1 // Copyright 2006 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // DESCRIPTION
6 //
7 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
8 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9 // fast iteration through the elements in the array and fast clearing
10 // of the array. The array has a concept of certain elements being
11 // uninitialized (having no value).
12 //
13 // Insertion and deletion are constant time operations.
14 //
15 // Allocating the array is a constant time operation
16 // when memory allocation is a constant time operation.
17 //
18 // Clearing the array is a constant time operation (unusual!).
19 //
20 // Iterating through the array is an O(n) operation, where n
21 // is the number of items in the array (not O(m)).
22 //
23 // The array iterator visits entries in the order they were first
24 // inserted into the array. It is safe to add items to the array while
25 // using an iterator: the iterator will visit indices added to the array
26 // during the iteration, but will not re-visit indices whose values
27 // change after visiting. Thus SparseArray can be a convenient
28 // implementation of a work queue.
29 //
30 // The SparseArray implementation is NOT thread-safe. It is up to the
31 // caller to make sure only one thread is accessing the array. (Typically
32 // these arrays are temporary values and used in situations where speed is
33 // important.)
34 //
35 // The SparseArray interface does not present all the usual STL bells and
36 // whistles.
37 //
38 // Implemented with reference to Briggs & Torczon, An Efficient
39 // Representation for Sparse Sets, ACM Letters on Programming Languages
40 // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
41 //
42 // Briggs & Torczon popularized this technique, but it had been known
43 // long before their paper. They point out that Aho, Hopcroft, and
44 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45 // 1986 Programming Pearls both hint at the technique in exercises to the
46 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
47 // exercise 8).
48 //
49 // Briggs & Torczon describe a sparse set implementation. I have
50 // trivially generalized it to create a sparse array (actually the original
51 // target of the AHU and Bentley exercises).
52
53 // IMPLEMENTATION
54 //
55 // SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56 // size max_size_. At any point, the number of elements in the sparse array is
57 // size_.
58 //
59 // The vector dense_ contains the size_ elements in the sparse array (with
60 // their indices),
61 // in the order that the elements were first inserted. This array is dense:
62 // the size_ pairs are dense_[0] through dense_[size_-1].
63 //
64 // The array sparse_to_dense_ maps from indices in [0,m) to indices in
65 // [0,size_).
66 // For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67 // For indices not present in the array, sparse_to_dense_ can contain
68 // any value at all, perhaps outside the range [0, size_) but perhaps not.
69 //
70 // The lax requirement on sparse_to_dense_ values makes clearing
71 // the array very easy: set size_ to 0. Lookups are slightly more
72 // complicated. An index i has a value in the array if and only if:
73 // sparse_to_dense_[i] is in [0, size_) AND
74 // dense_[sparse_to_dense_[i]].index_ == i.
75 // If both these properties hold, only then it is safe to refer to
76 // dense_[sparse_to_dense_[i]].value_
77 // as the value associated with index i.
78 //
79 // To insert a new entry, set sparse_to_dense_[i] to size_,
80 // initialize dense_[size_], and then increment size_.
81 //
82 // Deletion of specific values from the array is implemented by
83 // swapping dense_[size_-1] and the dense_ being deleted and then
84 // updating the appropriate sparse_to_dense_ entries.
85 //
86 // To make the sparse array as efficient as possible for non-primitive types,
87 // elements may or may not be destroyed when they are deleted from the sparse
88 // array through a call to erase(), erase_existing() or resize(). They
89 // immediately become inaccessible, but they are only guaranteed to be
90 // destroyed when the SparseArray destructor is called.
91
92 #ifndef RE2_UTIL_SPARSE_ARRAY_H__
93 #define RE2_UTIL_SPARSE_ARRAY_H__
94
95 #include "util/util.h"
96
97 namespace re2 {
98
99 template<typename Value>
100 class SparseArray {
101 public:
102 SparseArray();
103 SparseArray(int max_size);
104 ~SparseArray();
105
106 // IndexValue pairs: exposed in SparseArray::iterator.
107 class IndexValue;
108
109 typedef IndexValue value_type;
110 typedef typename vector<IndexValue>::iterator iterator;
111 typedef typename vector<IndexValue>::const_iterator const_iterator;
112
113 inline const IndexValue& iv(int i) const;
114
115 // Return the number of entries in the array.
size()116 int size() const {
117 return size_;
118 }
119
120 // Iterate over the array.
begin()121 iterator begin() {
122 return dense_.begin();
123 }
end()124 iterator end() {
125 return dense_.begin() + size_;
126 }
127
begin()128 const_iterator begin() const {
129 return dense_.begin();
130 }
end()131 const_iterator end() const {
132 return dense_.begin() + size_;
133 }
134
135 // Change the maximum size of the array.
136 // Invalidates all iterators.
137 void resize(int max_size);
138
139 // Return the maximum size of the array.
140 // Indices can be in the range [0, max_size).
max_size()141 int max_size() const {
142 return max_size_;
143 }
144
145 // Clear the array.
clear()146 void clear() {
147 size_ = 0;
148 }
149
150 // Check whether index i is in the array.
151 inline bool has_index(int i) const;
152
153 // Comparison function for sorting.
154 // Can sort the sparse array so that future iterations
155 // will visit indices in increasing order using
156 // sort(arr.begin(), arr.end(), arr.less);
157 static bool less(const IndexValue& a, const IndexValue& b);
158
159 public:
160 // Set the value at index i to v.
161 inline iterator set(int i, Value v);
162
163 pair<iterator, bool> insert(const value_type& new_value);
164
165 // Returns the value at index i
166 // or defaultv if index i is not initialized in the array.
167 inline Value get(int i, Value defaultv) const;
168
169 iterator find(int i);
170
171 const_iterator find(int i) const;
172
173 // Change the value at index i to v.
174 // Fast but unsafe: only use if has_index(i) is true.
175 inline iterator set_existing(int i, Value v);
176
177 // Set the value at the new index i to v.
178 // Fast but unsafe: only use if has_index(i) is false.
179 inline iterator set_new(int i, Value v);
180
181 // Get the value at index i from the array..
182 // Fast but unsafe: only use if has_index(i) is true.
183 inline Value get_existing(int i) const;
184
185 // Erasing items from the array during iteration is in general
186 // NOT safe. There is one special case, which is that the current
187 // index-value pair can be erased as long as the iterator is then
188 // checked for being at the end before being incremented.
189 // For example:
190 //
191 // for (i = m.begin(); i != m.end(); ++i) {
192 // if (ShouldErase(i->index(), i->value())) {
193 // m.erase(i->index());
194 // --i;
195 // }
196 // }
197 //
198 // Except in the specific case just described, elements must
199 // not be erased from the array (including clearing the array)
200 // while iterators are walking over the array. Otherwise,
201 // the iterators could walk past the end of the array.
202
203 // Erases the element at index i from the array.
204 inline void erase(int i);
205
206 // Erases the element at index i from the array.
207 // Fast but unsafe: only use if has_index(i) is true.
208 inline void erase_existing(int i);
209
210 private:
211 // Add the index i to the array.
212 // Only use if has_index(i) is known to be false.
213 // Since it doesn't set the value associated with i,
214 // this function is private, only intended as a helper
215 // for other methods.
216 inline void create_index(int i);
217
218 // In debug mode, verify that some invariant properties of the class
219 // are being maintained. This is called at the end of the constructor
220 // and at the beginning and end of all public non-const member functions.
221 inline void DebugCheckInvariants() const;
222
223 int size_;
224 int max_size_;
225 int* sparse_to_dense_;
226 vector<IndexValue> dense_;
227 bool valgrind_;
228
229 DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
230 };
231
232 template<typename Value>
SparseArray()233 SparseArray<Value>::SparseArray()
234 : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(), valgrind_(RunningOnValgrind()) {}
235
236 // IndexValue pairs: exposed in SparseArray::iterator.
237 template<typename Value>
238 class SparseArray<Value>::IndexValue {
239 friend class SparseArray;
240 public:
241 typedef int first_type;
242 typedef Value second_type;
243
IndexValue()244 IndexValue() {}
IndexValue(int index,const Value & value)245 IndexValue(int index, const Value& value) : second(value), index_(index) {}
246
index()247 int index() const { return index_; }
value()248 Value value() const { return second; }
249
250 // Provide the data in the 'second' member so that the utilities
251 // in map-util work.
252 Value second;
253
254 private:
255 int index_;
256 };
257
258 template<typename Value>
259 const typename SparseArray<Value>::IndexValue&
iv(int i)260 SparseArray<Value>::iv(int i) const {
261 DCHECK_GE(i, 0);
262 DCHECK_LT(i, size_);
263 return dense_[i];
264 }
265
266 // Change the maximum size of the array.
267 // Invalidates all iterators.
268 template<typename Value>
resize(int new_max_size)269 void SparseArray<Value>::resize(int new_max_size) {
270 DebugCheckInvariants();
271 if (new_max_size > max_size_) {
272 int* a = new int[new_max_size];
273 if (sparse_to_dense_) {
274 memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
275 // Don't need to zero the memory but appease Valgrind.
276 if (valgrind_) {
277 for (int i = max_size_; i < new_max_size; i++)
278 a[i] = 0xababababU;
279 }
280 delete[] sparse_to_dense_;
281 }
282 sparse_to_dense_ = a;
283
284 dense_.resize(new_max_size);
285 }
286 max_size_ = new_max_size;
287 if (size_ > max_size_)
288 size_ = max_size_;
289 DebugCheckInvariants();
290 }
291
292 // Check whether index i is in the array.
293 template<typename Value>
has_index(int i)294 bool SparseArray<Value>::has_index(int i) const {
295 DCHECK_GE(i, 0);
296 DCHECK_LT(i, max_size_);
297 if (static_cast<uint>(i) >= max_size_) {
298 return false;
299 }
300 // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
301 return (uint)sparse_to_dense_[i] < (uint)size_ &&
302 dense_[sparse_to_dense_[i]].index_ == i;
303 }
304
305 // Set the value at index i to v.
306 template<typename Value>
set(int i,Value v)307 typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
308 DebugCheckInvariants();
309 if (static_cast<uint>(i) >= max_size_) {
310 // Semantically, end() would be better here, but we already know
311 // the user did something stupid, so begin() insulates them from
312 // dereferencing an invalid pointer.
313 return begin();
314 }
315 if (!has_index(i))
316 create_index(i);
317 return set_existing(i, v);
318 }
319
320 template<typename Value>
insert(const value_type & new_value)321 pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
322 const value_type& new_value) {
323 DebugCheckInvariants();
324 pair<typename SparseArray<Value>::iterator, bool> p;
325 if (has_index(new_value.index_)) {
326 p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
327 } else {
328 p = make_pair(set_new(new_value.index_, new_value.second), true);
329 }
330 DebugCheckInvariants();
331 return p;
332 }
333
334 template<typename Value>
get(int i,Value defaultv)335 Value SparseArray<Value>::get(int i, Value defaultv) const {
336 if (!has_index(i))
337 return defaultv;
338 return get_existing(i);
339 }
340
341 template<typename Value>
find(int i)342 typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
343 if (has_index(i))
344 return dense_.begin() + sparse_to_dense_[i];
345 return end();
346 }
347
348 template<typename Value>
349 typename SparseArray<Value>::const_iterator
find(int i)350 SparseArray<Value>::find(int i) const {
351 if (has_index(i)) {
352 return dense_.begin() + sparse_to_dense_[i];
353 }
354 return end();
355 }
356
357 template<typename Value>
358 typename SparseArray<Value>::iterator
set_existing(int i,Value v)359 SparseArray<Value>::set_existing(int i, Value v) {
360 DebugCheckInvariants();
361 DCHECK(has_index(i));
362 dense_[sparse_to_dense_[i]].second = v;
363 DebugCheckInvariants();
364 return dense_.begin() + sparse_to_dense_[i];
365 }
366
367 template<typename Value>
368 typename SparseArray<Value>::iterator
set_new(int i,Value v)369 SparseArray<Value>::set_new(int i, Value v) {
370 DebugCheckInvariants();
371 if (static_cast<uint>(i) >= max_size_) {
372 // Semantically, end() would be better here, but we already know
373 // the user did something stupid, so begin() insulates them from
374 // dereferencing an invalid pointer.
375 return begin();
376 }
377 DCHECK(!has_index(i));
378 create_index(i);
379 return set_existing(i, v);
380 }
381
382 template<typename Value>
get_existing(int i)383 Value SparseArray<Value>::get_existing(int i) const {
384 DCHECK(has_index(i));
385 return dense_[sparse_to_dense_[i]].second;
386 }
387
388 template<typename Value>
erase(int i)389 void SparseArray<Value>::erase(int i) {
390 DebugCheckInvariants();
391 if (has_index(i))
392 erase_existing(i);
393 DebugCheckInvariants();
394 }
395
396 template<typename Value>
erase_existing(int i)397 void SparseArray<Value>::erase_existing(int i) {
398 DebugCheckInvariants();
399 DCHECK(has_index(i));
400 int di = sparse_to_dense_[i];
401 if (di < size_ - 1) {
402 dense_[di] = dense_[size_ - 1];
403 sparse_to_dense_[dense_[di].index_] = di;
404 }
405 size_--;
406 DebugCheckInvariants();
407 }
408
409 template<typename Value>
create_index(int i)410 void SparseArray<Value>::create_index(int i) {
411 DCHECK(!has_index(i));
412 DCHECK_LT(size_, max_size_);
413 sparse_to_dense_[i] = size_;
414 dense_[size_].index_ = i;
415 size_++;
416 }
417
SparseArray(int max_size)418 template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
419 max_size_ = max_size;
420 sparse_to_dense_ = new int[max_size];
421 valgrind_ = RunningOnValgrind();
422 dense_.resize(max_size);
423 // Don't need to zero the new memory, but appease Valgrind.
424 if (valgrind_) {
425 for (int i = 0; i < max_size; i++) {
426 sparse_to_dense_[i] = 0xababababU;
427 dense_[i].index_ = 0xababababU;
428 }
429 }
430 size_ = 0;
431 DebugCheckInvariants();
432 }
433
~SparseArray()434 template<typename Value> SparseArray<Value>::~SparseArray() {
435 DebugCheckInvariants();
436 delete[] sparse_to_dense_;
437 }
438
DebugCheckInvariants()439 template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
440 DCHECK_LE(0, size_);
441 DCHECK_LE(size_, max_size_);
442 DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
443 }
444
445 // Comparison function for sorting.
less(const IndexValue & a,const IndexValue & b)446 template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
447 const IndexValue& b) {
448 return a.index_ < b.index_;
449 }
450
451 } // namespace re2
452
453 #endif // RE2_UTIL_SPARSE_ARRAY_H__
454