• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkLatticeIter.h"
9 #include "SkRect.h"
10 
11 /**
12  *  Divs must be in increasing order with no duplicates.
13  */
valid_divs(const int * divs,int count,int start,int end)14 static bool valid_divs(const int* divs, int count, int start, int end) {
15     int prev = start - 1;
16     for (int i = 0; i < count; i++) {
17         if (prev >= divs[i] || divs[i] >= end) {
18             return false;
19         }
20         prev = divs[i];
21     }
22 
23     return true;
24 }
25 
Valid(int width,int height,const SkCanvas::Lattice & lattice)26 bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
27     SkIRect totalBounds = SkIRect::MakeWH(width, height);
28     SkASSERT(lattice.fBounds);
29     const SkIRect latticeBounds = *lattice.fBounds;
30     if (!totalBounds.contains(latticeBounds)) {
31         return false;
32     }
33 
34     bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
35                                               latticeBounds.fLeft == lattice.fXDivs[0]);
36     bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
37                                               latticeBounds.fTop == lattice.fYDivs[0]);
38     if (zeroXDivs && zeroYDivs) {
39         return false;
40     }
41 
42     return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
43         && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
44 }
45 
46 /**
47  *  Count the number of pixels that are in "scalable" patches.
48  */
count_scalable_pixels(const int32_t * divs,int numDivs,bool firstIsScalable,int start,int end)49 static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
50                                  int start, int end) {
51     if (0 == numDivs) {
52         return firstIsScalable ? end - start : 0;
53     }
54 
55     int i;
56     int count;
57     if (firstIsScalable) {
58         count = divs[0] - start;
59         i = 1;
60     } else {
61         count = 0;
62         i = 0;
63     }
64 
65     for (; i < numDivs; i += 2) {
66         // Alternatively, we could use |top| and |bottom| as variable names, instead of
67         // |left| and |right|.
68         int left = divs[i];
69         int right = (i + 1 < numDivs) ? divs[i + 1] : end;
70         count += right - left;
71     }
72 
73     return count;
74 }
75 
76 /**
77  *  Set points for the src and dst rects on subsequent draw calls.
78  */
set_points(float * dst,float * src,const int * divs,int divCount,int srcFixed,int srcScalable,float srcStart,float srcEnd,float dstStart,float dstEnd,bool isScalable)79 static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
80                        int srcScalable, float srcStart, float srcEnd, float dstStart, float dstEnd,
81                        bool isScalable) {
82 
83     float dstLen = dstEnd - dstStart;
84     float scale;
85     if (srcFixed <= dstLen) {
86         // This is the "normal" case, where we scale the "scalable" patches and leave
87         // the other patches fixed.
88         scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
89     } else {
90         // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
91         scale = dstLen / ((float) srcFixed);
92     }
93 
94     src[0] = srcStart;
95     dst[0] = dstStart;
96     for (int i = 0; i < divCount; i++) {
97         src[i + 1] = (float) (divs[i]);
98         float srcDelta = src[i + 1] - src[i];
99         float dstDelta;
100         if (srcFixed <= dstLen) {
101             dstDelta = isScalable ? scale * srcDelta : srcDelta;
102         } else {
103             dstDelta = isScalable ? 0.0f : scale * srcDelta;
104         }
105         dst[i + 1] = dst[i] + dstDelta;
106 
107         // Alternate between "scalable" and "fixed" patches.
108         isScalable = !isScalable;
109     }
110 
111     src[divCount + 1] = srcEnd;
112     dst[divCount + 1] = dstEnd;
113 }
114 
SkLatticeIter(const SkCanvas::Lattice & lattice,const SkRect & dst)115 SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
116     const int* xDivs = lattice.fXDivs;
117     const int origXCount = lattice.fXCount;
118     const int* yDivs = lattice.fYDivs;
119     const int origYCount = lattice.fYCount;
120     SkASSERT(lattice.fBounds);
121     const SkIRect src = *lattice.fBounds;
122 
123     // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
124     // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
125     // first real rectangle "scalable" in the x-direction.
126     //
127     // The same interpretation applies to the y-dimension.
128     //
129     // As we move left to right across the image, alternating patches will be "fixed" or
130     // "scalable" in the x-direction.  Similarly, as move top to bottom, alternating
131     // patches will be "fixed" or "scalable" in the y-direction.
132     int xCount = origXCount;
133     int yCount = origYCount;
134     bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
135     if (xIsScalable) {
136         // Once we've decided that the first patch is "scalable", we don't need the
137         // xDiv.  It is always implied that we start at the edge of the bounds.
138         xDivs++;
139         xCount--;
140     }
141     bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
142     if (yIsScalable) {
143         // Once we've decided that the first patch is "scalable", we don't need the
144         // yDiv.  It is always implied that we start at the edge of the bounds.
145         yDivs++;
146         yCount--;
147     }
148 
149     // Count "scalable" and "fixed" pixels in each dimension.
150     int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
151     int xCountFixed = src.width() - xCountScalable;
152     int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
153     int yCountFixed = src.height() - yCountScalable;
154 
155     fSrcX.reset(xCount + 2);
156     fDstX.reset(xCount + 2);
157     set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
158                src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
159 
160     fSrcY.reset(yCount + 2);
161     fDstY.reset(yCount + 2);
162     set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
163                src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
164 
165     fCurrX = fCurrY = 0;
166     fNumRectsInLattice = (xCount + 1) * (yCount + 1);
167     fNumRectsToDraw = fNumRectsInLattice;
168 
169     if (lattice.fFlags) {
170         fFlags.push_back_n(fNumRectsInLattice);
171 
172         const SkCanvas::Lattice::Flags* flags = lattice.fFlags;
173 
174         bool hasPadRow = (yCount != origYCount);
175         bool hasPadCol = (xCount != origXCount);
176         if (hasPadRow) {
177             // The first row of rects are all empty, skip the first row of flags.
178             flags += origXCount + 1;
179         }
180 
181         int i = 0;
182         for (int y = 0; y < yCount + 1; y++) {
183             for (int x = 0; x < origXCount + 1; x++) {
184                 if (0 == x && hasPadCol) {
185                     // The first column of rects are all empty.  Skip a rect.
186                     flags++;
187                     continue;
188                 }
189 
190                 fFlags[i] = *flags;
191                 flags++;
192                 i++;
193             }
194         }
195 
196         for (int j = 0; j < fFlags.count(); j++) {
197             if (SkCanvas::Lattice::kTransparent_Flags == fFlags[j]) {
198                 fNumRectsToDraw--;
199             }
200         }
201     }
202 }
203 
Valid(int width,int height,const SkIRect & center)204 bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
205     return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
206 }
207 
SkLatticeIter(int w,int h,const SkIRect & c,const SkRect & dst)208 SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
209     SkASSERT(SkIRect::MakeWH(w, h).contains(c));
210 
211     fSrcX.reset(4);
212     fSrcY.reset(4);
213     fDstX.reset(4);
214     fDstY.reset(4);
215 
216     fSrcX[0] = 0;
217     fSrcX[1] = SkIntToScalar(c.fLeft);
218     fSrcX[2] = SkIntToScalar(c.fRight);
219     fSrcX[3] = SkIntToScalar(w);
220 
221     fSrcY[0] = 0;
222     fSrcY[1] = SkIntToScalar(c.fTop);
223     fSrcY[2] = SkIntToScalar(c.fBottom);
224     fSrcY[3] = SkIntToScalar(h);
225 
226     fDstX[0] = dst.fLeft;
227     fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
228     fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
229     fDstX[3] = dst.fRight;
230 
231     fDstY[0] = dst.fTop;
232     fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
233     fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
234     fDstY[3] = dst.fBottom;
235 
236     if (fDstX[1] > fDstX[2]) {
237         fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
238         fDstX[2] = fDstX[1];
239     }
240 
241     if (fDstY[1] > fDstY[2]) {
242         fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
243         fDstY[2] = fDstY[1];
244     }
245 
246     fCurrX = fCurrY = 0;
247     fNumRectsInLattice = 9;
248     fNumRectsToDraw = 9;
249 }
250 
next(SkRect * src,SkRect * dst)251 bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
252     int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
253     if (currRect == fNumRectsInLattice) {
254         return false;
255     }
256 
257     const int x = fCurrX;
258     const int y = fCurrY;
259     SkASSERT(x >= 0 && x < fSrcX.count() - 1);
260     SkASSERT(y >= 0 && y < fSrcY.count() - 1);
261 
262     if (fSrcX.count() - 1 == ++fCurrX) {
263         fCurrX = 0;
264         fCurrY += 1;
265     }
266 
267     if (fFlags.count() > 0 && SkToBool(SkCanvas::Lattice::kTransparent_Flags & fFlags[currRect])) {
268         return this->next(src, dst);
269     }
270 
271     src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
272     dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
273     return true;
274 }
275 
mapDstScaleTranslate(const SkMatrix & matrix)276 void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
277     SkASSERT(matrix.isScaleTranslate());
278     SkScalar tx = matrix.getTranslateX();
279     SkScalar sx = matrix.getScaleX();
280     for (int i = 0; i < fDstX.count(); i++) {
281         fDstX[i] = fDstX[i] * sx + tx;
282     }
283 
284     SkScalar ty = matrix.getTranslateY();
285     SkScalar sy = matrix.getScaleY();
286     for (int i = 0; i < fDstY.count(); i++) {
287         fDstY[i] = fDstY[i] * sy + ty;
288     }
289 }
290