1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches. This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 using namespace llvm;
41
42 #define DEBUG_TYPE "loop-unroll"
43
44 // TODO: Should these be here or in LoopUnroll?
45 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
46 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
47
48 static cl::opt<bool>
49 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden,
50 cl::desc("Allow runtime unrolled loops to be unrolled "
51 "with epilog instead of prolog."));
52
53 /// Convert the instruction operands from referencing the current values into
54 /// those specified by VMap.
remapInstruction(Instruction * I,ValueToValueMapTy & VMap)55 static inline void remapInstruction(Instruction *I,
56 ValueToValueMapTy &VMap) {
57 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
58 Value *Op = I->getOperand(op);
59 ValueToValueMapTy::iterator It = VMap.find(Op);
60 if (It != VMap.end())
61 I->setOperand(op, It->second);
62 }
63
64 if (PHINode *PN = dyn_cast<PHINode>(I)) {
65 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
66 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
67 if (It != VMap.end())
68 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
69 }
70 }
71 }
72
73 /// Folds a basic block into its predecessor if it only has one predecessor, and
74 /// that predecessor only has one successor.
75 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is
76 /// successful references to the containing loop must be removed from
77 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
78 /// references to the eliminated BB. The argument ForgottenLoops contains a set
79 /// of loops that have already been forgotten to prevent redundant, expensive
80 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
81 static BasicBlock *
foldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,SmallPtrSetImpl<Loop * > & ForgottenLoops,DominatorTree * DT)82 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
83 SmallPtrSetImpl<Loop *> &ForgottenLoops,
84 DominatorTree *DT) {
85 // Merge basic blocks into their predecessor if there is only one distinct
86 // pred, and if there is only one distinct successor of the predecessor, and
87 // if there are no PHI nodes.
88 BasicBlock *OnlyPred = BB->getSinglePredecessor();
89 if (!OnlyPred) return nullptr;
90
91 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
92 return nullptr;
93
94 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
95
96 // Resolve any PHI nodes at the start of the block. They are all
97 // guaranteed to have exactly one entry if they exist, unless there are
98 // multiple duplicate (but guaranteed to be equal) entries for the
99 // incoming edges. This occurs when there are multiple edges from
100 // OnlyPred to OnlySucc.
101 FoldSingleEntryPHINodes(BB);
102
103 // Delete the unconditional branch from the predecessor...
104 OnlyPred->getInstList().pop_back();
105
106 // Make all PHI nodes that referred to BB now refer to Pred as their
107 // source...
108 BB->replaceAllUsesWith(OnlyPred);
109
110 // Move all definitions in the successor to the predecessor...
111 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
112
113 // OldName will be valid until erased.
114 StringRef OldName = BB->getName();
115
116 // Erase the old block and update dominator info.
117 if (DT)
118 if (DomTreeNode *DTN = DT->getNode(BB)) {
119 DomTreeNode *PredDTN = DT->getNode(OnlyPred);
120 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
121 for (auto *DI : Children)
122 DT->changeImmediateDominator(DI, PredDTN);
123
124 DT->eraseNode(BB);
125 }
126
127 // ScalarEvolution holds references to loop exit blocks.
128 if (SE) {
129 if (Loop *L = LI->getLoopFor(BB)) {
130 if (ForgottenLoops.insert(L).second)
131 SE->forgetLoop(L);
132 }
133 }
134 LI->removeBlock(BB);
135
136 // Inherit predecessor's name if it exists...
137 if (!OldName.empty() && !OnlyPred->hasName())
138 OnlyPred->setName(OldName);
139
140 BB->eraseFromParent();
141
142 return OnlyPred;
143 }
144
145 /// Check if unrolling created a situation where we need to insert phi nodes to
146 /// preserve LCSSA form.
147 /// \param Blocks is a vector of basic blocks representing unrolled loop.
148 /// \param L is the outer loop.
149 /// It's possible that some of the blocks are in L, and some are not. In this
150 /// case, if there is a use is outside L, and definition is inside L, we need to
151 /// insert a phi-node, otherwise LCSSA will be broken.
152 /// The function is just a helper function for llvm::UnrollLoop that returns
153 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,std::vector<BasicBlock * > Blocks,LoopInfo * LI)154 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
155 LoopInfo *LI) {
156 for (BasicBlock *BB : Blocks) {
157 if (LI->getLoopFor(BB) == L)
158 continue;
159 for (Instruction &I : *BB) {
160 for (Use &U : I.operands()) {
161 if (auto Def = dyn_cast<Instruction>(U)) {
162 Loop *DefLoop = LI->getLoopFor(Def->getParent());
163 if (!DefLoop)
164 continue;
165 if (DefLoop->contains(L))
166 return true;
167 }
168 }
169 }
170 }
171 return false;
172 }
173
174 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
175 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
176 /// can only fail when the loop's latch block is not terminated by a conditional
177 /// branch instruction. However, if the trip count (and multiple) are not known,
178 /// loop unrolling will mostly produce more code that is no faster.
179 ///
180 /// TripCount is generally defined as the number of times the loop header
181 /// executes. UnrollLoop relaxes the definition to permit early exits: here
182 /// TripCount is the iteration on which control exits LatchBlock if no early
183 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
184 /// terminates LatchBlock in order to remove unnecesssary instances of the
185 /// test. In other words, control may exit the loop prior to TripCount
186 /// iterations via an early branch, but control may not exit the loop from the
187 /// LatchBlock's terminator prior to TripCount iterations.
188 ///
189 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
190 /// execute without exiting the loop.
191 ///
192 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
193 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
194 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
195 /// iterations before branching into the unrolled loop. UnrollLoop will not
196 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
197 /// AllowExpensiveTripCount is false.
198 ///
199 /// The LoopInfo Analysis that is passed will be kept consistent.
200 ///
201 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
202 /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool Force,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)203 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
204 bool AllowRuntime, bool AllowExpensiveTripCount,
205 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
206 DominatorTree *DT, AssumptionCache *AC,
207 bool PreserveLCSSA) {
208 BasicBlock *Preheader = L->getLoopPreheader();
209 if (!Preheader) {
210 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
211 return false;
212 }
213
214 BasicBlock *LatchBlock = L->getLoopLatch();
215 if (!LatchBlock) {
216 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
217 return false;
218 }
219
220 // Loops with indirectbr cannot be cloned.
221 if (!L->isSafeToClone()) {
222 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
223 return false;
224 }
225
226 BasicBlock *Header = L->getHeader();
227 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
228
229 if (!BI || BI->isUnconditional()) {
230 // The loop-rotate pass can be helpful to avoid this in many cases.
231 DEBUG(dbgs() <<
232 " Can't unroll; loop not terminated by a conditional branch.\n");
233 return false;
234 }
235
236 if (Header->hasAddressTaken()) {
237 // The loop-rotate pass can be helpful to avoid this in many cases.
238 DEBUG(dbgs() <<
239 " Won't unroll loop: address of header block is taken.\n");
240 return false;
241 }
242
243 if (TripCount != 0)
244 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
245 if (TripMultiple != 1)
246 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
247
248 // Effectively "DCE" unrolled iterations that are beyond the tripcount
249 // and will never be executed.
250 if (TripCount != 0 && Count > TripCount)
251 Count = TripCount;
252
253 // Don't enter the unroll code if there is nothing to do. This way we don't
254 // need to support "partial unrolling by 1".
255 if (TripCount == 0 && Count < 2)
256 return false;
257
258 assert(Count > 0);
259 assert(TripMultiple > 0);
260 assert(TripCount == 0 || TripCount % TripMultiple == 0);
261
262 // Are we eliminating the loop control altogether?
263 bool CompletelyUnroll = Count == TripCount;
264 SmallVector<BasicBlock *, 4> ExitBlocks;
265 L->getExitBlocks(ExitBlocks);
266 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
267
268 // Go through all exits of L and see if there are any phi-nodes there. We just
269 // conservatively assume that they're inserted to preserve LCSSA form, which
270 // means that complete unrolling might break this form. We need to either fix
271 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
272 // now we just recompute LCSSA for the outer loop, but it should be possible
273 // to fix it in-place.
274 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
275 std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
276 [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
277
278 // We assume a run-time trip count if the compiler cannot
279 // figure out the loop trip count and the unroll-runtime
280 // flag is specified.
281 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
282
283 // Loops containing convergent instructions must have a count that divides
284 // their TripMultiple.
285 DEBUG(
286 {
287 bool HasConvergent = false;
288 for (auto &BB : L->blocks())
289 for (auto &I : *BB)
290 if (auto CS = CallSite(&I))
291 HasConvergent |= CS.isConvergent();
292 assert((!HasConvergent || TripMultiple % Count == 0) &&
293 "Unroll count must divide trip multiple if loop contains a "
294 "convergent operation.");
295 });
296 // Don't output the runtime loop remainder if Count is a multiple of
297 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop
298 // contains a convergent instruction.
299 if (RuntimeTripCount && TripMultiple % Count != 0 &&
300 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
301 UnrollRuntimeEpilog, LI, SE, DT,
302 PreserveLCSSA)) {
303 if (Force)
304 RuntimeTripCount = false;
305 else
306 return false;
307 }
308
309 // Notify ScalarEvolution that the loop will be substantially changed,
310 // if not outright eliminated.
311 if (SE)
312 SE->forgetLoop(L);
313
314 // If we know the trip count, we know the multiple...
315 unsigned BreakoutTrip = 0;
316 if (TripCount != 0) {
317 BreakoutTrip = TripCount % Count;
318 TripMultiple = 0;
319 } else {
320 // Figure out what multiple to use.
321 BreakoutTrip = TripMultiple =
322 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
323 }
324
325 // Report the unrolling decision.
326 DebugLoc LoopLoc = L->getStartLoc();
327 Function *F = Header->getParent();
328 LLVMContext &Ctx = F->getContext();
329
330 if (CompletelyUnroll) {
331 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
332 << " with trip count " << TripCount << "!\n");
333 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
334 Twine("completely unrolled loop with ") +
335 Twine(TripCount) + " iterations");
336 } else {
337 auto EmitDiag = [&](const Twine &T) {
338 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
339 "unrolled loop by a factor of " + Twine(Count) +
340 T);
341 };
342
343 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
344 << " by " << Count);
345 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
346 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
347 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
348 } else if (TripMultiple != 1) {
349 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
350 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
351 } else if (RuntimeTripCount) {
352 DEBUG(dbgs() << " with run-time trip count");
353 EmitDiag(" with run-time trip count");
354 }
355 DEBUG(dbgs() << "!\n");
356 }
357
358 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
359 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
360
361 // For the first iteration of the loop, we should use the precloned values for
362 // PHI nodes. Insert associations now.
363 ValueToValueMapTy LastValueMap;
364 std::vector<PHINode*> OrigPHINode;
365 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
366 OrigPHINode.push_back(cast<PHINode>(I));
367 }
368
369 std::vector<BasicBlock*> Headers;
370 std::vector<BasicBlock*> Latches;
371 Headers.push_back(Header);
372 Latches.push_back(LatchBlock);
373
374 // The current on-the-fly SSA update requires blocks to be processed in
375 // reverse postorder so that LastValueMap contains the correct value at each
376 // exit.
377 LoopBlocksDFS DFS(L);
378 DFS.perform(LI);
379
380 // Stash the DFS iterators before adding blocks to the loop.
381 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
382 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
383
384 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
385 for (unsigned It = 1; It != Count; ++It) {
386 std::vector<BasicBlock*> NewBlocks;
387 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
388 NewLoops[L] = L;
389
390 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
391 ValueToValueMapTy VMap;
392 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
393 Header->getParent()->getBasicBlockList().push_back(New);
394
395 // Tell LI about New.
396 if (*BB == Header) {
397 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
398 L->addBasicBlockToLoop(New, *LI);
399 } else {
400 // Figure out which loop New is in.
401 const Loop *OldLoop = LI->getLoopFor(*BB);
402 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
403
404 Loop *&NewLoop = NewLoops[OldLoop];
405 if (!NewLoop) {
406 // Found a new sub-loop.
407 assert(*BB == OldLoop->getHeader() &&
408 "Header should be first in RPO");
409
410 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
411 assert(NewLoopParent &&
412 "Expected parent loop before sub-loop in RPO");
413 NewLoop = new Loop;
414 NewLoopParent->addChildLoop(NewLoop);
415
416 // Forget the old loop, since its inputs may have changed.
417 if (SE)
418 SE->forgetLoop(OldLoop);
419 }
420 NewLoop->addBasicBlockToLoop(New, *LI);
421 }
422
423 if (*BB == Header)
424 // Loop over all of the PHI nodes in the block, changing them to use
425 // the incoming values from the previous block.
426 for (PHINode *OrigPHI : OrigPHINode) {
427 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
428 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
429 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
430 if (It > 1 && L->contains(InValI))
431 InVal = LastValueMap[InValI];
432 VMap[OrigPHI] = InVal;
433 New->getInstList().erase(NewPHI);
434 }
435
436 // Update our running map of newest clones
437 LastValueMap[*BB] = New;
438 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
439 VI != VE; ++VI)
440 LastValueMap[VI->first] = VI->second;
441
442 // Add phi entries for newly created values to all exit blocks.
443 for (BasicBlock *Succ : successors(*BB)) {
444 if (L->contains(Succ))
445 continue;
446 for (BasicBlock::iterator BBI = Succ->begin();
447 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
448 Value *Incoming = phi->getIncomingValueForBlock(*BB);
449 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
450 if (It != LastValueMap.end())
451 Incoming = It->second;
452 phi->addIncoming(Incoming, New);
453 }
454 }
455 // Keep track of new headers and latches as we create them, so that
456 // we can insert the proper branches later.
457 if (*BB == Header)
458 Headers.push_back(New);
459 if (*BB == LatchBlock)
460 Latches.push_back(New);
461
462 NewBlocks.push_back(New);
463 UnrolledLoopBlocks.push_back(New);
464
465 // Update DomTree: since we just copy the loop body, and each copy has a
466 // dedicated entry block (copy of the header block), this header's copy
467 // dominates all copied blocks. That means, dominance relations in the
468 // copied body are the same as in the original body.
469 if (DT) {
470 if (*BB == Header)
471 DT->addNewBlock(New, Latches[It - 1]);
472 else {
473 auto BBDomNode = DT->getNode(*BB);
474 auto BBIDom = BBDomNode->getIDom();
475 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
476 DT->addNewBlock(
477 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
478 }
479 }
480 }
481
482 // Remap all instructions in the most recent iteration
483 for (BasicBlock *NewBlock : NewBlocks)
484 for (Instruction &I : *NewBlock)
485 ::remapInstruction(&I, LastValueMap);
486 }
487
488 // Loop over the PHI nodes in the original block, setting incoming values.
489 for (PHINode *PN : OrigPHINode) {
490 if (CompletelyUnroll) {
491 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
492 Header->getInstList().erase(PN);
493 }
494 else if (Count > 1) {
495 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
496 // If this value was defined in the loop, take the value defined by the
497 // last iteration of the loop.
498 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
499 if (L->contains(InValI))
500 InVal = LastValueMap[InVal];
501 }
502 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
503 PN->addIncoming(InVal, Latches.back());
504 }
505 }
506
507 // Now that all the basic blocks for the unrolled iterations are in place,
508 // set up the branches to connect them.
509 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
510 // The original branch was replicated in each unrolled iteration.
511 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
512
513 // The branch destination.
514 unsigned j = (i + 1) % e;
515 BasicBlock *Dest = Headers[j];
516 bool NeedConditional = true;
517
518 if (RuntimeTripCount && j != 0) {
519 NeedConditional = false;
520 }
521
522 // For a complete unroll, make the last iteration end with a branch
523 // to the exit block.
524 if (CompletelyUnroll) {
525 if (j == 0)
526 Dest = LoopExit;
527 NeedConditional = false;
528 }
529
530 // If we know the trip count or a multiple of it, we can safely use an
531 // unconditional branch for some iterations.
532 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
533 NeedConditional = false;
534 }
535
536 if (NeedConditional) {
537 // Update the conditional branch's successor for the following
538 // iteration.
539 Term->setSuccessor(!ContinueOnTrue, Dest);
540 } else {
541 // Remove phi operands at this loop exit
542 if (Dest != LoopExit) {
543 BasicBlock *BB = Latches[i];
544 for (BasicBlock *Succ: successors(BB)) {
545 if (Succ == Headers[i])
546 continue;
547 for (BasicBlock::iterator BBI = Succ->begin();
548 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
549 Phi->removeIncomingValue(BB, false);
550 }
551 }
552 }
553 // Replace the conditional branch with an unconditional one.
554 BranchInst::Create(Dest, Term);
555 Term->eraseFromParent();
556 }
557 }
558 // Update dominators of blocks we might reach through exits.
559 // Immediate dominator of such block might change, because we add more
560 // routes which can lead to the exit: we can now reach it from the copied
561 // iterations too. Thus, the new idom of the block will be the nearest
562 // common dominator of the previous idom and common dominator of all copies of
563 // the previous idom. This is equivalent to the nearest common dominator of
564 // the previous idom and the first latch, which dominates all copies of the
565 // previous idom.
566 if (DT && Count > 1) {
567 for (auto *BB : OriginalLoopBlocks) {
568 auto *BBDomNode = DT->getNode(BB);
569 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
570 for (auto *ChildDomNode : BBDomNode->getChildren()) {
571 auto *ChildBB = ChildDomNode->getBlock();
572 if (!L->contains(ChildBB))
573 ChildrenToUpdate.push_back(ChildBB);
574 }
575 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
576 for (auto *ChildBB : ChildrenToUpdate)
577 DT->changeImmediateDominator(ChildBB, NewIDom);
578 }
579 }
580
581 // Merge adjacent basic blocks, if possible.
582 SmallPtrSet<Loop *, 4> ForgottenLoops;
583 for (BasicBlock *Latch : Latches) {
584 BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
585 if (Term->isUnconditional()) {
586 BasicBlock *Dest = Term->getSuccessor(0);
587 if (BasicBlock *Fold =
588 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
589 // Dest has been folded into Fold. Update our worklists accordingly.
590 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
591 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
592 UnrolledLoopBlocks.end(), Dest),
593 UnrolledLoopBlocks.end());
594 }
595 }
596 }
597
598 // FIXME: We could register any cloned assumptions instead of clearing the
599 // whole function's cache.
600 AC->clear();
601
602 // FIXME: We only preserve DT info for complete unrolling now. Incrementally
603 // updating domtree after partial loop unrolling should also be easy.
604 if (DT && !CompletelyUnroll)
605 DT->recalculate(*L->getHeader()->getParent());
606 else if (DT)
607 DEBUG(DT->verifyDomTree());
608
609 // Simplify any new induction variables in the partially unrolled loop.
610 if (SE && !CompletelyUnroll) {
611 SmallVector<WeakVH, 16> DeadInsts;
612 simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
613
614 // Aggressively clean up dead instructions that simplifyLoopIVs already
615 // identified. Any remaining should be cleaned up below.
616 while (!DeadInsts.empty())
617 if (Instruction *Inst =
618 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
619 RecursivelyDeleteTriviallyDeadInstructions(Inst);
620 }
621
622 // At this point, the code is well formed. We now do a quick sweep over the
623 // inserted code, doing constant propagation and dead code elimination as we
624 // go.
625 const DataLayout &DL = Header->getModule()->getDataLayout();
626 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
627 for (BasicBlock *BB : NewLoopBlocks) {
628 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
629 Instruction *Inst = &*I++;
630
631 if (Value *V = SimplifyInstruction(Inst, DL))
632 if (LI->replacementPreservesLCSSAForm(Inst, V))
633 Inst->replaceAllUsesWith(V);
634 if (isInstructionTriviallyDead(Inst))
635 BB->getInstList().erase(Inst);
636 }
637 }
638
639 NumCompletelyUnrolled += CompletelyUnroll;
640 ++NumUnrolled;
641
642 Loop *OuterL = L->getParentLoop();
643 // Update LoopInfo if the loop is completely removed.
644 if (CompletelyUnroll)
645 LI->markAsRemoved(L);
646
647 // After complete unrolling most of the blocks should be contained in OuterL.
648 // However, some of them might happen to be out of OuterL (e.g. if they
649 // precede a loop exit). In this case we might need to insert PHI nodes in
650 // order to preserve LCSSA form.
651 // We don't need to check this if we already know that we need to fix LCSSA
652 // form.
653 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
654 // it should be possible to fix it in-place.
655 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
656 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
657
658 // If we have a pass and a DominatorTree we should re-simplify impacted loops
659 // to ensure subsequent analyses can rely on this form. We want to simplify
660 // at least one layer outside of the loop that was unrolled so that any
661 // changes to the parent loop exposed by the unrolling are considered.
662 if (DT) {
663 if (!OuterL && !CompletelyUnroll)
664 OuterL = L;
665 if (OuterL) {
666 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
667
668 // LCSSA must be performed on the outermost affected loop. The unrolled
669 // loop's last loop latch is guaranteed to be in the outermost loop after
670 // LoopInfo's been updated by markAsRemoved.
671 Loop *LatchLoop = LI->getLoopFor(Latches.back());
672 if (!OuterL->contains(LatchLoop))
673 while (OuterL->getParentLoop() != LatchLoop)
674 OuterL = OuterL->getParentLoop();
675
676 if (NeedToFixLCSSA)
677 formLCSSARecursively(*OuterL, *DT, LI, SE);
678 else
679 assert(OuterL->isLCSSAForm(*DT) &&
680 "Loops should be in LCSSA form after loop-unroll.");
681 }
682 }
683
684 return true;
685 }
686
687 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
688 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
689 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)690 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
691 // First operand should refer to the loop id itself.
692 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
693 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
694
695 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
696 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
697 if (!MD)
698 continue;
699
700 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
701 if (!S)
702 continue;
703
704 if (Name.equals(S->getString()))
705 return MD;
706 }
707 return nullptr;
708 }
709