1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkLatticeIter.h"
9 #include "SkRect.h"
10
11 /**
12 * Divs must be in increasing order with no duplicates.
13 */
valid_divs(const int * divs,int count,int start,int end)14 static bool valid_divs(const int* divs, int count, int start, int end) {
15 int prev = start - 1;
16 for (int i = 0; i < count; i++) {
17 if (prev >= divs[i] || divs[i] >= end) {
18 return false;
19 }
20 prev = divs[i];
21 }
22
23 return true;
24 }
25
Valid(int width,int height,const SkCanvas::Lattice & lattice)26 bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
27 SkIRect totalBounds = SkIRect::MakeWH(width, height);
28 SkASSERT(lattice.fBounds);
29 const SkIRect latticeBounds = *lattice.fBounds;
30 if (!totalBounds.contains(latticeBounds)) {
31 return false;
32 }
33
34 bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
35 latticeBounds.fLeft == lattice.fXDivs[0]);
36 bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
37 latticeBounds.fTop == lattice.fYDivs[0]);
38 if (zeroXDivs && zeroYDivs) {
39 return false;
40 }
41
42 return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
43 && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
44 }
45
46 /**
47 * Count the number of pixels that are in "scalable" patches.
48 */
count_scalable_pixels(const int32_t * divs,int numDivs,bool firstIsScalable,int start,int end)49 static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
50 int start, int end) {
51 if (0 == numDivs) {
52 return firstIsScalable ? end - start : 0;
53 }
54
55 int i;
56 int count;
57 if (firstIsScalable) {
58 count = divs[0] - start;
59 i = 1;
60 } else {
61 count = 0;
62 i = 0;
63 }
64
65 for (; i < numDivs; i += 2) {
66 // Alternatively, we could use |top| and |bottom| as variable names, instead of
67 // |left| and |right|.
68 int left = divs[i];
69 int right = (i + 1 < numDivs) ? divs[i + 1] : end;
70 count += right - left;
71 }
72
73 return count;
74 }
75
76 /**
77 * Set points for the src and dst rects on subsequent draw calls.
78 */
set_points(float * dst,float * src,const int * divs,int divCount,int srcFixed,int srcScalable,float srcStart,float srcEnd,float dstStart,float dstEnd,bool isScalable)79 static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
80 int srcScalable, float srcStart, float srcEnd, float dstStart, float dstEnd,
81 bool isScalable) {
82
83 float dstLen = dstEnd - dstStart;
84 float scale;
85 if (srcFixed <= dstLen) {
86 // This is the "normal" case, where we scale the "scalable" patches and leave
87 // the other patches fixed.
88 scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
89 } else {
90 // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
91 scale = dstLen / ((float) srcFixed);
92 }
93
94 src[0] = srcStart;
95 dst[0] = dstStart;
96 for (int i = 0; i < divCount; i++) {
97 src[i + 1] = (float) (divs[i]);
98 float srcDelta = src[i + 1] - src[i];
99 float dstDelta;
100 if (srcFixed <= dstLen) {
101 dstDelta = isScalable ? scale * srcDelta : srcDelta;
102 } else {
103 dstDelta = isScalable ? 0.0f : scale * srcDelta;
104 }
105 dst[i + 1] = dst[i] + dstDelta;
106
107 // Alternate between "scalable" and "fixed" patches.
108 isScalable = !isScalable;
109 }
110
111 src[divCount + 1] = srcEnd;
112 dst[divCount + 1] = dstEnd;
113 }
114
SkLatticeIter(const SkCanvas::Lattice & lattice,const SkRect & dst)115 SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
116 const int* xDivs = lattice.fXDivs;
117 const int origXCount = lattice.fXCount;
118 const int* yDivs = lattice.fYDivs;
119 const int origYCount = lattice.fYCount;
120 SkASSERT(lattice.fBounds);
121 const SkIRect src = *lattice.fBounds;
122
123 // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
124 // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
125 // first real rectangle "scalable" in the x-direction.
126 //
127 // The same interpretation applies to the y-dimension.
128 //
129 // As we move left to right across the image, alternating patches will be "fixed" or
130 // "scalable" in the x-direction. Similarly, as move top to bottom, alternating
131 // patches will be "fixed" or "scalable" in the y-direction.
132 int xCount = origXCount;
133 int yCount = origYCount;
134 bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
135 if (xIsScalable) {
136 // Once we've decided that the first patch is "scalable", we don't need the
137 // xDiv. It is always implied that we start at the edge of the bounds.
138 xDivs++;
139 xCount--;
140 }
141 bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
142 if (yIsScalable) {
143 // Once we've decided that the first patch is "scalable", we don't need the
144 // yDiv. It is always implied that we start at the edge of the bounds.
145 yDivs++;
146 yCount--;
147 }
148
149 // Count "scalable" and "fixed" pixels in each dimension.
150 int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
151 int xCountFixed = src.width() - xCountScalable;
152 int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
153 int yCountFixed = src.height() - yCountScalable;
154
155 fSrcX.reset(xCount + 2);
156 fDstX.reset(xCount + 2);
157 set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
158 src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
159
160 fSrcY.reset(yCount + 2);
161 fDstY.reset(yCount + 2);
162 set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
163 src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
164
165 fCurrX = fCurrY = 0;
166 fNumRectsInLattice = (xCount + 1) * (yCount + 1);
167 fNumRectsToDraw = fNumRectsInLattice;
168
169 if (lattice.fFlags) {
170 fFlags.push_back_n(fNumRectsInLattice);
171
172 const SkCanvas::Lattice::Flags* flags = lattice.fFlags;
173
174 bool hasPadRow = (yCount != origYCount);
175 bool hasPadCol = (xCount != origXCount);
176 if (hasPadRow) {
177 // The first row of rects are all empty, skip the first row of flags.
178 flags += origXCount + 1;
179 }
180
181 int i = 0;
182 for (int y = 0; y < yCount + 1; y++) {
183 for (int x = 0; x < origXCount + 1; x++) {
184 if (0 == x && hasPadCol) {
185 // The first column of rects are all empty. Skip a rect.
186 flags++;
187 continue;
188 }
189
190 fFlags[i] = *flags;
191 flags++;
192 i++;
193 }
194 }
195
196 for (int j = 0; j < fFlags.count(); j++) {
197 if (SkCanvas::Lattice::kTransparent_Flags == fFlags[j]) {
198 fNumRectsToDraw--;
199 }
200 }
201 }
202 }
203
Valid(int width,int height,const SkIRect & center)204 bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
205 return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
206 }
207
SkLatticeIter(int w,int h,const SkIRect & c,const SkRect & dst)208 SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
209 SkASSERT(SkIRect::MakeWH(w, h).contains(c));
210
211 fSrcX.reset(4);
212 fSrcY.reset(4);
213 fDstX.reset(4);
214 fDstY.reset(4);
215
216 fSrcX[0] = 0;
217 fSrcX[1] = SkIntToScalar(c.fLeft);
218 fSrcX[2] = SkIntToScalar(c.fRight);
219 fSrcX[3] = SkIntToScalar(w);
220
221 fSrcY[0] = 0;
222 fSrcY[1] = SkIntToScalar(c.fTop);
223 fSrcY[2] = SkIntToScalar(c.fBottom);
224 fSrcY[3] = SkIntToScalar(h);
225
226 fDstX[0] = dst.fLeft;
227 fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
228 fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
229 fDstX[3] = dst.fRight;
230
231 fDstY[0] = dst.fTop;
232 fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
233 fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
234 fDstY[3] = dst.fBottom;
235
236 if (fDstX[1] > fDstX[2]) {
237 fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
238 fDstX[2] = fDstX[1];
239 }
240
241 if (fDstY[1] > fDstY[2]) {
242 fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
243 fDstY[2] = fDstY[1];
244 }
245
246 fCurrX = fCurrY = 0;
247 fNumRectsInLattice = 9;
248 fNumRectsToDraw = 9;
249 }
250
next(SkRect * src,SkRect * dst)251 bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
252 int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
253 if (currRect == fNumRectsInLattice) {
254 return false;
255 }
256
257 const int x = fCurrX;
258 const int y = fCurrY;
259 SkASSERT(x >= 0 && x < fSrcX.count() - 1);
260 SkASSERT(y >= 0 && y < fSrcY.count() - 1);
261
262 if (fSrcX.count() - 1 == ++fCurrX) {
263 fCurrX = 0;
264 fCurrY += 1;
265 }
266
267 if (fFlags.count() > 0 && SkToBool(SkCanvas::Lattice::kTransparent_Flags & fFlags[currRect])) {
268 return this->next(src, dst);
269 }
270
271 src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
272 dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
273 return true;
274 }
275
mapDstScaleTranslate(const SkMatrix & matrix)276 void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
277 SkASSERT(matrix.isScaleTranslate());
278 SkScalar tx = matrix.getTranslateX();
279 SkScalar sx = matrix.getScaleX();
280 for (int i = 0; i < fDstX.count(); i++) {
281 fDstX[i] = fDstX[i] * sx + tx;
282 }
283
284 SkScalar ty = matrix.getTranslateY();
285 SkScalar sy = matrix.getScaleY();
286 for (int i = 0; i < fDstY.count(); i++) {
287 fDstY[i] = fDstY[i] * sy + ty;
288 }
289 }
290