Instruction *TheCall = CS.getInstruction();
1353 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1354 "Instruction not in function!");
1355
1356 // If IFI has any state in it, zap it before we fill it in.
1357 IFI.reset();
1358
1359 const Function *CalledFunc = CS.getCalledFunction();
1360 if (!CalledFunc || // Can't inline external function or indirect
1361 CalledFunc->isDeclaration() || // call, or call to a vararg function!
1362 CalledFunc->getFunctionType()->isVarArg()) return false;
1363
1364 // The inliner does not know how to inline through calls with operand bundles
1365 // in general ...
1366 if (CS.hasOperandBundles()) {
1367 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1368 uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1369 // ... but it knows how to inline through "deopt" operand bundles ...
1370 if (Tag == LLVMContext::OB_deopt)
1371 continue;
1372 // ... and "funclet" operand bundles.
1373 if (Tag == LLVMContext::OB_funclet)
1374 continue;
1375
1376 return false;
1377 }
1378 }
1379
1380 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1381 // calls that we inline.
1382 bool MarkNoUnwind = CS.doesNotThrow();
1383
1384 BasicBlock *OrigBB = TheCall->getParent();
1385 Function *Caller = OrigBB->getParent();
1386
1387 // GC poses two hazards to inlining, which only occur when the callee has GC:
1388 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1389 // caller.
1390 // 2. If the caller has a differing GC, it is invalid to inline.
1391 if (CalledFunc->hasGC()) {
1392 if (!Caller->hasGC())
1393 Caller->setGC(CalledFunc->getGC());
1394 else if (CalledFunc->getGC() != Caller->getGC())
1395 return false;
1396 }
1397
1398 // Get the personality function from the callee if it contains a landing pad.
1399 Constant *CalledPersonality =
1400 CalledFunc->hasPersonalityFn()
1401 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1402 : nullptr;
1403
1404 // Find the personality function used by the landing pads of the caller. If it
1405 // exists, then check to see that it matches the personality function used in
1406 // the callee.
1407 Constant *CallerPersonality =
1408 Caller->hasPersonalityFn()
1409 ? Caller->getPersonalityFn()->stripPointerCasts()
1410 : nullptr;
1411 if (CalledPersonality) {
1412 if (!CallerPersonality)
1413 Caller->setPersonalityFn(CalledPersonality);
1414 // If the personality functions match, then we can perform the
1415 // inlining. Otherwise, we can't inline.
1416 // TODO: This isn't 100% true. Some personality functions are proper
1417 // supersets of others and can be used in place of the other.
1418 else if (CalledPersonality != CallerPersonality)
1419 return false;
1420 }
1421
1422 // We need to figure out which funclet the callsite was in so that we may
1423 // properly nest the callee.
1424 Instruction *CallSiteEHPad = nullptr;
1425 if (CallerPersonality) {
1426 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1427 if (isFuncletEHPersonality(Personality)) {
1428 Optional<OperandBundleUse> ParentFunclet =
1429 CS.getOperandBundle(LLVMContext::OB_funclet);
1430 if (ParentFunclet)
1431 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1432
1433 // OK, the inlining site is legal. What about the target function?
1434
1435 if (CallSiteEHPad) {
1436 if (Personality == EHPersonality::MSVC_CXX) {
1437 // The MSVC personality cannot tolerate catches getting inlined into
1438 // cleanup funclets.
1439 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1440 // Ok, the call site is within a cleanuppad. Let's check the callee
1441 // for catchpads.
1442 for (const BasicBlock &CalledBB : *CalledFunc) {
1443 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1444 return false;
1445 }
1446 }
1447 } else if (isAsynchronousEHPersonality(Personality)) {
1448 // SEH is even less tolerant, there may not be any sort of exceptional
1449 // funclet in the callee.
1450 for (const BasicBlock &CalledBB : *CalledFunc) {
1451 if (CalledBB.isEHPad())
1452 return false;
1453 }
1454 }
1455 }
1456 }
1457 }
1458
1459 // Determine if we are dealing with a call in an EHPad which does not unwind
1460 // to caller.
1461 bool EHPadForCallUnwindsLocally = false;
1462 if (CallSiteEHPad && CS.isCall()) {
1463 UnwindDestMemoTy FuncletUnwindMap;
1464 Value *CallSiteUnwindDestToken =
1465 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1466
1467 EHPadForCallUnwindsLocally =
1468 CallSiteUnwindDestToken &&
1469 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1470 }
1471
1472 // Get an iterator to the last basic block in the function, which will have
1473 // the new function inlined after it.
1474 Function::iterator LastBlock = --Caller->end();
1475
1476 // Make sure to capture all of the return instructions from the cloned
1477 // function.
1478 SmallVector<ReturnInst*, 8> Returns;
1479 ClonedCodeInfo InlinedFunctionInfo;
1480 Function::iterator FirstNewBlock;
1481
1482 { // Scope to destroy VMap after cloning.
1483 ValueToValueMapTy VMap;
1484 // Keep a list of pair (dst, src) to emit byval initializations.
1485 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1486
1487 auto &DL = Caller->getParent()->getDataLayout();
1488
1489 assert(CalledFunc->arg_size() == CS.arg_size() &&
1490 "No varargs calls can be inlined!");
1491
1492 // Calculate the vector of arguments to pass into the function cloner, which
1493 // matches up the formal to the actual argument values.
1494 CallSite::arg_iterator AI = CS.arg_begin();
1495 unsigned ArgNo = 0;
1496 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1497 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1498 Value *ActualArg = *AI;
1499
1500 // When byval arguments actually inlined, we need to make the copy implied
1501 // by them explicit. However, we don't do this if the callee is readonly
1502 // or readnone, because the copy would be unneeded: the callee doesn't
1503 // modify the struct.
1504 if (CS.isByValArgument(ArgNo)) {
1505 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1506 CalledFunc->getParamAlignment(ArgNo+1));
1507 if (ActualArg != *AI)
1508 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1509 }
1510
1511 VMap[&*I] = ActualArg;
1512 }
1513
1514 // Add alignment assumptions if necessary. We do this before the inlined
1515 // instructions are actually cloned into the caller so that we can easily
1516 // check what will be known at the start of the inlined code.
1517 AddAlignmentAssumptions(CS, IFI);
1518
1519 // We want the inliner to prune the code as it copies. We would LOVE to
1520 // have no dead or constant instructions leftover after inlining occurs
1521 // (which can happen, e.g., because an argument was constant), but we'll be
1522 // happy with whatever the cloner can do.
1523 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1524 /*ModuleLevelChanges=*/false, Returns, ".i",
1525 &InlinedFunctionInfo, TheCall);
1526
1527 // Remember the first block that is newly cloned over.
1528 FirstNewBlock = LastBlock; ++FirstNewBlock;
1529
1530 // Inject byval arguments initialization.
1531 for (std::pair<Value*, Value*> &Init : ByValInit)
1532 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1533 &*FirstNewBlock, IFI);
1534
1535 Optional<OperandBundleUse> ParentDeopt =
1536 CS.getOperandBundle(LLVMContext::OB_deopt);
1537 if (ParentDeopt) {
1538 SmallVector<OperandBundleDef, 2> OpDefs;
1539
1540 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1541 Instruction *I = dyn_cast_or_null<Instruction>(VH);
1542 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
1543
1544 OpDefs.clear();
1545
1546 CallSite ICS(I);
1547 OpDefs.reserve(ICS.getNumOperandBundles());
1548
1549 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1550 auto ChildOB = ICS.getOperandBundleAt(i);
1551 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1552 // If the inlined call has other operand bundles, let them be
1553 OpDefs.emplace_back(ChildOB);
1554 continue;
1555 }
1556
1557 // It may be useful to separate this logic (of handling operand
1558 // bundles) out to a separate "policy" component if this gets crowded.
1559 // Prepend the parent's deoptimization continuation to the newly
1560 // inlined call's deoptimization continuation.
1561 std::vector<Value *> MergedDeoptArgs;
1562 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1563 ChildOB.Inputs.size());
1564
1565 MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1566 ParentDeopt->Inputs.begin(),
1567 ParentDeopt->Inputs.end());
1568 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1569 ChildOB.Inputs.end());
1570
1571 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1572 }
1573
1574 Instruction *NewI = nullptr;
1575 if (isa<CallInst>(I))
1576 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1577 else
1578 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1579
1580 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1581 // this even if the call returns void.
1582 I->replaceAllUsesWith(NewI);
1583
1584 VH = nullptr;
1585 I->eraseFromParent();
1586 }
1587 }
1588
1589 // Update the callgraph if requested.
1590 if (IFI.CG)
1591 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1592
1593 // Update inlined instructions' line number information.
1594 fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1595
1596 // Clone existing noalias metadata if necessary.
1597 CloneAliasScopeMetadata(CS, VMap);
1598
1599 // Add noalias metadata if necessary.
1600 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1601
1602 // Propagate llvm.mem.parallel_loop_access if necessary.
1603 PropagateParallelLoopAccessMetadata(CS, VMap);
1604
1605 // FIXME: We could register any cloned assumptions instead of clearing the
1606 // whole function's cache.
1607 if (IFI.ACT)
1608 IFI.ACT->getAssumptionCache(*Caller).clear();
1609 }
1610
1611 // If there are any alloca instructions in the block that used to be the entry
1612 // block for the callee, move them to the entry block of the caller. First
1613 // calculate which instruction they should be inserted before. We insert the
1614 // instructions at the end of the current alloca list.
1615 {
1616 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1617 for (BasicBlock::iterator I = FirstNewBlock->begin(),
1618 E = FirstNewBlock->end(); I != E; ) {
1619 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1620 if (!AI) continue;
1621
1622 // If the alloca is now dead, remove it. This often occurs due to code
1623 // specialization.
1624 if (AI->use_empty()) {
1625 AI->eraseFromParent();
1626 continue;
1627 }
1628
1629 if (!isa<Constant>(AI->getArraySize()))
1630 continue;
1631
1632 // Keep track of the static allocas that we inline into the caller.
1633 IFI.StaticAllocas.push_back(AI);
1634
1635 // Scan for the block of allocas that we can move over, and move them
1636 // all at once.
1637 while (isa<AllocaInst>(I) &&
1638 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1639 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1640 ++I;
1641 }
1642
1643 // Transfer all of the allocas over in a block. Using splice means
1644 // that the instructions aren't removed from the symbol table, then
1645 // reinserted.
1646 Caller->getEntryBlock().getInstList().splice(
1647 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1648 }
1649 // Move any dbg.declares describing the allocas into the entry basic block.
1650 DIBuilder DIB(*Caller->getParent());
1651 for (auto &AI : IFI.StaticAllocas)
1652 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1653 }
1654
1655 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1656 if (InlinedFunctionInfo.ContainsCalls) {
1657 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1658 if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1659 CallSiteTailKind = CI->getTailCallKind();
1660
1661 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1662 ++BB) {
1663 for (Instruction &I : *BB) {
1664 CallInst *CI = dyn_cast<CallInst>(&I);
1665 if (!CI)
1666 continue;
1667
1668 if (Function *F = CI->getCalledFunction())
1669 InlinedDeoptimizeCalls |=
1670 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1671
1672 // We need to reduce the strength of any inlined tail calls. For
1673 // musttail, we have to avoid introducing potential unbounded stack
1674 // growth. For example, if functions 'f' and 'g' are mutually recursive
1675 // with musttail, we can inline 'g' into 'f' so long as we preserve
1676 // musttail on the cloned call to 'f'. If either the inlined call site
1677 // or the cloned call site is *not* musttail, the program already has
1678 // one frame of stack growth, so it's safe to remove musttail. Here is
1679 // a table of example transformations:
1680 //
1681 // f -> musttail g -> musttail f ==> f -> musttail f
1682 // f -> musttail g -> tail f ==> f -> tail f
1683 // f -> g -> musttail f ==> f -> f
1684 // f -> g -> tail f ==> f -> f
1685 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1686 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1687 CI->setTailCallKind(ChildTCK);
1688 InlinedMustTailCalls |= CI->isMustTailCall();
1689
1690 // Calls inlined through a 'nounwind' call site should be marked
1691 // 'nounwind'.
1692 if (MarkNoUnwind)
1693 CI->setDoesNotThrow();
1694 }
1695 }
1696 }
1697
1698 // Leave lifetime markers for the static alloca's, scoping them to the
1699 // function we just inlined.
1700 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1701 IRBuilder<> builder(&FirstNewBlock->front());
1702 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1703 AllocaInst *AI = IFI.StaticAllocas[ai];
1704
1705 // If the alloca is already scoped to something smaller than the whole
1706 // function then there's no need to add redundant, less accurate markers.
1707 if (hasLifetimeMarkers(AI))
1708 continue;
1709
1710 // Try to determine the size of the allocation.
1711 ConstantInt *AllocaSize = nullptr;
1712 if (ConstantInt *AIArraySize =
1713 dyn_cast<ConstantInt>(AI->getArraySize())) {
1714 auto &DL = Caller->getParent()->getDataLayout();
1715 Type *AllocaType = AI->getAllocatedType();
1716 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1717 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1718
1719 // Don't add markers for zero-sized allocas.
1720 if (AllocaArraySize == 0)
1721 continue;
1722
1723 // Check that array size doesn't saturate uint64_t and doesn't
1724 // overflow when it's multiplied by type size.
1725 if (AllocaArraySize != ~0ULL &&
1726 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1727 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1728 AllocaArraySize * AllocaTypeSize);
1729 }
1730 }
1731
1732 builder.CreateLifetimeStart(AI, AllocaSize);
1733 for (ReturnInst *RI : Returns) {
1734 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1735 // call and a return. The return kills all local allocas.
1736 if (InlinedMustTailCalls &&
1737 RI->getParent()->getTerminatingMustTailCall())
1738 continue;
1739 if (InlinedDeoptimizeCalls &&
1740 RI->getParent()->getTerminatingDeoptimizeCall())
1741 continue;
1742 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1743 }
1744 }
1745 }
1746
1747 // If the inlined code contained dynamic alloca instructions, wrap the inlined
1748 // code with llvm.stacksave/llvm.stackrestore intrinsics.
1749 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1750 Module *M = Caller->getParent();
1751 // Get the two intrinsics we care about.
1752 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1753 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1754
1755 // Insert the llvm.stacksave.
1756 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1757 .CreateCall(StackSave, {}, "savedstack");
1758
1759 // Insert a call to llvm.stackrestore before any return instructions in the
1760 // inlined function.
1761 for (ReturnInst *RI : Returns) {
1762 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1763 // call and a return. The return will restore the stack pointer.
1764 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1765 continue;
1766 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1767 continue;
1768 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1769 }
1770 }
1771
1772 // If we are inlining for an invoke instruction, we must make sure to rewrite
1773 // any call instructions into invoke instructions. This is sensitive to which
1774 // funclet pads were top-level in the inlinee, so must be done before
1775 // rewriting the "parent pad" links.
1776 if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1777 BasicBlock *UnwindDest = II->getUnwindDest();
1778 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1779 if (isa<LandingPadInst>(FirstNonPHI)) {
1780 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1781 } else {
1782 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1783 }
1784 }
1785
1786 // Update the lexical scopes of the new funclets and callsites.
1787 // Anything that had 'none' as its parent is now nested inside the callsite's
1788 // EHPad.
1789
1790 if (CallSiteEHPad) {
1791 for (Function::iterator BB = FirstNewBlock->getIterator(),
1792 E = Caller->end();
1793 BB != E; ++BB) {
1794 // Add bundle operands to any top-level call sites.
1795 SmallVector<OperandBundleDef, 1> OpBundles;
1796 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1797 Instruction *I = &*BBI++;
1798 CallSite CS(I);
1799 if (!CS)
1800 continue;
1801
1802 // Skip call sites which are nounwind intrinsics.
1803 auto *CalledFn =
1804 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1805 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1806 continue;
1807
1808 // Skip call sites which already have a "funclet" bundle.
1809 if (CS.getOperandBundle(LLVMContext::OB_funclet))
1810 continue;
1811
1812 CS.getOperandBundlesAsDefs(OpBundles);
1813 OpBundles.emplace_back("funclet", CallSiteEHPad);
1814
1815 Instruction *NewInst;
1816 if (CS.isCall())
1817 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1818 else
1819 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1820 NewInst->takeName(I);
1821 I->replaceAllUsesWith(NewInst);
1822 I->eraseFromParent();
1823
1824 OpBundles.clear();
1825 }
1826
1827 // It is problematic if the inlinee has a cleanupret which unwinds to
1828 // caller and we inline it into a call site which doesn't unwind but into
1829 // an EH pad that does. Such an edge must be dynamically unreachable.
1830 // As such, we replace the cleanupret with unreachable.
1831 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1832 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1833 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1834
1835 Instruction *I = BB->getFirstNonPHI();
1836 if (!I->isEHPad())
1837 continue;
1838
1839 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1840 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1841 CatchSwitch->setParentPad(CallSiteEHPad);
1842 } else {
1843 auto *FPI = cast<FuncletPadInst>(I);
1844 if (isa<ConstantTokenNone>(FPI->getParentPad()))
1845 FPI->setParentPad(CallSiteEHPad);
1846 }
1847 }
1848 }
1849
1850 if (InlinedDeoptimizeCalls) {
1851 // We need to at least remove the deoptimizing returns from the Return set,
1852 // so that the control flow from those returns does not get merged into the
1853 // caller (but terminate it instead). If the caller's return type does not
1854 // match the callee's return type, we also need to change the return type of
1855 // the intrinsic.
1856 if (Caller->getReturnType() == TheCall->getType()) {
1857 auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1858 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1859 });
1860 Returns.erase(NewEnd, Returns.end());
1861 } else {
1862 SmallVector<ReturnInst *, 8> NormalReturns;
1863 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1864 Caller->getParent(), Intrinsic::experimental_deoptimize,
1865 {Caller->getReturnType()});
1866
1867 for (ReturnInst *RI : Returns) {
1868 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1869 if (!DeoptCall) {
1870 NormalReturns.push_back(RI);
1871 continue;
1872 }
1873
1874 // The calling convention on the deoptimize call itself may be bogus,
1875 // since the code we're inlining may have undefined behavior (and may
1876 // never actually execute at runtime); but all
1877 // @llvm.experimental.deoptimize declarations have to have the same
1878 // calling convention in a well-formed module.
1879 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
1880 NewDeoptIntrinsic->setCallingConv(CallingConv);
1881 auto *CurBB = RI->getParent();
1882 RI->eraseFromParent();
1883
1884 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
1885 DeoptCall->arg_end());
1886
1887 SmallVector<OperandBundleDef, 1> OpBundles;
1888 DeoptCall->getOperandBundlesAsDefs(OpBundles);
1889 DeoptCall->eraseFromParent();
1890 assert(!OpBundles.empty() &&
1891 "Expected at least the deopt operand bundle");
1892
1893 IRBuilder<> Builder(CurBB);
1894 CallInst *NewDeoptCall =
1895 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
1896 NewDeoptCall->setCallingConv(CallingConv);
1897 if (NewDeoptCall->getType()->isVoidTy())
1898 Builder.CreateRetVoid();
1899 else
1900 Builder.CreateRet(NewDeoptCall);
1901 }
1902
1903 // Leave behind the normal returns so we can merge control flow.
1904 std::swap(Returns, NormalReturns);
1905 }
1906 }
1907
1908 // Handle any inlined musttail call sites. In order for a new call site to be
1909 // musttail, the source of the clone and the inlined call site must have been
1910 // musttail. Therefore it's safe to return without merging control into the
1911 // phi below.
1912 if (InlinedMustTailCalls) {
1913 // Check if we need to bitcast the result of any musttail calls.
1914 Type *NewRetTy = Caller->getReturnType();
1915 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1916
1917 // Handle the returns preceded by musttail calls separately.
1918 SmallVector<ReturnInst *, 8> NormalReturns;
1919 for (ReturnInst *RI : Returns) {
1920 CallInst *ReturnedMustTail =
1921 RI->getParent()->getTerminatingMustTailCall();
1922 if (!ReturnedMustTail) {
1923 NormalReturns.push_back(RI);
1924 continue;
1925 }
1926 if (!NeedBitCast)
1927 continue;
1928
1929 // Delete the old return and any preceding bitcast.
1930 BasicBlock *CurBB = RI->getParent();
1931 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1932 RI->eraseFromParent();
1933 if (OldCast)
1934 OldCast->eraseFromParent();
1935
1936 // Insert a new bitcast and return with the right type.
1937 IRBuilder<> Builder(CurBB);
1938 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1939 }
1940
1941 // Leave behind the normal returns so we can merge control flow.
1942 std::swap(Returns, NormalReturns);
1943 }
1944
1945 // If we cloned in _exactly one_ basic block, and if that block ends in a
1946 // return instruction, we splice the body of the inlined callee directly into
1947 // the calling basic block.
1948 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1949 // Move all of the instructions right before the call.
1950 OrigBB->getInstList().splice(TheCall->getIterator(),
1951 FirstNewBlock->getInstList(),
1952 FirstNewBlock->begin(), FirstNewBlock->end());
1953 // Remove the cloned basic block.
1954 Caller->getBasicBlockList().pop_back();
1955
1956 // If the call site was an invoke instruction, add a branch to the normal
1957 // destination.
1958 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1959 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1960 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1961 }
1962
1963 // If the return instruction returned a value, replace uses of the call with
1964 // uses of the returned value.
1965 if (!TheCall->use_empty()) {
1966 ReturnInst *R = Returns[0];
1967 if (TheCall == R->getReturnValue())
1968 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1969 else
1970 TheCall->replaceAllUsesWith(R->getReturnValue());
1971 }
1972 // Since we are now done with the Call/Invoke, we can delete it.
1973 TheCall->eraseFromParent();
1974
1975 // Since we are now done with the return instruction, delete it also.
1976 Returns[0]->eraseFromParent();
1977
1978 // We are now done with the inlining.
1979 return true;
1980 }
1981
1982 // Otherwise, we have the normal case, of more than one block to inline or
1983 // multiple return sites.
1984
1985 // We want to clone the entire callee function into the hole between the
1986 // "starter" and "ender" blocks. How we accomplish this depends on whether
1987 // this is an invoke instruction or a call instruction.
1988 BasicBlock *AfterCallBB;
1989 BranchInst *CreatedBranchToNormalDest = nullptr;
1990 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1991
1992 // Add an unconditional branch to make this look like the CallInst case...
1993 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1994
1995 // Split the basic block. This guarantees that no PHI nodes will have to be
1996 // updated due to new incoming edges, and make the invoke case more
1997 // symmetric to the call case.
1998 AfterCallBB =
1999 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2000 CalledFunc->getName() + ".exit");
2001
2002 } else { // It's a call
2003 // If this is a call instruction, we need to split the basic block that
2004 // the call lives in.
2005 //
2006 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2007 CalledFunc->getName() + ".exit");
2008 }
2009
2010 // Change the branch that used to go to AfterCallBB to branch to the first
2011 // basic block of the inlined function.
2012 //
2013 TerminatorInst *Br = OrigBB->getTerminator();
2014 assert(Br && Br->getOpcode() == Instruction::Br &&
2015 "splitBasicBlock broken!");
2016 Br->setOperand(0, &*FirstNewBlock);
2017
2018 // Now that the function is correct, make it a little bit nicer. In
2019 // particular, move the basic blocks inserted from the end of the function
2020 // into the space made by splitting the source basic block.
2021 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2022 Caller->getBasicBlockList(), FirstNewBlock,
2023 Caller->end());
2024
2025 // Handle all of the return instructions that we just cloned in, and eliminate
2026 // any users of the original call/invoke instruction.
2027 Type *RTy = CalledFunc->getReturnType();
2028
2029 PHINode *PHI = nullptr;
2030 if (Returns.size() > 1) {
2031 // The PHI node should go at the front of the new basic block to merge all
2032 // possible incoming values.
2033 if (!TheCall->use_empty()) {
2034 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2035 &AfterCallBB->front());
2036 // Anything that used the result of the function call should now use the
2037 // PHI node as their operand.
2038 TheCall->replaceAllUsesWith(PHI);
2039 }
2040
2041 // Loop over all of the return instructions adding entries to the PHI node
2042 // as appropriate.
2043 if (PHI) {
2044 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2045 ReturnInst *RI = Returns[i];
2046 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2047 "Ret value not consistent in function!");
2048 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2049 }
2050 }
2051
2052 // Add a branch to the merge points and remove return instructions.
2053 DebugLoc Loc;
2054 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2055 ReturnInst *RI = Returns[i];
2056 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2057 Loc = RI->getDebugLoc();
2058 BI->setDebugLoc(Loc);
2059 RI->eraseFromParent();
2060 }
2061 // We need to set the debug location to *somewhere* inside the
2062 // inlined function. The line number may be nonsensical, but the
2063 // instruction will at least be associated with the right
2064 // function.
2065 if (CreatedBranchToNormalDest)
2066 CreatedBranchToNormalDest->setDebugLoc(Loc);
2067 } else if (!Returns.empty()) {
2068 // Otherwise, if there is exactly one return value, just replace anything
2069 // using the return value of the call with the computed value.
2070 if (!TheCall->use_empty()) {
2071 if (TheCall == Returns[0]->getReturnValue())
2072 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2073 else
2074 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2075 }
2076
2077 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2078 BasicBlock *ReturnBB = Returns[0]->getParent();
2079 ReturnBB->replaceAllUsesWith(AfterCallBB);
2080
2081 // Splice the code from the return block into the block that it will return
2082 // to, which contains the code that was after the call.
2083 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2084 ReturnBB->getInstList());
2085
2086 if (CreatedBranchToNormalDest)
2087 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2088
2089 // Delete the return instruction now and empty ReturnBB now.
2090 Returns[0]->eraseFromParent();
2091 ReturnBB->eraseFromParent();
2092 } else if (!TheCall->use_empty()) {
2093 // No returns, but something is using the return value of the call. Just
2094 // nuke the result.
2095 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2096 }
2097
2098 // Since we are now done with the Call/Invoke, we can delete it.
2099 TheCall->eraseFromParent();
2100
2101 // If we inlined any musttail calls and the original return is now
2102 // unreachable, delete it. It can only contain a bitcast and ret.
2103 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2104 AfterCallBB->eraseFromParent();
2105
2106 // We should always be able to fold the entry block of the function into the
2107 // single predecessor of the block...
2108 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2109 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2110
2111 // Splice the code entry block into calling block, right before the
2112 // unconditional branch.
2113 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2114 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2115
2116 // Remove the unconditional branch.
2117 OrigBB->getInstList().erase(Br);
2118
2119 // Now we can remove the CalleeEntry block, which is now empty.
2120 Caller->getBasicBlockList().erase(CalleeEntry);
2121
2122 // If we inserted a phi node, check to see if it has a single value (e.g. all
2123 // the entries are the same or undef). If so, remove the PHI so it doesn't
2124 // block other optimizations.
2125 if (PHI) {
2126 auto &DL = Caller->getParent()->getDataLayout();
2127 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
2128 &IFI.ACT->getAssumptionCache(*Caller))) {
2129 PHI->replaceAllUsesWith(V);
2130 PHI->eraseFromParent();
2131 }
2132 }
2133
2134 return true;
2135 }
2136