1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrPathUtils.h"
9
10 #include "GrTypes.h"
11 #include "SkMathPriv.h"
12
13 static const SkScalar gMinCurveTol = 0.0001f;
14
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)15 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
16 const SkMatrix& viewM,
17 const SkRect& pathBounds) {
18 // In order to tesselate the path we get a bound on how much the matrix can
19 // scale when mapping to screen coordinates.
20 SkScalar stretch = viewM.getMaxScale();
21
22 if (stretch < 0) {
23 // take worst case mapRadius amoung four corners.
24 // (less than perfect)
25 for (int i = 0; i < 4; ++i) {
26 SkMatrix mat;
27 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
28 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
29 mat.postConcat(viewM);
30 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
31 }
32 }
33 SkScalar srcTol = devTol / stretch;
34 if (srcTol < gMinCurveTol) {
35 srcTol = gMinCurveTol;
36 }
37 return srcTol;
38 }
39
quadraticPointCount(const SkPoint points[],SkScalar tol)40 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
41 // You should have called scaleToleranceToSrc, which guarantees this
42 SkASSERT(tol >= gMinCurveTol);
43
44 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
45 if (!SkScalarIsFinite(d)) {
46 return kMaxPointsPerCurve;
47 } else if (d <= tol) {
48 return 1;
49 } else {
50 // Each time we subdivide, d should be cut in 4. So we need to
51 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52 // points.
53 // 2^(log4(x)) = sqrt(x);
54 SkScalar divSqrt = SkScalarSqrt(d / tol);
55 if (((SkScalar)SK_MaxS32) <= divSqrt) {
56 return kMaxPointsPerCurve;
57 } else {
58 int temp = SkScalarCeilToInt(divSqrt);
59 int pow2 = GrNextPow2(temp);
60 // Because of NaNs & INFs we can wind up with a degenerate temp
61 // such that pow2 comes out negative. Also, our point generator
62 // will always output at least one pt.
63 if (pow2 < 1) {
64 pow2 = 1;
65 }
66 return SkTMin(pow2, kMaxPointsPerCurve);
67 }
68 }
69 }
70
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)71 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
72 const SkPoint& p1,
73 const SkPoint& p2,
74 SkScalar tolSqd,
75 SkPoint** points,
76 uint32_t pointsLeft) {
77 if (pointsLeft < 2 ||
78 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
79 (*points)[0] = p2;
80 *points += 1;
81 return 1;
82 }
83
84 SkPoint q[] = {
85 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
86 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
87 };
88 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
89
90 pointsLeft >>= 1;
91 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
92 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
93 return a + b;
94 }
95
cubicPointCount(const SkPoint points[],SkScalar tol)96 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
97 SkScalar tol) {
98 // You should have called scaleToleranceToSrc, which guarantees this
99 SkASSERT(tol >= gMinCurveTol);
100
101 SkScalar d = SkTMax(
102 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
103 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
104 d = SkScalarSqrt(d);
105 if (!SkScalarIsFinite(d)) {
106 return kMaxPointsPerCurve;
107 } else if (d <= tol) {
108 return 1;
109 } else {
110 SkScalar divSqrt = SkScalarSqrt(d / tol);
111 if (((SkScalar)SK_MaxS32) <= divSqrt) {
112 return kMaxPointsPerCurve;
113 } else {
114 int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
115 int pow2 = GrNextPow2(temp);
116 // Because of NaNs & INFs we can wind up with a degenerate temp
117 // such that pow2 comes out negative. Also, our point generator
118 // will always output at least one pt.
119 if (pow2 < 1) {
120 pow2 = 1;
121 }
122 return SkTMin(pow2, kMaxPointsPerCurve);
123 }
124 }
125 }
126
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)127 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
128 const SkPoint& p1,
129 const SkPoint& p2,
130 const SkPoint& p3,
131 SkScalar tolSqd,
132 SkPoint** points,
133 uint32_t pointsLeft) {
134 if (pointsLeft < 2 ||
135 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
136 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
137 (*points)[0] = p3;
138 *points += 1;
139 return 1;
140 }
141 SkPoint q[] = {
142 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
143 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
144 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
145 };
146 SkPoint r[] = {
147 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
148 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
149 };
150 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
151 pointsLeft >>= 1;
152 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
153 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
154 return a + b;
155 }
156
worstCasePointCount(const SkPath & path,int * subpaths,SkScalar tol)157 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
158 // You should have called scaleToleranceToSrc, which guarantees this
159 SkASSERT(tol >= gMinCurveTol);
160
161 int pointCount = 0;
162 *subpaths = 1;
163
164 bool first = true;
165
166 SkPath::Iter iter(path, false);
167 SkPath::Verb verb;
168
169 SkPoint pts[4];
170 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
171
172 switch (verb) {
173 case SkPath::kLine_Verb:
174 pointCount += 1;
175 break;
176 case SkPath::kConic_Verb: {
177 SkScalar weight = iter.conicWeight();
178 SkAutoConicToQuads converter;
179 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
180 for (int i = 0; i < converter.countQuads(); ++i) {
181 pointCount += quadraticPointCount(quadPts + 2*i, tol);
182 }
183 }
184 case SkPath::kQuad_Verb:
185 pointCount += quadraticPointCount(pts, tol);
186 break;
187 case SkPath::kCubic_Verb:
188 pointCount += cubicPointCount(pts, tol);
189 break;
190 case SkPath::kMove_Verb:
191 pointCount += 1;
192 if (!first) {
193 ++(*subpaths);
194 }
195 break;
196 default:
197 break;
198 }
199 first = false;
200 }
201 return pointCount;
202 }
203
set(const SkPoint qPts[3])204 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
205 SkMatrix m;
206 // We want M such that M * xy_pt = uv_pt
207 // We know M * control_pts = [0 1/2 1]
208 // [0 0 1]
209 // [1 1 1]
210 // And control_pts = [x0 x1 x2]
211 // [y0 y1 y2]
212 // [1 1 1 ]
213 // We invert the control pt matrix and post concat to both sides to get M.
214 // Using the known form of the control point matrix and the result, we can
215 // optimize and improve precision.
216
217 double x0 = qPts[0].fX;
218 double y0 = qPts[0].fY;
219 double x1 = qPts[1].fX;
220 double y1 = qPts[1].fY;
221 double x2 = qPts[2].fX;
222 double y2 = qPts[2].fY;
223 double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
224
225 if (!sk_float_isfinite(det)
226 || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
227 // The quad is degenerate. Hopefully this is rare. Find the pts that are
228 // farthest apart to compute a line (unless it is really a pt).
229 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
230 int maxEdge = 0;
231 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
232 if (d > maxD) {
233 maxD = d;
234 maxEdge = 1;
235 }
236 d = qPts[2].distanceToSqd(qPts[0]);
237 if (d > maxD) {
238 maxD = d;
239 maxEdge = 2;
240 }
241 // We could have a tolerance here, not sure if it would improve anything
242 if (maxD > 0) {
243 // Set the matrix to give (u = 0, v = distance_to_line)
244 SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
245 // when looking from the point 0 down the line we want positive
246 // distances to be to the left. This matches the non-degenerate
247 // case.
248 lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
249 // first row
250 fM[0] = 0;
251 fM[1] = 0;
252 fM[2] = 0;
253 // second row
254 fM[3] = lineVec.fX;
255 fM[4] = lineVec.fY;
256 fM[5] = -lineVec.dot(qPts[maxEdge]);
257 } else {
258 // It's a point. It should cover zero area. Just set the matrix such
259 // that (u, v) will always be far away from the quad.
260 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
261 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
262 }
263 } else {
264 double scale = 1.0/det;
265
266 // compute adjugate matrix
267 double a2, a3, a4, a5, a6, a7, a8;
268 a2 = x1*y2-x2*y1;
269
270 a3 = y2-y0;
271 a4 = x0-x2;
272 a5 = x2*y0-x0*y2;
273
274 a6 = y0-y1;
275 a7 = x1-x0;
276 a8 = x0*y1-x1*y0;
277
278 // this performs the uv_pts*adjugate(control_pts) multiply,
279 // then does the scale by 1/det afterwards to improve precision
280 m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
281 m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale);
282 m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
283
284 m[SkMatrix::kMSkewY] = (float)(a6*scale);
285 m[SkMatrix::kMScaleY] = (float)(a7*scale);
286 m[SkMatrix::kMTransY] = (float)(a8*scale);
287
288 // kMPersp0 & kMPersp1 should algebraically be zero
289 m[SkMatrix::kMPersp0] = 0.0f;
290 m[SkMatrix::kMPersp1] = 0.0f;
291 m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
292
293 // It may not be normalized to have 1.0 in the bottom right
294 float m33 = m.get(SkMatrix::kMPersp2);
295 if (1.f != m33) {
296 m33 = 1.f / m33;
297 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
298 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
299 fM[2] = m33 * m.get(SkMatrix::kMTransX);
300 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
301 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
302 fM[5] = m33 * m.get(SkMatrix::kMTransY);
303 } else {
304 fM[0] = m.get(SkMatrix::kMScaleX);
305 fM[1] = m.get(SkMatrix::kMSkewX);
306 fM[2] = m.get(SkMatrix::kMTransX);
307 fM[3] = m.get(SkMatrix::kMSkewY);
308 fM[4] = m.get(SkMatrix::kMScaleY);
309 fM[5] = m.get(SkMatrix::kMTransY);
310 }
311 }
312 }
313
314 ////////////////////////////////////////////////////////////////////////////////
315
316 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
317 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
318 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)319 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
320 SkMatrix& klm = *out;
321 const SkScalar w2 = 2.f * weight;
322 klm[0] = p[2].fY - p[0].fY;
323 klm[1] = p[0].fX - p[2].fX;
324 klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
325
326 klm[3] = w2 * (p[1].fY - p[0].fY);
327 klm[4] = w2 * (p[0].fX - p[1].fX);
328 klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
329
330 klm[6] = w2 * (p[2].fY - p[1].fY);
331 klm[7] = w2 * (p[1].fX - p[2].fX);
332 klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
333
334 // scale the max absolute value of coeffs to 10
335 SkScalar scale = 0.f;
336 for (int i = 0; i < 9; ++i) {
337 scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
338 }
339 SkASSERT(scale > 0.f);
340 scale = 10.f / scale;
341 for (int i = 0; i < 9; ++i) {
342 klm[i] *= scale;
343 }
344 }
345
346 ////////////////////////////////////////////////////////////////////////////////
347
348 namespace {
349
350 // a is the first control point of the cubic.
351 // ab is the vector from a to the second control point.
352 // dc is the vector from the fourth to the third control point.
353 // d is the fourth control point.
354 // p is the candidate quadratic control point.
355 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathPriv::FirstDirection dir,const SkPoint p)356 bool is_point_within_cubic_tangents(const SkPoint& a,
357 const SkVector& ab,
358 const SkVector& dc,
359 const SkPoint& d,
360 SkPathPriv::FirstDirection dir,
361 const SkPoint p) {
362 SkVector ap = p - a;
363 SkScalar apXab = ap.cross(ab);
364 if (SkPathPriv::kCW_FirstDirection == dir) {
365 if (apXab > 0) {
366 return false;
367 }
368 } else {
369 SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
370 if (apXab < 0) {
371 return false;
372 }
373 }
374
375 SkVector dp = p - d;
376 SkScalar dpXdc = dp.cross(dc);
377 if (SkPathPriv::kCW_FirstDirection == dir) {
378 if (dpXdc < 0) {
379 return false;
380 }
381 } else {
382 SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
383 if (dpXdc > 0) {
384 return false;
385 }
386 }
387 return true;
388 }
389
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,bool constrainWithinTangents,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)390 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
391 SkScalar toleranceSqd,
392 bool constrainWithinTangents,
393 SkPathPriv::FirstDirection dir,
394 SkTArray<SkPoint, true>* quads,
395 int sublevel = 0) {
396
397 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
398 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
399
400 SkVector ab = p[1] - p[0];
401 SkVector dc = p[2] - p[3];
402
403 if (ab.lengthSqd() < SK_ScalarNearlyZero) {
404 if (dc.lengthSqd() < SK_ScalarNearlyZero) {
405 SkPoint* degQuad = quads->push_back_n(3);
406 degQuad[0] = p[0];
407 degQuad[1] = p[0];
408 degQuad[2] = p[3];
409 return;
410 }
411 ab = p[2] - p[0];
412 }
413 if (dc.lengthSqd() < SK_ScalarNearlyZero) {
414 dc = p[1] - p[3];
415 }
416
417 // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
418 // constraint that the quad point falls between the tangents becomes hard to enforce and we are
419 // likely to hit the max subdivision count. However, in this case the cubic is approaching a
420 // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
421 // control points are very close to the baseline vector. If so then we just pick quadratic
422 // points on the control polygon.
423
424 if (constrainWithinTangents) {
425 SkVector da = p[0] - p[3];
426 bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
427 ab.lengthSqd() < SK_ScalarNearlyZero;
428 if (!doQuads) {
429 SkScalar invDALengthSqd = da.lengthSqd();
430 if (invDALengthSqd > SK_ScalarNearlyZero) {
431 invDALengthSqd = SkScalarInvert(invDALengthSqd);
432 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
433 // same goes for point c using vector cd.
434 SkScalar detABSqd = ab.cross(da);
435 detABSqd = SkScalarSquare(detABSqd);
436 SkScalar detDCSqd = dc.cross(da);
437 detDCSqd = SkScalarSquare(detDCSqd);
438 if (detABSqd * invDALengthSqd < toleranceSqd &&
439 detDCSqd * invDALengthSqd < toleranceSqd)
440 {
441 doQuads = true;
442 }
443 }
444 }
445 if (doQuads) {
446 SkPoint b = p[0] + ab;
447 SkPoint c = p[3] + dc;
448 SkPoint mid = b + c;
449 mid.scale(SK_ScalarHalf);
450 // Insert two quadratics to cover the case when ab points away from d and/or dc
451 // points away from a.
452 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
453 SkPoint* qpts = quads->push_back_n(6);
454 qpts[0] = p[0];
455 qpts[1] = b;
456 qpts[2] = mid;
457 qpts[3] = mid;
458 qpts[4] = c;
459 qpts[5] = p[3];
460 } else {
461 SkPoint* qpts = quads->push_back_n(3);
462 qpts[0] = p[0];
463 qpts[1] = mid;
464 qpts[2] = p[3];
465 }
466 return;
467 }
468 }
469
470 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
471 static const int kMaxSubdivs = 10;
472
473 ab.scale(kLengthScale);
474 dc.scale(kLengthScale);
475
476 // e0 and e1 are extrapolations along vectors ab and dc.
477 SkVector c0 = p[0];
478 c0 += ab;
479 SkVector c1 = p[3];
480 c1 += dc;
481
482 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
483 if (dSqd < toleranceSqd) {
484 SkPoint cAvg = c0;
485 cAvg += c1;
486 cAvg.scale(SK_ScalarHalf);
487
488 bool subdivide = false;
489
490 if (constrainWithinTangents &&
491 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
492 // choose a new cAvg that is the intersection of the two tangent lines.
493 ab.setOrthog(ab);
494 SkScalar z0 = -ab.dot(p[0]);
495 dc.setOrthog(dc);
496 SkScalar z1 = -dc.dot(p[3]);
497 cAvg.fX = ab.fY * z1 - z0 * dc.fY;
498 cAvg.fY = z0 * dc.fX - ab.fX * z1;
499 SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
500 z = SkScalarInvert(z);
501 cAvg.fX *= z;
502 cAvg.fY *= z;
503 if (sublevel <= kMaxSubdivs) {
504 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
505 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
506 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
507 // the distances and tolerance can't be negative.
508 // (d0 + d1)^2 > toleranceSqd
509 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
510 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
511 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
512 }
513 }
514 if (!subdivide) {
515 SkPoint* pts = quads->push_back_n(3);
516 pts[0] = p[0];
517 pts[1] = cAvg;
518 pts[2] = p[3];
519 return;
520 }
521 }
522 SkPoint choppedPts[7];
523 SkChopCubicAtHalf(p, choppedPts);
524 convert_noninflect_cubic_to_quads(choppedPts + 0,
525 toleranceSqd,
526 constrainWithinTangents,
527 dir,
528 quads,
529 sublevel + 1);
530 convert_noninflect_cubic_to_quads(choppedPts + 3,
531 toleranceSqd,
532 constrainWithinTangents,
533 dir,
534 quads,
535 sublevel + 1);
536 }
537 }
538
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)539 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
540 SkScalar tolScale,
541 SkTArray<SkPoint, true>* quads) {
542 SkPoint chopped[10];
543 int count = SkChopCubicAtInflections(p, chopped);
544
545 const SkScalar tolSqd = SkScalarSquare(tolScale);
546
547 for (int i = 0; i < count; ++i) {
548 SkPoint* cubic = chopped + 3*i;
549 // The direction param is ignored if the third param is false.
550 convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
551 SkPathPriv::kCCW_FirstDirection, quads);
552 }
553 }
554
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads)555 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
556 SkScalar tolScale,
557 SkPathPriv::FirstDirection dir,
558 SkTArray<SkPoint, true>* quads) {
559 SkPoint chopped[10];
560 int count = SkChopCubicAtInflections(p, chopped);
561
562 const SkScalar tolSqd = SkScalarSquare(tolScale);
563
564 for (int i = 0; i < count; ++i) {
565 SkPoint* cubic = chopped + 3*i;
566 convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
567 }
568 }
569
570 ////////////////////////////////////////////////////////////////////////////////
571
572 /**
573 * Computes an SkMatrix that can find the cubic KLM functionals as follows:
574 *
575 * | ..K.. | | ..kcoeffs.. |
576 * | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
577 * | ..M.. | | ..mcoeffs.. |
578 *
579 * 'kcoeffs' are the power basis coefficients to a scalar valued cubic function that returns the
580 * signed distance to line K from a given point on the curve:
581 *
582 * k(t,s) = C(t,s) * K [C(t,s) is defined in the following comment]
583 *
584 * The same applies for lcoeffs and mcoeffs. These are found separately, depending on the type of
585 * curve. There are 4 coefficients but 3 rows in the matrix, so in order to do this calculation the
586 * caller must first remove a specific column of coefficients.
587 *
588 * @return which column of klm coefficients to exclude from the calculation.
589 */
calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4],SkMatrix * out)590 static int calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4], SkMatrix* out) {
591 using SkScalar4 = SkNx<4, SkScalar>;
592
593 // First we convert the bezier coordinates 'pts' to power basis coefficients X,Y,W=[0 0 0 1].
594 // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
595 //
596 // | X Y 0 |
597 // C(t,s) = [t^3 t^2*s t*s^2 s^3] * | . . 0 |
598 // | . . 0 |
599 // | . . 1 |
600 //
601 const SkScalar4 M3[3] = {SkScalar4(-1, 3, -3, 1),
602 SkScalar4(3, -6, 3, 0),
603 SkScalar4(-3, 3, 0, 0)};
604 // 4th column of M3 = SkScalar4(1, 0, 0, 0)};
605 SkScalar4 X(pts[3].x(), 0, 0, 0);
606 SkScalar4 Y(pts[3].y(), 0, 0, 0);
607 for (int i = 2; i >= 0; --i) {
608 X += M3[i] * pts[i].x();
609 Y += M3[i] * pts[i].y();
610 }
611
612 // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
613 // of the top three rows. We toss the row that leaves us with the largest absolute determinant.
614 // Since the right column will be [0 0 1], the determinant reduces to x0*y1 - y0*x1.
615 SkScalar absDet[4];
616 const SkScalar4 DETX1 = SkNx_shuffle<1,0,0,3>(X), DETY1 = SkNx_shuffle<1,0,0,3>(Y);
617 const SkScalar4 DETX2 = SkNx_shuffle<2,2,1,3>(X), DETY2 = SkNx_shuffle<2,2,1,3>(Y);
618 const SkScalar4 DET = DETX1 * DETY2 - DETY1 * DETX2;
619 DET.abs().store(absDet);
620 const int skipRow = absDet[0] > absDet[2] ? (absDet[0] > absDet[1] ? 0 : 1)
621 : (absDet[1] > absDet[2] ? 1 : 2);
622 const SkScalar rdet = 1 / DET[skipRow];
623 const int row0 = (0 != skipRow) ? 0 : 1;
624 const int row1 = (2 == skipRow) ? 1 : 2;
625
626 // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
627 // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
628 //
629 // | y1 -x1 x1*y2 - y1*x2 |
630 // 1/det * | -y0 x0 -x0*y2 + y0*x2 |
631 // | 0 0 det |
632 //
633 const SkScalar4 R(rdet, rdet, rdet, 1);
634 X *= R;
635 Y *= R;
636
637 SkScalar x[4], y[4], z[4];
638 X.store(x);
639 Y.store(y);
640 (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
641
642 out->setAll( y[row1], -x[row1], z[row1],
643 -y[row0], x[row0], -z[row0],
644 0, 0, 1);
645
646 return skipRow;
647 }
648
calc_serp_klm(const SkPoint pts[4],SkScalar tl,SkScalar sl,SkScalar tm,SkScalar sm,SkMatrix * klm)649 static void calc_serp_klm(const SkPoint pts[4], SkScalar tl, SkScalar sl, SkScalar tm, SkScalar sm,
650 SkMatrix* klm) {
651 SkMatrix CIT;
652 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
653
654 SkMatrix klmCoeffs;
655 int col = 0;
656 if (0 != skipCol) {
657 klmCoeffs[0] = 0;
658 klmCoeffs[3] = -sl * sl * sl;
659 klmCoeffs[6] = -sm * sm * sm;
660 ++col;
661 }
662 if (1 != skipCol) {
663 klmCoeffs[col + 0] = sl * sm;
664 klmCoeffs[col + 3] = 3 * sl * sl * tl;
665 klmCoeffs[col + 6] = 3 * sm * sm * tm;
666 ++col;
667 }
668 if (2 != skipCol) {
669 klmCoeffs[col + 0] = -tl * sm - tm * sl;
670 klmCoeffs[col + 3] = -3 * sl * tl * tl;
671 klmCoeffs[col + 6] = -3 * sm * tm * tm;
672 ++col;
673 }
674
675 SkASSERT(2 == col);
676 klmCoeffs[2] = tl * tm;
677 klmCoeffs[5] = tl * tl * tl;
678 klmCoeffs[8] = tm * tm * tm;
679
680 klm->setConcat(klmCoeffs, CIT);
681 }
682
calc_loop_klm(const SkPoint pts[4],SkScalar td,SkScalar sd,SkScalar te,SkScalar se,SkMatrix * klm)683 static void calc_loop_klm(const SkPoint pts[4], SkScalar td, SkScalar sd, SkScalar te, SkScalar se,
684 SkMatrix* klm) {
685 SkMatrix CIT;
686 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
687
688 const SkScalar tdse = td * se;
689 const SkScalar tesd = te * sd;
690
691 SkMatrix klmCoeffs;
692 int col = 0;
693 if (0 != skipCol) {
694 klmCoeffs[0] = 0;
695 klmCoeffs[3] = -sd * sd * se;
696 klmCoeffs[6] = -se * se * sd;
697 ++col;
698 }
699 if (1 != skipCol) {
700 klmCoeffs[col + 0] = sd * se;
701 klmCoeffs[col + 3] = sd * (2 * tdse + tesd);
702 klmCoeffs[col + 6] = se * (2 * tesd + tdse);
703 ++col;
704 }
705 if (2 != skipCol) {
706 klmCoeffs[col + 0] = -tdse - tesd;
707 klmCoeffs[col + 3] = -td * (tdse + 2 * tesd);
708 klmCoeffs[col + 6] = -te * (tesd + 2 * tdse);
709 ++col;
710 }
711
712 SkASSERT(2 == col);
713 klmCoeffs[2] = td * te;
714 klmCoeffs[5] = td * td * te;
715 klmCoeffs[8] = te * te * td;
716
717 klm->setConcat(klmCoeffs, CIT);
718 }
719
720 // For the case when we have a cusp at a parameter value of infinity (discr == 0, d1 == 0).
calc_inf_cusp_klm(const SkPoint pts[4],SkScalar tn,SkScalar sn,SkMatrix * klm)721 static void calc_inf_cusp_klm(const SkPoint pts[4], SkScalar tn, SkScalar sn, SkMatrix* klm) {
722 SkMatrix CIT;
723 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
724
725 SkMatrix klmCoeffs;
726 int col = 0;
727 if (0 != skipCol) {
728 klmCoeffs[0] = 0;
729 klmCoeffs[3] = -sn * sn * sn;
730 ++col;
731 }
732 if (1 != skipCol) {
733 klmCoeffs[col + 0] = 0;
734 klmCoeffs[col + 3] = 3 * sn * sn * tn;
735 ++col;
736 }
737 if (2 != skipCol) {
738 klmCoeffs[col + 0] = -sn;
739 klmCoeffs[col + 3] = -3 * sn * tn * tn;
740 ++col;
741 }
742
743 SkASSERT(2 == col);
744 klmCoeffs[2] = tn;
745 klmCoeffs[5] = tn * tn * tn;
746
747 klmCoeffs[6] = 0;
748 klmCoeffs[7] = 0;
749 klmCoeffs[8] = 1;
750
751 klm->setConcat(klmCoeffs, CIT);
752 }
753
754 // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
755 // implicit becomes:
756 //
757 // k^3 - l*m == k^3 - l*k == k * (k^2 - l)
758 //
759 // In the quadratic case we can simply assign fixed values at each control point:
760 //
761 // | ..K.. | | pts[0] pts[1] pts[2] pts[3] | | 0 1/3 2/3 1 |
762 // | ..L.. | * | . . . . | == | 0 0 1/3 1 |
763 // | ..K.. | | 1 1 1 1 | | 0 1/3 2/3 1 |
764 //
calc_quadratic_klm(const SkPoint pts[4],double d3,SkMatrix * klm)765 static void calc_quadratic_klm(const SkPoint pts[4], double d3, SkMatrix* klm) {
766 SkMatrix klmAtPts;
767 klmAtPts.setAll(0, 1.f/3, 1,
768 0, 0, 1,
769 0, 1.f/3, 1);
770
771 SkMatrix inversePts;
772 inversePts.setAll(pts[0].x(), pts[1].x(), pts[3].x(),
773 pts[0].y(), pts[1].y(), pts[3].y(),
774 1, 1, 1);
775 SkAssertResult(inversePts.invert(&inversePts));
776
777 klm->setConcat(klmAtPts, inversePts);
778
779 // If d3 > 0 we need to flip the orientation of our curve
780 // This is done by negating the k and l values
781 if (d3 > 0) {
782 klm->postScale(-1, -1);
783 }
784 }
785
786 // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
787 // the following implicit:
788 //
789 // k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
790 //
calc_line_klm(const SkPoint pts[4],SkMatrix * klm)791 static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
792 SkScalar ny = pts[0].x() - pts[3].x();
793 SkScalar nx = pts[3].y() - pts[0].y();
794 SkScalar k = nx * pts[0].x() + ny * pts[0].y();
795 klm->setAll( 0, 0, 0,
796 0, 0, 1,
797 -nx, -ny, k);
798 }
799
getCubicKLM(const SkPoint src[4],SkMatrix * klm,double t[2],double s[2])800 SkCubicType GrPathUtils::getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2],
801 double s[2]) {
802 double d[4];
803 SkCubicType type = SkClassifyCubic(src, t, s, d);
804
805 const SkScalar tt[2] = {static_cast<SkScalar>(t[0]), static_cast<SkScalar>(t[1])};
806 const SkScalar ss[2] = {static_cast<SkScalar>(s[0]), static_cast<SkScalar>(s[1])};
807
808 switch (type) {
809 case SkCubicType::kSerpentine:
810 calc_serp_klm(src, tt[0], ss[0], tt[1], ss[1], klm);
811 break;
812 case SkCubicType::kLoop:
813 calc_loop_klm(src, tt[0], ss[0], tt[1], ss[1], klm);
814 break;
815 case SkCubicType::kLocalCusp:
816 calc_serp_klm(src, tt[0], ss[0], tt[1], ss[1], klm);
817 break;
818 case SkCubicType::kCuspAtInfinity:
819 calc_inf_cusp_klm(src, tt[0], ss[0], klm);
820 break;
821 case SkCubicType::kQuadratic:
822 calc_quadratic_klm(src, d[3], klm);
823 break;
824 case SkCubicType::kLineOrPoint:
825 calc_line_klm(src, klm);
826 break;
827 }
828
829 return type;
830 }
831
chopCubicAtLoopIntersection(const SkPoint src[4],SkPoint dst[10],SkMatrix * klm,int * loopIndex)832 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
833 int* loopIndex) {
834 SkSTArray<2, SkScalar> chops;
835 *loopIndex = -1;
836
837 double t[2], s[2];
838 if (SkCubicType::kLoop == GrPathUtils::getCubicKLM(src, klm, t, s)) {
839 SkScalar t0 = static_cast<SkScalar>(t[0] / s[0]);
840 SkScalar t1 = static_cast<SkScalar>(t[1] / s[1]);
841 SkASSERT(t0 <= t1); // Technically t0 != t1 in a loop, but there may be FP error.
842
843 if (t0 < 1 && t1 > 0) {
844 *loopIndex = 0;
845 if (t0 > 0) {
846 chops.push_back(t0);
847 *loopIndex = 1;
848 }
849 if (t1 < 1) {
850 chops.push_back(t1);
851 *loopIndex = chops.count() - 1;
852 }
853 }
854 }
855
856 SkChopCubicAt(src, dst, chops.begin(), chops.count());
857 return chops.count() + 1;
858 }
859