• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- subzero/src/IceTargetLoweringARM32.cpp - ARM32 lowering ------------===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements the TargetLoweringARM32 class, which consists almost
12 /// entirely of the lowering sequence for each high-level instruction.
13 ///
14 //===----------------------------------------------------------------------===//
15 #include "IceTargetLoweringARM32.h"
16 
17 #include "IceCfg.h"
18 #include "IceCfgNode.h"
19 #include "IceClFlags.h"
20 #include "IceDefs.h"
21 #include "IceELFObjectWriter.h"
22 #include "IceGlobalInits.h"
23 #include "IceInstARM32.def"
24 #include "IceInstARM32.h"
25 #include "IceInstVarIter.h"
26 #include "IceLiveness.h"
27 #include "IceOperand.h"
28 #include "IcePhiLoweringImpl.h"
29 #include "IceRegistersARM32.h"
30 #include "IceTargetLoweringARM32.def"
31 #include "IceUtils.h"
32 #include "llvm/Support/MathExtras.h"
33 
34 #include <algorithm>
35 #include <array>
36 #include <utility>
37 
38 namespace ARM32 {
createTargetLowering(::Ice::Cfg * Func)39 std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) {
40   return ::Ice::ARM32::TargetARM32::create(Func);
41 }
42 
43 std::unique_ptr<::Ice::TargetDataLowering>
createTargetDataLowering(::Ice::GlobalContext * Ctx)44 createTargetDataLowering(::Ice::GlobalContext *Ctx) {
45   return ::Ice::ARM32::TargetDataARM32::create(Ctx);
46 }
47 
48 std::unique_ptr<::Ice::TargetHeaderLowering>
createTargetHeaderLowering(::Ice::GlobalContext * Ctx)49 createTargetHeaderLowering(::Ice::GlobalContext *Ctx) {
50   return ::Ice::ARM32::TargetHeaderARM32::create(Ctx);
51 }
52 
staticInit(::Ice::GlobalContext * Ctx)53 void staticInit(::Ice::GlobalContext *Ctx) {
54   ::Ice::ARM32::TargetARM32::staticInit(Ctx);
55   if (Ice::getFlags().getUseNonsfi()) {
56     // In nonsfi, we need to reference the _GLOBAL_OFFSET_TABLE_ for accessing
57     // globals. The GOT is an external symbol (i.e., it is not defined in the
58     // pexe) so we need to register it as such so that ELF emission won't barf
59     // on an "unknown" symbol. The GOT is added to the External symbols list
60     // here because staticInit() is invoked in a single-thread context.
61     Ctx->getConstantExternSym(Ctx->getGlobalString(::Ice::GlobalOffsetTable));
62   }
63 }
64 
shouldBePooled(const::Ice::Constant * C)65 bool shouldBePooled(const ::Ice::Constant *C) {
66   return ::Ice::ARM32::TargetARM32::shouldBePooled(C);
67 }
68 
getPointerType()69 ::Ice::Type getPointerType() {
70   return ::Ice::ARM32::TargetARM32::getPointerType();
71 }
72 
73 } // end of namespace ARM32
74 
75 namespace Ice {
76 namespace ARM32 {
77 
78 namespace {
79 
80 /// SizeOf is used to obtain the size of an initializer list as a constexpr
81 /// expression. This is only needed until our C++ library is updated to
82 /// C++ 14 -- which defines constexpr members to std::initializer_list.
83 class SizeOf {
84   SizeOf(const SizeOf &) = delete;
85   SizeOf &operator=(const SizeOf &) = delete;
86 
87 public:
SizeOf()88   constexpr SizeOf() : Size(0) {}
89   template <typename... T>
SizeOf(T...)90   explicit constexpr SizeOf(T...)
91       : Size(__length<T...>::value) {}
size() const92   constexpr SizeT size() const { return Size; }
93 
94 private:
95   template <typename T, typename... U> struct __length {
96     static constexpr std::size_t value = 1 + __length<U...>::value;
97   };
98 
99   template <typename T> struct __length<T> {
100     static constexpr std::size_t value = 1;
101   };
102 
103   const std::size_t Size;
104 };
105 
106 } // end of anonymous namespace
107 
108 // Defines the RegARM32::Table table with register information.
109 RegARM32::RegTableType RegARM32::RegTable[RegARM32::Reg_NUM] = {
110 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
111           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
112   {                                                                            \
113     name, encode, cc_arg, scratch, preserved, stackptr, frameptr, isGPR,       \
114         isInt, isI64Pair, isFP32, isFP64, isVec128,                            \
115         (SizeOf alias_init).size(), alias_init                                 \
116   }                                                                            \
117   ,
118     REGARM32_TABLE
119 #undef X
120 };
121 
122 namespace {
123 
124 // The following table summarizes the logic for lowering the icmp instruction
125 // for i32 and narrower types. Each icmp condition has a clear mapping to an
126 // ARM32 conditional move instruction.
127 
128 const struct TableIcmp32_ {
129   CondARM32::Cond Mapping;
130 } TableIcmp32[] = {
131 #define X(val, is_signed, swapped64, C_32, C1_64, C2_64, C_V, INV_V, NEG_V)    \
132   { CondARM32::C_32 }                                                          \
133   ,
134     ICMPARM32_TABLE
135 #undef X
136 };
137 
138 // The following table summarizes the logic for lowering the icmp instruction
139 // for the i64 type. Two conditional moves are needed for setting to 1 or 0.
140 // The operands may need to be swapped, and there is a slight difference for
141 // signed vs unsigned (comparing hi vs lo first, and using cmp vs sbc).
142 const struct TableIcmp64_ {
143   bool IsSigned;
144   bool Swapped;
145   CondARM32::Cond C1, C2;
146 } TableIcmp64[] = {
147 #define X(val, is_signed, swapped64, C_32, C1_64, C2_64, C_V, INV_V, NEG_V)    \
148   { is_signed, swapped64, CondARM32::C1_64, CondARM32::C2_64 }                 \
149   ,
150     ICMPARM32_TABLE
151 #undef X
152 };
153 
getIcmp32Mapping(InstIcmp::ICond Cond)154 CondARM32::Cond getIcmp32Mapping(InstIcmp::ICond Cond) {
155   assert(Cond < llvm::array_lengthof(TableIcmp32));
156   return TableIcmp32[Cond].Mapping;
157 }
158 
159 // In some cases, there are x-macros tables for both high-level and low-level
160 // instructions/operands that use the same enum key value. The tables are kept
161 // separate to maintain a proper separation between abstraction layers. There
162 // is a risk that the tables could get out of sync if enum values are reordered
163 // or if entries are added or deleted. The following anonymous namespaces use
164 // static_asserts to ensure everything is kept in sync.
165 
166 // Validate the enum values in ICMPARM32_TABLE.
167 namespace {
168 // Define a temporary set of enum values based on low-level table entries.
169 enum _icmp_ll_enum {
170 #define X(val, is_signed, swapped64, C_32, C1_64, C2_64, C_V, INV_V, NEG_V)    \
171   _icmp_ll_##val,
172   ICMPARM32_TABLE
173 #undef X
174       _num
175 };
176 // Define a set of constants based on high-level table entries.
177 #define X(tag, reverse, str)                                                   \
178   static constexpr int _icmp_hl_##tag = InstIcmp::tag;
179 ICEINSTICMP_TABLE
180 #undef X
181 // Define a set of constants based on low-level table entries, and ensure the
182 // table entry keys are consistent.
183 #define X(val, is_signed, swapped64, C_32, C1_64, C2_64, C_V, INV_V, NEG_V)    \
184   static_assert(                                                               \
185       _icmp_ll_##val == _icmp_hl_##val,                                        \
186       "Inconsistency between ICMPARM32_TABLE and ICEINSTICMP_TABLE: " #val);
187 ICMPARM32_TABLE
188 #undef X
189 // Repeat the static asserts with respect to the high-level table entries in
190 // case the high-level table has extra entries.
191 #define X(tag, reverse, str)                                                   \
192   static_assert(                                                               \
193       _icmp_hl_##tag == _icmp_ll_##tag,                                        \
194       "Inconsistency between ICMPARM32_TABLE and ICEINSTICMP_TABLE: " #tag);
195 ICEINSTICMP_TABLE
196 #undef X
197 } // end of anonymous namespace
198 
199 // Stack alignment
200 const uint32_t ARM32_STACK_ALIGNMENT_BYTES = 16;
201 
202 // Value is in bytes. Return Value adjusted to the next highest multiple of the
203 // stack alignment.
applyStackAlignment(uint32_t Value)204 uint32_t applyStackAlignment(uint32_t Value) {
205   return Utils::applyAlignment(Value, ARM32_STACK_ALIGNMENT_BYTES);
206 }
207 
208 // Value is in bytes. Return Value adjusted to the next highest multiple of the
209 // stack alignment required for the given type.
applyStackAlignmentTy(uint32_t Value,Type Ty)210 uint32_t applyStackAlignmentTy(uint32_t Value, Type Ty) {
211   // Use natural alignment, except that normally (non-NaCl) ARM only aligns
212   // vectors to 8 bytes.
213   // TODO(jvoung): Check this ...
214   size_t typeAlignInBytes = typeWidthInBytes(Ty);
215   if (isVectorType(Ty))
216     typeAlignInBytes = 8;
217   return Utils::applyAlignment(Value, typeAlignInBytes);
218 }
219 
220 // Conservatively check if at compile time we know that the operand is
221 // definitely a non-zero integer.
isGuaranteedNonzeroInt(const Operand * Op)222 bool isGuaranteedNonzeroInt(const Operand *Op) {
223   if (auto *Const = llvm::dyn_cast_or_null<ConstantInteger32>(Op)) {
224     return Const->getValue() != 0;
225   }
226   return false;
227 }
228 
229 } // end of anonymous namespace
230 
TargetARM32Features(const ClFlags & Flags)231 TargetARM32Features::TargetARM32Features(const ClFlags &Flags) {
232   static_assert(
233       (ARM32InstructionSet::End - ARM32InstructionSet::Begin) ==
234           (TargetInstructionSet::ARM32InstructionSet_End -
235            TargetInstructionSet::ARM32InstructionSet_Begin),
236       "ARM32InstructionSet range different from TargetInstructionSet");
237   if (Flags.getTargetInstructionSet() !=
238       TargetInstructionSet::BaseInstructionSet) {
239     InstructionSet = static_cast<ARM32InstructionSet>(
240         (Flags.getTargetInstructionSet() -
241          TargetInstructionSet::ARM32InstructionSet_Begin) +
242         ARM32InstructionSet::Begin);
243   }
244 }
245 
246 namespace {
247 constexpr SizeT NumGPRArgs =
248 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
249           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
250   +(((cc_arg) > 0) ? 1 : 0)
251     REGARM32_GPR_TABLE
252 #undef X
253     ;
254 std::array<RegNumT, NumGPRArgs> GPRArgInitializer;
255 
256 constexpr SizeT NumI64Args =
257 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
258           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
259   +(((cc_arg) > 0) ? 1 : 0)
260     REGARM32_I64PAIR_TABLE
261 #undef X
262     ;
263 std::array<RegNumT, NumI64Args> I64ArgInitializer;
264 
265 constexpr SizeT NumFP32Args =
266 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
267           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
268   +(((cc_arg) > 0) ? 1 : 0)
269     REGARM32_FP32_TABLE
270 #undef X
271     ;
272 std::array<RegNumT, NumFP32Args> FP32ArgInitializer;
273 
274 constexpr SizeT NumFP64Args =
275 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
276           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
277   +(((cc_arg) > 0) ? 1 : 0)
278     REGARM32_FP64_TABLE
279 #undef X
280     ;
281 std::array<RegNumT, NumFP64Args> FP64ArgInitializer;
282 
283 constexpr SizeT NumVec128Args =
284 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
285           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
286   +(((cc_arg > 0)) ? 1 : 0)
287     REGARM32_VEC128_TABLE
288 #undef X
289     ;
290 std::array<RegNumT, NumVec128Args> Vec128ArgInitializer;
291 
getRegClassName(RegClass C)292 const char *getRegClassName(RegClass C) {
293   auto ClassNum = static_cast<RegARM32::RegClassARM32>(C);
294   assert(ClassNum < RegARM32::RCARM32_NUM);
295   switch (ClassNum) {
296   default:
297     assert(C < RC_Target);
298     return regClassString(C);
299   // Add handling of new register classes below.
300   case RegARM32::RCARM32_QtoS:
301     return "QtoS";
302   }
303 }
304 
305 } // end of anonymous namespace
306 
TargetARM32(Cfg * Func)307 TargetARM32::TargetARM32(Cfg *Func)
308     : TargetLowering(Func), NeedSandboxing(SandboxingType == ST_NaCl),
309       CPUFeatures(getFlags()) {}
310 
staticInit(GlobalContext * Ctx)311 void TargetARM32::staticInit(GlobalContext *Ctx) {
312   RegNumT::setLimit(RegARM32::Reg_NUM);
313   // Limit this size (or do all bitsets need to be the same width)???
314   SmallBitVector IntegerRegisters(RegARM32::Reg_NUM);
315   SmallBitVector I64PairRegisters(RegARM32::Reg_NUM);
316   SmallBitVector Float32Registers(RegARM32::Reg_NUM);
317   SmallBitVector Float64Registers(RegARM32::Reg_NUM);
318   SmallBitVector VectorRegisters(RegARM32::Reg_NUM);
319   SmallBitVector QtoSRegisters(RegARM32::Reg_NUM);
320   SmallBitVector InvalidRegisters(RegARM32::Reg_NUM);
321   const unsigned EncodedReg_q8 = RegARM32::RegTable[RegARM32::Reg_q8].Encoding;
322   for (int i = 0; i < RegARM32::Reg_NUM; ++i) {
323     const auto &Entry = RegARM32::RegTable[i];
324     IntegerRegisters[i] = Entry.IsInt;
325     I64PairRegisters[i] = Entry.IsI64Pair;
326     Float32Registers[i] = Entry.IsFP32;
327     Float64Registers[i] = Entry.IsFP64;
328     VectorRegisters[i] = Entry.IsVec128;
329     RegisterAliases[i].resize(RegARM32::Reg_NUM);
330     // TODO(eholk): It would be better to store a QtoS flag in the
331     // IceRegistersARM32 table than to compare their encodings here.
332     QtoSRegisters[i] = Entry.IsVec128 && Entry.Encoding < EncodedReg_q8;
333     for (int j = 0; j < Entry.NumAliases; ++j) {
334       assert(i == j || !RegisterAliases[i][Entry.Aliases[j]]);
335       RegisterAliases[i].set(Entry.Aliases[j]);
336     }
337     assert(RegisterAliases[i][i]);
338     if (Entry.CCArg <= 0) {
339       continue;
340     }
341     const auto RegNum = RegNumT::fromInt(i);
342     if (Entry.IsGPR) {
343       GPRArgInitializer[Entry.CCArg - 1] = RegNum;
344     } else if (Entry.IsI64Pair) {
345       I64ArgInitializer[Entry.CCArg - 1] = RegNum;
346     } else if (Entry.IsFP32) {
347       FP32ArgInitializer[Entry.CCArg - 1] = RegNum;
348     } else if (Entry.IsFP64) {
349       FP64ArgInitializer[Entry.CCArg - 1] = RegNum;
350     } else if (Entry.IsVec128) {
351       Vec128ArgInitializer[Entry.CCArg - 1] = RegNum;
352     }
353   }
354   TypeToRegisterSet[IceType_void] = InvalidRegisters;
355   TypeToRegisterSet[IceType_i1] = IntegerRegisters;
356   TypeToRegisterSet[IceType_i8] = IntegerRegisters;
357   TypeToRegisterSet[IceType_i16] = IntegerRegisters;
358   TypeToRegisterSet[IceType_i32] = IntegerRegisters;
359   TypeToRegisterSet[IceType_i64] = I64PairRegisters;
360   TypeToRegisterSet[IceType_f32] = Float32Registers;
361   TypeToRegisterSet[IceType_f64] = Float64Registers;
362   TypeToRegisterSet[IceType_v4i1] = VectorRegisters;
363   TypeToRegisterSet[IceType_v8i1] = VectorRegisters;
364   TypeToRegisterSet[IceType_v16i1] = VectorRegisters;
365   TypeToRegisterSet[IceType_v16i8] = VectorRegisters;
366   TypeToRegisterSet[IceType_v8i16] = VectorRegisters;
367   TypeToRegisterSet[IceType_v4i32] = VectorRegisters;
368   TypeToRegisterSet[IceType_v4f32] = VectorRegisters;
369   TypeToRegisterSet[RegARM32::RCARM32_QtoS] = QtoSRegisters;
370 
371   for (size_t i = 0; i < llvm::array_lengthof(TypeToRegisterSet); ++i)
372     TypeToRegisterSetUnfiltered[i] = TypeToRegisterSet[i];
373 
374   filterTypeToRegisterSet(Ctx, RegARM32::Reg_NUM, TypeToRegisterSet,
375                           llvm::array_lengthof(TypeToRegisterSet),
376                           [](RegNumT RegNum) -> std::string {
377                             // This function simply removes ", " from the
378                             // register name.
379                             std::string Name = RegARM32::getRegName(RegNum);
380                             constexpr const char RegSeparator[] = ", ";
381                             constexpr size_t RegSeparatorWidth =
382                                 llvm::array_lengthof(RegSeparator) - 1;
383                             for (size_t Pos = Name.find(RegSeparator);
384                                  Pos != std::string::npos;
385                                  Pos = Name.find(RegSeparator)) {
386                               Name.replace(Pos, RegSeparatorWidth, "");
387                             }
388                             return Name;
389                           },
390                           getRegClassName);
391 }
392 
393 namespace {
copyRegAllocFromInfWeightVariable64On32(const VarList & Vars)394 void copyRegAllocFromInfWeightVariable64On32(const VarList &Vars) {
395   for (Variable *Var : Vars) {
396     auto *Var64 = llvm::dyn_cast<Variable64On32>(Var);
397     if (!Var64) {
398       // This is not the variable we are looking for.
399       continue;
400     }
401     // only allow infinite-weight i64 temporaries to be register allocated.
402     assert(!Var64->hasReg() || Var64->mustHaveReg());
403     if (!Var64->hasReg()) {
404       continue;
405     }
406     const auto FirstReg =
407         RegNumT::fixme(RegARM32::getI64PairFirstGPRNum(Var->getRegNum()));
408     // This assumes little endian.
409     Variable *Lo = Var64->getLo();
410     Variable *Hi = Var64->getHi();
411     assert(Lo->hasReg() == Hi->hasReg());
412     if (Lo->hasReg()) {
413       continue;
414     }
415     Lo->setRegNum(FirstReg);
416     Lo->setMustHaveReg();
417     Hi->setRegNum(RegNumT::fixme(FirstReg + 1));
418     Hi->setMustHaveReg();
419   }
420 }
421 } // end of anonymous namespace
422 
getCallStackArgumentsSizeBytes(const InstCall * Call)423 uint32_t TargetARM32::getCallStackArgumentsSizeBytes(const InstCall *Call) {
424   TargetARM32::CallingConv CC;
425   RegNumT DummyReg;
426   size_t OutArgsSizeBytes = 0;
427   for (SizeT i = 0, NumArgs = Call->getNumArgs(); i < NumArgs; ++i) {
428     Operand *Arg = legalizeUndef(Call->getArg(i));
429     const Type Ty = Arg->getType();
430     if (isScalarIntegerType(Ty)) {
431       if (CC.argInGPR(Ty, &DummyReg)) {
432         continue;
433       }
434     } else {
435       if (CC.argInVFP(Ty, &DummyReg)) {
436         continue;
437       }
438     }
439 
440     OutArgsSizeBytes = applyStackAlignmentTy(OutArgsSizeBytes, Ty);
441     OutArgsSizeBytes += typeWidthInBytesOnStack(Ty);
442   }
443 
444   return applyStackAlignment(OutArgsSizeBytes);
445 }
446 
genTargetHelperCallFor(Inst * Instr)447 void TargetARM32::genTargetHelperCallFor(Inst *Instr) {
448   constexpr bool NoTailCall = false;
449   constexpr bool IsTargetHelperCall = true;
450 
451   switch (Instr->getKind()) {
452   default:
453     return;
454   case Inst::Arithmetic: {
455     Variable *Dest = Instr->getDest();
456     const Type DestTy = Dest->getType();
457     const InstArithmetic::OpKind Op =
458         llvm::cast<InstArithmetic>(Instr)->getOp();
459     if (isVectorType(DestTy)) {
460       switch (Op) {
461       default:
462         break;
463       case InstArithmetic::Fdiv:
464       case InstArithmetic::Frem:
465       case InstArithmetic::Sdiv:
466       case InstArithmetic::Srem:
467       case InstArithmetic::Udiv:
468       case InstArithmetic::Urem:
469         scalarizeArithmetic(Op, Dest, Instr->getSrc(0), Instr->getSrc(1));
470         Instr->setDeleted();
471         return;
472       }
473     }
474     switch (DestTy) {
475     default:
476       return;
477     case IceType_i64: {
478       // Technically, ARM has its own aeabi routines, but we can use the
479       // non-aeabi routine as well. LLVM uses __aeabi_ldivmod for div, but uses
480       // the more standard __moddi3 for rem.
481       RuntimeHelper HelperID = RuntimeHelper::H_Num;
482       switch (Op) {
483       default:
484         return;
485       case InstArithmetic::Udiv:
486         HelperID = RuntimeHelper::H_udiv_i64;
487         break;
488       case InstArithmetic::Sdiv:
489         HelperID = RuntimeHelper::H_sdiv_i64;
490         break;
491       case InstArithmetic::Urem:
492         HelperID = RuntimeHelper::H_urem_i64;
493         break;
494       case InstArithmetic::Srem:
495         HelperID = RuntimeHelper::H_srem_i64;
496         break;
497       }
498       Operand *TargetHelper = Ctx->getRuntimeHelperFunc(HelperID);
499       ARM32HelpersPreamble[TargetHelper] = &TargetARM32::preambleDivRem;
500       constexpr SizeT MaxArgs = 2;
501       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
502                                             NoTailCall, IsTargetHelperCall);
503       Call->addArg(Instr->getSrc(0));
504       Call->addArg(Instr->getSrc(1));
505       Instr->setDeleted();
506       return;
507     }
508     case IceType_i32:
509     case IceType_i16:
510     case IceType_i8: {
511       const bool HasHWDiv = hasCPUFeature(TargetARM32Features::HWDivArm);
512       InstCast::OpKind CastKind;
513       RuntimeHelper HelperID = RuntimeHelper::H_Num;
514       switch (Op) {
515       default:
516         return;
517       case InstArithmetic::Udiv:
518         HelperID = HasHWDiv ? RuntimeHelper::H_Num : RuntimeHelper::H_udiv_i32;
519         CastKind = InstCast::Zext;
520         break;
521       case InstArithmetic::Sdiv:
522         HelperID = HasHWDiv ? RuntimeHelper::H_Num : RuntimeHelper::H_sdiv_i32;
523         CastKind = InstCast::Sext;
524         break;
525       case InstArithmetic::Urem:
526         HelperID = HasHWDiv ? RuntimeHelper::H_Num : RuntimeHelper::H_urem_i32;
527         CastKind = InstCast::Zext;
528         break;
529       case InstArithmetic::Srem:
530         HelperID = HasHWDiv ? RuntimeHelper::H_Num : RuntimeHelper::H_srem_i32;
531         CastKind = InstCast::Sext;
532         break;
533       }
534       if (HelperID == RuntimeHelper::H_Num) {
535         // HelperID should only ever be undefined when the processor does not
536         // have a hardware divider. If any other helpers are ever introduced,
537         // the following assert will have to be modified.
538         assert(HasHWDiv);
539         return;
540       }
541       Operand *Src0 = Instr->getSrc(0);
542       Operand *Src1 = Instr->getSrc(1);
543       if (DestTy != IceType_i32) {
544         // Src0 and Src1 have to be zero-, or signed-extended to i32. For Src0,
545         // we just insert a InstCast right before the call to the helper.
546         Variable *Src0_32 = Func->makeVariable(IceType_i32);
547         Context.insert<InstCast>(CastKind, Src0_32, Src0);
548         Src0 = Src0_32;
549 
550         // For extending Src1, we will just insert an InstCast if Src1 is not a
551         // Constant. If it is, then we extend it here, and not during program
552         // runtime. This allows preambleDivRem to optimize-out the div-by-0
553         // check.
554         if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) {
555           const int32_t ShAmt = (DestTy == IceType_i16) ? 16 : 24;
556           int32_t NewC = C->getValue();
557           if (CastKind == InstCast::Zext) {
558             NewC &= ~(0x80000000l >> ShAmt);
559           } else {
560             NewC = (NewC << ShAmt) >> ShAmt;
561           }
562           Src1 = Ctx->getConstantInt32(NewC);
563         } else {
564           Variable *Src1_32 = Func->makeVariable(IceType_i32);
565           Context.insert<InstCast>(CastKind, Src1_32, Src1);
566           Src1 = Src1_32;
567         }
568       }
569       Operand *TargetHelper = Ctx->getRuntimeHelperFunc(HelperID);
570       ARM32HelpersPreamble[TargetHelper] = &TargetARM32::preambleDivRem;
571       constexpr SizeT MaxArgs = 2;
572       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
573                                             NoTailCall, IsTargetHelperCall);
574       assert(Src0->getType() == IceType_i32);
575       Call->addArg(Src0);
576       assert(Src1->getType() == IceType_i32);
577       Call->addArg(Src1);
578       Instr->setDeleted();
579       return;
580     }
581     case IceType_f64:
582     case IceType_f32: {
583       if (Op != InstArithmetic::Frem) {
584         return;
585       }
586       constexpr SizeT MaxArgs = 2;
587       Operand *TargetHelper = Ctx->getRuntimeHelperFunc(
588           DestTy == IceType_f32 ? RuntimeHelper::H_frem_f32
589                                 : RuntimeHelper::H_frem_f64);
590       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
591                                             NoTailCall, IsTargetHelperCall);
592       Call->addArg(Instr->getSrc(0));
593       Call->addArg(Instr->getSrc(1));
594       Instr->setDeleted();
595       return;
596     }
597     }
598     llvm::report_fatal_error("Control flow should never have reached here.");
599   }
600   case Inst::Cast: {
601     Variable *Dest = Instr->getDest();
602     Operand *Src0 = Instr->getSrc(0);
603     const Type DestTy = Dest->getType();
604     const Type SrcTy = Src0->getType();
605     auto *CastInstr = llvm::cast<InstCast>(Instr);
606     const InstCast::OpKind CastKind = CastInstr->getCastKind();
607 
608     switch (CastKind) {
609     default:
610       return;
611     case InstCast::Fptosi:
612     case InstCast::Fptoui: {
613       if (DestTy != IceType_i64) {
614         return;
615       }
616       const bool DestIsSigned = CastKind == InstCast::Fptosi;
617       const bool Src0IsF32 = isFloat32Asserting32Or64(SrcTy);
618       Operand *TargetHelper = Ctx->getRuntimeHelperFunc(
619           Src0IsF32 ? (DestIsSigned ? RuntimeHelper::H_fptosi_f32_i64
620                                     : RuntimeHelper::H_fptoui_f32_i64)
621                     : (DestIsSigned ? RuntimeHelper::H_fptosi_f64_i64
622                                     : RuntimeHelper::H_fptoui_f64_i64));
623       static constexpr SizeT MaxArgs = 1;
624       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
625                                             NoTailCall, IsTargetHelperCall);
626       Call->addArg(Src0);
627       Instr->setDeleted();
628       return;
629     }
630     case InstCast::Sitofp:
631     case InstCast::Uitofp: {
632       if (SrcTy != IceType_i64) {
633         return;
634       }
635       const bool SourceIsSigned = CastKind == InstCast::Sitofp;
636       const bool DestIsF32 = isFloat32Asserting32Or64(Dest->getType());
637       Operand *TargetHelper = Ctx->getRuntimeHelperFunc(
638           DestIsF32 ? (SourceIsSigned ? RuntimeHelper::H_sitofp_i64_f32
639                                       : RuntimeHelper::H_uitofp_i64_f32)
640                     : (SourceIsSigned ? RuntimeHelper::H_sitofp_i64_f64
641                                       : RuntimeHelper::H_uitofp_i64_f64));
642       static constexpr SizeT MaxArgs = 1;
643       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
644                                             NoTailCall, IsTargetHelperCall);
645       Call->addArg(Src0);
646       Instr->setDeleted();
647       return;
648     }
649     case InstCast::Bitcast: {
650       if (DestTy == SrcTy) {
651         return;
652       }
653       Variable *CallDest = Dest;
654       RuntimeHelper HelperID = RuntimeHelper::H_Num;
655       switch (DestTy) {
656       default:
657         return;
658       case IceType_i8:
659         assert(SrcTy == IceType_v8i1);
660         HelperID = RuntimeHelper::H_bitcast_8xi1_i8;
661         CallDest = Func->makeVariable(IceType_i32);
662         break;
663       case IceType_i16:
664         assert(SrcTy == IceType_v16i1);
665         HelperID = RuntimeHelper::H_bitcast_16xi1_i16;
666         CallDest = Func->makeVariable(IceType_i32);
667         break;
668       case IceType_v8i1: {
669         assert(SrcTy == IceType_i8);
670         HelperID = RuntimeHelper::H_bitcast_i8_8xi1;
671         Variable *Src0AsI32 = Func->makeVariable(stackSlotType());
672         // Arguments to functions are required to be at least 32 bits wide.
673         Context.insert<InstCast>(InstCast::Zext, Src0AsI32, Src0);
674         Src0 = Src0AsI32;
675       } break;
676       case IceType_v16i1: {
677         assert(SrcTy == IceType_i16);
678         HelperID = RuntimeHelper::H_bitcast_i16_16xi1;
679         Variable *Src0AsI32 = Func->makeVariable(stackSlotType());
680         // Arguments to functions are required to be at least 32 bits wide.
681         Context.insert<InstCast>(InstCast::Zext, Src0AsI32, Src0);
682         Src0 = Src0AsI32;
683       } break;
684       }
685       constexpr SizeT MaxSrcs = 1;
686       InstCall *Call = makeHelperCall(HelperID, CallDest, MaxSrcs);
687       Call->addArg(Src0);
688       Context.insert(Call);
689       // The PNaCl ABI disallows i8/i16 return types, so truncate the helper
690       // call result to the appropriate type as necessary.
691       if (CallDest->getType() != Dest->getType())
692         Context.insert<InstCast>(InstCast::Trunc, Dest, CallDest);
693       Instr->setDeleted();
694       return;
695     }
696     case InstCast::Trunc: {
697       if (DestTy == SrcTy) {
698         return;
699       }
700       if (!isVectorType(SrcTy)) {
701         return;
702       }
703       assert(typeNumElements(DestTy) == typeNumElements(SrcTy));
704       assert(typeElementType(DestTy) == IceType_i1);
705       assert(isVectorIntegerType(SrcTy));
706       return;
707     }
708     case InstCast::Sext:
709     case InstCast::Zext: {
710       if (DestTy == SrcTy) {
711         return;
712       }
713       if (!isVectorType(DestTy)) {
714         return;
715       }
716       assert(typeNumElements(DestTy) == typeNumElements(SrcTy));
717       assert(typeElementType(SrcTy) == IceType_i1);
718       assert(isVectorIntegerType(DestTy));
719       return;
720     }
721     }
722     llvm::report_fatal_error("Control flow should never have reached here.");
723   }
724   case Inst::IntrinsicCall: {
725     Variable *Dest = Instr->getDest();
726     auto *IntrinsicCall = llvm::cast<InstIntrinsicCall>(Instr);
727     Intrinsics::IntrinsicID ID = IntrinsicCall->getIntrinsicInfo().ID;
728     switch (ID) {
729     default:
730       return;
731     case Intrinsics::Ctpop: {
732       Operand *Src0 = IntrinsicCall->getArg(0);
733       Operand *TargetHelper =
734           Ctx->getRuntimeHelperFunc(isInt32Asserting32Or64(Src0->getType())
735                                         ? RuntimeHelper::H_call_ctpop_i32
736                                         : RuntimeHelper::H_call_ctpop_i64);
737       static constexpr SizeT MaxArgs = 1;
738       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
739                                             NoTailCall, IsTargetHelperCall);
740       Call->addArg(Src0);
741       Instr->setDeleted();
742       if (Src0->getType() == IceType_i64) {
743         ARM32HelpersPostamble[TargetHelper] = &TargetARM32::postambleCtpop64;
744       }
745       return;
746     }
747     case Intrinsics::Longjmp: {
748       static constexpr SizeT MaxArgs = 2;
749       static constexpr Variable *NoDest = nullptr;
750       Operand *TargetHelper =
751           Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_longjmp);
752       auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper,
753                                             NoTailCall, IsTargetHelperCall);
754       Call->addArg(IntrinsicCall->getArg(0));
755       Call->addArg(IntrinsicCall->getArg(1));
756       Instr->setDeleted();
757       return;
758     }
759     case Intrinsics::Memcpy: {
760       // In the future, we could potentially emit an inline memcpy/memset, etc.
761       // for intrinsic calls w/ a known length.
762       static constexpr SizeT MaxArgs = 3;
763       static constexpr Variable *NoDest = nullptr;
764       Operand *TargetHelper =
765           Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memcpy);
766       auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper,
767                                             NoTailCall, IsTargetHelperCall);
768       Call->addArg(IntrinsicCall->getArg(0));
769       Call->addArg(IntrinsicCall->getArg(1));
770       Call->addArg(IntrinsicCall->getArg(2));
771       Instr->setDeleted();
772       return;
773     }
774     case Intrinsics::Memmove: {
775       static constexpr SizeT MaxArgs = 3;
776       static constexpr Variable *NoDest = nullptr;
777       Operand *TargetHelper =
778           Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memmove);
779       auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper,
780                                             NoTailCall, IsTargetHelperCall);
781       Call->addArg(IntrinsicCall->getArg(0));
782       Call->addArg(IntrinsicCall->getArg(1));
783       Call->addArg(IntrinsicCall->getArg(2));
784       Instr->setDeleted();
785       return;
786     }
787     case Intrinsics::Memset: {
788       // The value operand needs to be extended to a stack slot size because the
789       // PNaCl ABI requires arguments to be at least 32 bits wide.
790       Operand *ValOp = IntrinsicCall->getArg(1);
791       assert(ValOp->getType() == IceType_i8);
792       Variable *ValExt = Func->makeVariable(stackSlotType());
793       Context.insert<InstCast>(InstCast::Zext, ValExt, ValOp);
794 
795       // Technically, ARM has its own __aeabi_memset, but we can use plain
796       // memset too. The value and size argument need to be flipped if we ever
797       // decide to use __aeabi_memset.
798       static constexpr SizeT MaxArgs = 3;
799       static constexpr Variable *NoDest = nullptr;
800       Operand *TargetHelper =
801           Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memset);
802       auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper,
803                                             NoTailCall, IsTargetHelperCall);
804       Call->addArg(IntrinsicCall->getArg(0));
805       Call->addArg(ValExt);
806       Call->addArg(IntrinsicCall->getArg(2));
807       Instr->setDeleted();
808       return;
809     }
810     case Intrinsics::NaClReadTP: {
811       if (SandboxingType == ST_NaCl) {
812         return;
813       }
814       static constexpr SizeT MaxArgs = 0;
815       Operand *TargetHelper =
816           SandboxingType == ST_Nonsfi
817               ? Ctx->getConstantExternSym(
818                     Ctx->getGlobalString("__aeabi_read_tp"))
819               : Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_read_tp);
820       Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, NoTailCall,
821                                IsTargetHelperCall);
822       Instr->setDeleted();
823       return;
824     }
825     case Intrinsics::Setjmp: {
826       static constexpr SizeT MaxArgs = 1;
827       Operand *TargetHelper =
828           Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_setjmp);
829       auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper,
830                                             NoTailCall, IsTargetHelperCall);
831       Call->addArg(IntrinsicCall->getArg(0));
832       Instr->setDeleted();
833       return;
834     }
835     }
836     llvm::report_fatal_error("Control flow should never have reached here.");
837   }
838   }
839 }
840 
findMaxStackOutArgsSize()841 void TargetARM32::findMaxStackOutArgsSize() {
842   // MinNeededOutArgsBytes should be updated if the Target ever creates a
843   // high-level InstCall that requires more stack bytes.
844   constexpr size_t MinNeededOutArgsBytes = 0;
845   MaxOutArgsSizeBytes = MinNeededOutArgsBytes;
846   for (CfgNode *Node : Func->getNodes()) {
847     Context.init(Node);
848     while (!Context.atEnd()) {
849       PostIncrLoweringContext PostIncrement(Context);
850       Inst *CurInstr = iteratorToInst(Context.getCur());
851       if (auto *Call = llvm::dyn_cast<InstCall>(CurInstr)) {
852         SizeT OutArgsSizeBytes = getCallStackArgumentsSizeBytes(Call);
853         MaxOutArgsSizeBytes = std::max(MaxOutArgsSizeBytes, OutArgsSizeBytes);
854       }
855     }
856   }
857 }
858 
createGotPtr()859 void TargetARM32::createGotPtr() {
860   if (SandboxingType != ST_Nonsfi) {
861     return;
862   }
863   GotPtr = Func->makeVariable(IceType_i32);
864 }
865 
insertGotPtrInitPlaceholder()866 void TargetARM32::insertGotPtrInitPlaceholder() {
867   if (SandboxingType != ST_Nonsfi) {
868     return;
869   }
870   assert(GotPtr != nullptr);
871   // We add the two placeholder instructions here. The first fakedefs T, an
872   // infinite-weight temporary, while the second fakedefs the GotPtr "using" T.
873   // This is needed because the GotPtr initialization, if needed, will require
874   // a register:
875   //
876   //   movw     reg, _GLOBAL_OFFSET_TABLE_ - 16 - .
877   //   movt     reg, _GLOBAL_OFFSET_TABLE_ - 12 - .
878   //   add      reg, pc, reg
879   //   mov      GotPtr, reg
880   //
881   // If GotPtr is not used, then both these pseudo-instructions are dce'd.
882   Variable *T = makeReg(IceType_i32);
883   Context.insert<InstFakeDef>(T);
884   Context.insert<InstFakeDef>(GotPtr, T);
885 }
886 
887 GlobalString
createGotoffRelocation(const ConstantRelocatable * CR)888 TargetARM32::createGotoffRelocation(const ConstantRelocatable *CR) {
889   GlobalString CRName = CR->getName();
890   GlobalString CRGotoffName =
891       Ctx->getGlobalString("GOTOFF$" + Func->getFunctionName() + "$" + CRName);
892   if (KnownGotoffs.count(CRGotoffName) == 0) {
893     constexpr bool SuppressMangling = true;
894     auto *Global =
895         VariableDeclaration::create(Func->getGlobalPool(), SuppressMangling);
896     Global->setIsConstant(true);
897     Global->setName(CRName);
898     Func->getGlobalPool()->willNotBeEmitted(Global);
899 
900     auto *Gotoff =
901         VariableDeclaration::create(Func->getGlobalPool(), SuppressMangling);
902     constexpr auto GotFixup = R_ARM_GOTOFF32;
903     Gotoff->setIsConstant(true);
904     Gotoff->addInitializer(VariableDeclaration::RelocInitializer::create(
905         Func->getGlobalPool(), Global, {RelocOffset::create(Ctx, 0)},
906         GotFixup));
907     Gotoff->setName(CRGotoffName);
908     Func->addGlobal(Gotoff);
909     KnownGotoffs.emplace(CRGotoffName);
910   }
911   return CRGotoffName;
912 }
913 
materializeGotAddr(CfgNode * Node)914 void TargetARM32::materializeGotAddr(CfgNode *Node) {
915   if (SandboxingType != ST_Nonsfi) {
916     return;
917   }
918 
919   // At first, we try to find the
920   //    GotPtr = def T
921   // pseudo-instruction that we placed for defining the got ptr. That
922   // instruction is not just a place-holder for defining the GotPtr (thus
923   // keeping liveness consistent), but it is also located at a point where it is
924   // safe to materialize the got addr -- i.e., before loading parameters to
925   // registers, but after moving register parameters from their home location.
926   InstFakeDef *DefGotPtr = nullptr;
927   for (auto &Inst : Node->getInsts()) {
928     auto *FakeDef = llvm::dyn_cast<InstFakeDef>(&Inst);
929     if (FakeDef != nullptr && FakeDef->getDest() == GotPtr) {
930       DefGotPtr = FakeDef;
931       break;
932     }
933   }
934 
935   if (DefGotPtr == nullptr || DefGotPtr->isDeleted()) {
936     return;
937   }
938 
939   // The got addr needs to be materialized at the same point where DefGotPtr
940   // lives.
941   Context.setInsertPoint(instToIterator(DefGotPtr));
942   assert(DefGotPtr->getSrcSize() == 1);
943   auto *T = llvm::cast<Variable>(DefGotPtr->getSrc(0));
944   loadNamedConstantRelocatablePIC(Ctx->getGlobalString(GlobalOffsetTable), T,
945                                   [this, T](Variable *PC) { _add(T, PC, T); });
946   _mov(GotPtr, T);
947   DefGotPtr->setDeleted();
948 }
949 
loadNamedConstantRelocatablePIC(GlobalString Name,Variable * Register,std::function<void (Variable * PC)> Finish)950 void TargetARM32::loadNamedConstantRelocatablePIC(
951     GlobalString Name, Variable *Register,
952     std::function<void(Variable *PC)> Finish) {
953   assert(SandboxingType == ST_Nonsfi);
954   // We makeReg() here instead of getPhysicalRegister() because the latter ends
955   // up creating multi-blocks temporaries that liveness fails to validate.
956   auto *PC = makeReg(IceType_i32, RegARM32::Reg_pc);
957 
958   auto *AddPcReloc = RelocOffset::create(Ctx);
959   AddPcReloc->setSubtract(true);
960   auto *AddPcLabel = InstARM32Label::create(Func, this);
961   AddPcLabel->setRelocOffset(AddPcReloc);
962 
963   auto *MovwReloc = RelocOffset::create(Ctx);
964   auto *MovwLabel = InstARM32Label::create(Func, this);
965   MovwLabel->setRelocOffset(MovwReloc);
966 
967   auto *MovtReloc = RelocOffset::create(Ctx);
968   auto *MovtLabel = InstARM32Label::create(Func, this);
969   MovtLabel->setRelocOffset(MovtReloc);
970 
971   // The EmitString for these constant relocatables have hardcoded offsets
972   // attached to them. This could be dangerous if, e.g., we ever implemented
973   // instruction scheduling but llvm-mc currently does not support
974   //
975   //   movw reg, #:lower16:(Symbol - Label - Number)
976   //   movt reg, #:upper16:(Symbol - Label - Number)
977   //
978   // relocations.
979   static constexpr RelocOffsetT PcOffset = -8;
980   auto *CRLower = Ctx->getConstantSymWithEmitString(
981       PcOffset, {MovwReloc, AddPcReloc}, Name, Name + " -16");
982   auto *CRUpper = Ctx->getConstantSymWithEmitString(
983       PcOffset, {MovtReloc, AddPcReloc}, Name, Name + " -12");
984 
985   Context.insert(MovwLabel);
986   _movw(Register, CRLower);
987   Context.insert(MovtLabel);
988   _movt(Register, CRUpper);
989   // PC = fake-def to keep liveness consistent.
990   Context.insert<InstFakeDef>(PC);
991   Context.insert(AddPcLabel);
992   Finish(PC);
993 }
994 
translateO2()995 void TargetARM32::translateO2() {
996   TimerMarker T(TimerStack::TT_O2, Func);
997 
998   // TODO(stichnot): share passes with other targets?
999   // https://code.google.com/p/nativeclient/issues/detail?id=4094
1000   if (SandboxingType == ST_Nonsfi) {
1001     createGotPtr();
1002   }
1003   genTargetHelperCalls();
1004   findMaxStackOutArgsSize();
1005 
1006   // Do not merge Alloca instructions, and lay out the stack.
1007   static constexpr bool SortAndCombineAllocas = true;
1008   Func->processAllocas(SortAndCombineAllocas);
1009   Func->dump("After Alloca processing");
1010 
1011   if (!getFlags().getEnablePhiEdgeSplit()) {
1012     // Lower Phi instructions.
1013     Func->placePhiLoads();
1014     if (Func->hasError())
1015       return;
1016     Func->placePhiStores();
1017     if (Func->hasError())
1018       return;
1019     Func->deletePhis();
1020     if (Func->hasError())
1021       return;
1022     Func->dump("After Phi lowering");
1023   }
1024 
1025   // Address mode optimization.
1026   Func->getVMetadata()->init(VMK_SingleDefs);
1027   Func->doAddressOpt();
1028   Func->materializeVectorShuffles();
1029 
1030   // Argument lowering
1031   Func->doArgLowering();
1032 
1033   // Target lowering. This requires liveness analysis for some parts of the
1034   // lowering decisions, such as compare/branch fusing. If non-lightweight
1035   // liveness analysis is used, the instructions need to be renumbered first.
1036   // TODO: This renumbering should only be necessary if we're actually
1037   // calculating live intervals, which we only do for register allocation.
1038   Func->renumberInstructions();
1039   if (Func->hasError())
1040     return;
1041 
1042   // TODO: It should be sufficient to use the fastest liveness calculation,
1043   // i.e. livenessLightweight(). However, for some reason that slows down the
1044   // rest of the translation. Investigate.
1045   Func->liveness(Liveness_Basic);
1046   if (Func->hasError())
1047     return;
1048   Func->dump("After ARM32 address mode opt");
1049 
1050   if (SandboxingType == ST_Nonsfi) {
1051     insertGotPtrInitPlaceholder();
1052   }
1053   Func->genCode();
1054   if (Func->hasError())
1055     return;
1056   Func->dump("After ARM32 codegen");
1057 
1058   // Register allocation. This requires instruction renumbering and full
1059   // liveness analysis.
1060   Func->renumberInstructions();
1061   if (Func->hasError())
1062     return;
1063   Func->liveness(Liveness_Intervals);
1064   if (Func->hasError())
1065     return;
1066   // The post-codegen dump is done here, after liveness analysis and associated
1067   // cleanup, to make the dump cleaner and more useful.
1068   Func->dump("After initial ARM32 codegen");
1069   // Validate the live range computations. The expensive validation call is
1070   // deliberately only made when assertions are enabled.
1071   assert(Func->validateLiveness());
1072   Func->getVMetadata()->init(VMK_All);
1073   regAlloc(RAK_Global);
1074   if (Func->hasError())
1075     return;
1076 
1077   copyRegAllocFromInfWeightVariable64On32(Func->getVariables());
1078   Func->dump("After linear scan regalloc");
1079 
1080   if (getFlags().getEnablePhiEdgeSplit()) {
1081     Func->advancedPhiLowering();
1082     Func->dump("After advanced Phi lowering");
1083   }
1084 
1085   ForbidTemporaryWithoutReg _(this);
1086 
1087   // Stack frame mapping.
1088   Func->genFrame();
1089   if (Func->hasError())
1090     return;
1091   Func->dump("After stack frame mapping");
1092 
1093   postLowerLegalization();
1094   if (Func->hasError())
1095     return;
1096   Func->dump("After postLowerLegalization");
1097 
1098   Func->contractEmptyNodes();
1099   Func->reorderNodes();
1100 
1101   // Branch optimization. This needs to be done just before code emission. In
1102   // particular, no transformations that insert or reorder CfgNodes should be
1103   // done after branch optimization. We go ahead and do it before nop insertion
1104   // to reduce the amount of work needed for searching for opportunities.
1105   Func->doBranchOpt();
1106   Func->dump("After branch optimization");
1107 
1108   // Nop insertion
1109   if (getFlags().getShouldDoNopInsertion()) {
1110     Func->doNopInsertion();
1111   }
1112 }
1113 
translateOm1()1114 void TargetARM32::translateOm1() {
1115   TimerMarker T(TimerStack::TT_Om1, Func);
1116 
1117   // TODO(stichnot): share passes with other targets?
1118   if (SandboxingType == ST_Nonsfi) {
1119     createGotPtr();
1120   }
1121 
1122   genTargetHelperCalls();
1123   findMaxStackOutArgsSize();
1124 
1125   // Do not merge Alloca instructions, and lay out the stack.
1126   static constexpr bool DontSortAndCombineAllocas = false;
1127   Func->processAllocas(DontSortAndCombineAllocas);
1128   Func->dump("After Alloca processing");
1129 
1130   Func->placePhiLoads();
1131   if (Func->hasError())
1132     return;
1133   Func->placePhiStores();
1134   if (Func->hasError())
1135     return;
1136   Func->deletePhis();
1137   if (Func->hasError())
1138     return;
1139   Func->dump("After Phi lowering");
1140 
1141   Func->doArgLowering();
1142 
1143   if (SandboxingType == ST_Nonsfi) {
1144     insertGotPtrInitPlaceholder();
1145   }
1146   Func->genCode();
1147   if (Func->hasError())
1148     return;
1149   Func->dump("After initial ARM32 codegen");
1150 
1151   regAlloc(RAK_InfOnly);
1152   if (Func->hasError())
1153     return;
1154 
1155   copyRegAllocFromInfWeightVariable64On32(Func->getVariables());
1156   Func->dump("After regalloc of infinite-weight variables");
1157 
1158   ForbidTemporaryWithoutReg _(this);
1159 
1160   Func->genFrame();
1161   if (Func->hasError())
1162     return;
1163   Func->dump("After stack frame mapping");
1164 
1165   postLowerLegalization();
1166   if (Func->hasError())
1167     return;
1168   Func->dump("After postLowerLegalization");
1169 
1170   // Nop insertion
1171   if (getFlags().getShouldDoNopInsertion()) {
1172     Func->doNopInsertion();
1173   }
1174 }
1175 
getStackAlignment() const1176 uint32_t TargetARM32::getStackAlignment() const {
1177   return ARM32_STACK_ALIGNMENT_BYTES;
1178 }
1179 
doBranchOpt(Inst * I,const CfgNode * NextNode)1180 bool TargetARM32::doBranchOpt(Inst *I, const CfgNode *NextNode) {
1181   if (auto *Br = llvm::dyn_cast<InstARM32Br>(I)) {
1182     return Br->optimizeBranch(NextNode);
1183   }
1184   return false;
1185 }
1186 
getRegName(RegNumT RegNum,Type Ty) const1187 const char *TargetARM32::getRegName(RegNumT RegNum, Type Ty) const {
1188   (void)Ty;
1189   return RegARM32::getRegName(RegNum);
1190 }
1191 
getPhysicalRegister(RegNumT RegNum,Type Ty)1192 Variable *TargetARM32::getPhysicalRegister(RegNumT RegNum, Type Ty) {
1193   static const Type DefaultType[] = {
1194 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr,   \
1195           isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init)       \
1196   (isFP32)                                                                     \
1197       ? IceType_f32                                                            \
1198       : ((isFP64) ? IceType_f64 : ((isVec128 ? IceType_v4i32 : IceType_i32))),
1199       REGARM32_TABLE
1200 #undef X
1201   };
1202 
1203   if (Ty == IceType_void) {
1204     assert(unsigned(RegNum) < llvm::array_lengthof(DefaultType));
1205     Ty = DefaultType[RegNum];
1206   }
1207   if (PhysicalRegisters[Ty].empty())
1208     PhysicalRegisters[Ty].resize(RegARM32::Reg_NUM);
1209   assert(unsigned(RegNum) < PhysicalRegisters[Ty].size());
1210   Variable *Reg = PhysicalRegisters[Ty][RegNum];
1211   if (Reg == nullptr) {
1212     Reg = Func->makeVariable(Ty);
1213     Reg->setRegNum(RegNum);
1214     PhysicalRegisters[Ty][RegNum] = Reg;
1215     // Specially mark a named physical register as an "argument" so that it is
1216     // considered live upon function entry.  Otherwise it's possible to get
1217     // liveness validation errors for saving callee-save registers.
1218     Func->addImplicitArg(Reg);
1219     // Don't bother tracking the live range of a named physical register.
1220     Reg->setIgnoreLiveness();
1221   }
1222   return Reg;
1223 }
1224 
emitJumpTable(const Cfg * Func,const InstJumpTable * JumpTable) const1225 void TargetARM32::emitJumpTable(const Cfg *Func,
1226                                 const InstJumpTable *JumpTable) const {
1227   (void)Func;
1228   (void)JumpTable;
1229   UnimplementedError(getFlags());
1230 }
1231 
emitVariable(const Variable * Var) const1232 void TargetARM32::emitVariable(const Variable *Var) const {
1233   if (!BuildDefs::dump())
1234     return;
1235   Ostream &Str = Ctx->getStrEmit();
1236   if (Var->hasReg()) {
1237     Str << getRegName(Var->getRegNum(), Var->getType());
1238     return;
1239   }
1240   if (Var->mustHaveReg()) {
1241     llvm::report_fatal_error("Infinite-weight Variable (" + Var->getName() +
1242                              ") has no register assigned - function " +
1243                              Func->getFunctionName());
1244   }
1245   assert(!Var->isRematerializable());
1246   int32_t Offset = Var->getStackOffset();
1247   auto BaseRegNum = Var->getBaseRegNum();
1248   if (BaseRegNum.hasNoValue()) {
1249     BaseRegNum = getFrameOrStackReg();
1250   }
1251   const Type VarTy = Var->getType();
1252   Str << "[" << getRegName(BaseRegNum, VarTy);
1253   if (Offset != 0) {
1254     Str << ", #" << Offset;
1255   }
1256   Str << "]";
1257 }
1258 
CallingConv()1259 TargetARM32::CallingConv::CallingConv()
1260     : GPRegsUsed(RegARM32::Reg_NUM),
1261       GPRArgs(GPRArgInitializer.rbegin(), GPRArgInitializer.rend()),
1262       I64Args(I64ArgInitializer.rbegin(), I64ArgInitializer.rend()),
1263       VFPRegsUsed(RegARM32::Reg_NUM),
1264       FP32Args(FP32ArgInitializer.rbegin(), FP32ArgInitializer.rend()),
1265       FP64Args(FP64ArgInitializer.rbegin(), FP64ArgInitializer.rend()),
1266       Vec128Args(Vec128ArgInitializer.rbegin(), Vec128ArgInitializer.rend()) {}
1267 
argInGPR(Type Ty,RegNumT * Reg)1268 bool TargetARM32::CallingConv::argInGPR(Type Ty, RegNumT *Reg) {
1269   CfgVector<RegNumT> *Source;
1270 
1271   switch (Ty) {
1272   default: {
1273     assert(isScalarIntegerType(Ty));
1274     Source = &GPRArgs;
1275   } break;
1276   case IceType_i64: {
1277     Source = &I64Args;
1278   } break;
1279   }
1280 
1281   discardUnavailableGPRsAndTheirAliases(Source);
1282 
1283   if (Source->empty()) {
1284     GPRegsUsed.set();
1285     return false;
1286   }
1287 
1288   *Reg = Source->back();
1289   // Note that we don't Source->pop_back() here. This is intentional. Notice how
1290   // we mark all of Reg's aliases as Used. So, for the next argument,
1291   // Source->back() is marked as unavailable, and it is thus implicitly popped
1292   // from the stack.
1293   GPRegsUsed |= RegisterAliases[*Reg];
1294   return true;
1295 }
1296 
1297 // GPR are not packed when passing parameters. Thus, a function foo(i32, i64,
1298 // i32) will have the first argument in r0, the second in r1-r2, and the third
1299 // on the stack. To model this behavior, whenever we pop a register from Regs,
1300 // we remove all of its aliases from the pool of available GPRs. This has the
1301 // effect of computing the "closure" on the GPR registers.
discardUnavailableGPRsAndTheirAliases(CfgVector<RegNumT> * Regs)1302 void TargetARM32::CallingConv::discardUnavailableGPRsAndTheirAliases(
1303     CfgVector<RegNumT> *Regs) {
1304   while (!Regs->empty() && GPRegsUsed[Regs->back()]) {
1305     GPRegsUsed |= RegisterAliases[Regs->back()];
1306     Regs->pop_back();
1307   }
1308 }
1309 
argInVFP(Type Ty,RegNumT * Reg)1310 bool TargetARM32::CallingConv::argInVFP(Type Ty, RegNumT *Reg) {
1311   CfgVector<RegNumT> *Source;
1312 
1313   switch (Ty) {
1314   default: {
1315     assert(isVectorType(Ty));
1316     Source = &Vec128Args;
1317   } break;
1318   case IceType_f32: {
1319     Source = &FP32Args;
1320   } break;
1321   case IceType_f64: {
1322     Source = &FP64Args;
1323   } break;
1324   }
1325 
1326   discardUnavailableVFPRegs(Source);
1327 
1328   if (Source->empty()) {
1329     VFPRegsUsed.set();
1330     return false;
1331   }
1332 
1333   *Reg = Source->back();
1334   VFPRegsUsed |= RegisterAliases[*Reg];
1335   return true;
1336 }
1337 
1338 // Arguments in VFP registers are not packed, so we don't mark the popped
1339 // registers' aliases as unavailable.
discardUnavailableVFPRegs(CfgVector<RegNumT> * Regs)1340 void TargetARM32::CallingConv::discardUnavailableVFPRegs(
1341     CfgVector<RegNumT> *Regs) {
1342   while (!Regs->empty() && VFPRegsUsed[Regs->back()]) {
1343     Regs->pop_back();
1344   }
1345 }
1346 
lowerArguments()1347 void TargetARM32::lowerArguments() {
1348   VarList &Args = Func->getArgs();
1349   TargetARM32::CallingConv CC;
1350 
1351   // For each register argument, replace Arg in the argument list with the home
1352   // register. Then generate an instruction in the prolog to copy the home
1353   // register to the assigned location of Arg.
1354   Context.init(Func->getEntryNode());
1355   Context.setInsertPoint(Context.getCur());
1356 
1357   for (SizeT I = 0, E = Args.size(); I < E; ++I) {
1358     Variable *Arg = Args[I];
1359     Type Ty = Arg->getType();
1360     RegNumT RegNum;
1361     if (isScalarIntegerType(Ty)) {
1362       if (!CC.argInGPR(Ty, &RegNum)) {
1363         continue;
1364       }
1365     } else {
1366       if (!CC.argInVFP(Ty, &RegNum)) {
1367         continue;
1368       }
1369     }
1370 
1371     Variable *RegisterArg = Func->makeVariable(Ty);
1372     if (BuildDefs::dump()) {
1373       RegisterArg->setName(Func, "home_reg:" + Arg->getName());
1374     }
1375     RegisterArg->setIsArg();
1376     Arg->setIsArg(false);
1377     Args[I] = RegisterArg;
1378     switch (Ty) {
1379     default: { RegisterArg->setRegNum(RegNum); } break;
1380     case IceType_i64: {
1381       auto *RegisterArg64 = llvm::cast<Variable64On32>(RegisterArg);
1382       RegisterArg64->initHiLo(Func);
1383       RegisterArg64->getLo()->setRegNum(
1384           RegNumT::fixme(RegARM32::getI64PairFirstGPRNum(RegNum)));
1385       RegisterArg64->getHi()->setRegNum(
1386           RegNumT::fixme(RegARM32::getI64PairSecondGPRNum(RegNum)));
1387     } break;
1388     }
1389     Context.insert<InstAssign>(Arg, RegisterArg);
1390   }
1391 }
1392 
1393 // Helper function for addProlog().
1394 //
1395 // This assumes Arg is an argument passed on the stack. This sets the frame
1396 // offset for Arg and updates InArgsSizeBytes according to Arg's width. For an
1397 // I64 arg that has been split into Lo and Hi components, it calls itself
1398 // recursively on the components, taking care to handle Lo first because of the
1399 // little-endian architecture. Lastly, this function generates an instruction
1400 // to copy Arg into its assigned register if applicable.
finishArgumentLowering(Variable * Arg,Variable * FramePtr,size_t BasicFrameOffset,size_t * InArgsSizeBytes)1401 void TargetARM32::finishArgumentLowering(Variable *Arg, Variable *FramePtr,
1402                                          size_t BasicFrameOffset,
1403                                          size_t *InArgsSizeBytes) {
1404   const Type Ty = Arg->getType();
1405   *InArgsSizeBytes = applyStackAlignmentTy(*InArgsSizeBytes, Ty);
1406 
1407   if (auto *Arg64On32 = llvm::dyn_cast<Variable64On32>(Arg)) {
1408     Variable *const Lo = Arg64On32->getLo();
1409     Variable *const Hi = Arg64On32->getHi();
1410     finishArgumentLowering(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes);
1411     finishArgumentLowering(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes);
1412     return;
1413   }
1414   assert(Ty != IceType_i64);
1415 
1416   const int32_t ArgStackOffset = BasicFrameOffset + *InArgsSizeBytes;
1417   *InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
1418 
1419   if (!Arg->hasReg()) {
1420     Arg->setStackOffset(ArgStackOffset);
1421     return;
1422   }
1423 
1424   // If the argument variable has been assigned a register, we need to copy the
1425   // value from the stack slot.
1426   Variable *Parameter = Func->makeVariable(Ty);
1427   Parameter->setMustNotHaveReg();
1428   Parameter->setStackOffset(ArgStackOffset);
1429   _mov(Arg, Parameter);
1430 }
1431 
stackSlotType()1432 Type TargetARM32::stackSlotType() { return IceType_i32; }
1433 
addProlog(CfgNode * Node)1434 void TargetARM32::addProlog(CfgNode *Node) {
1435   // Stack frame layout:
1436   //
1437   // +------------------------+
1438   // | 1. preserved registers |
1439   // +------------------------+
1440   // | 2. padding             |
1441   // +------------------------+ <--- FramePointer (if used)
1442   // | 3. global spill area   |
1443   // +------------------------+
1444   // | 4. padding             |
1445   // +------------------------+
1446   // | 5. local spill area    |
1447   // +------------------------+
1448   // | 6. padding             |
1449   // +------------------------+
1450   // | 7. allocas (variable)  |
1451   // +------------------------+
1452   // | 8. padding             |
1453   // +------------------------+
1454   // | 9. out args            |
1455   // +------------------------+ <--- StackPointer
1456   //
1457   // The following variables record the size in bytes of the given areas:
1458   //  * PreservedRegsSizeBytes: area 1
1459   //  * SpillAreaPaddingBytes:  area 2
1460   //  * GlobalsSize:            area 3
1461   //  * GlobalsAndSubsequentPaddingSize: areas 3 - 4
1462   //  * LocalsSpillAreaSize:    area 5
1463   //  * SpillAreaSizeBytes:     areas 2 - 6, and 9
1464   //  * MaxOutArgsSizeBytes:    area 9
1465   //
1466   // Determine stack frame offsets for each Variable without a register
1467   // assignment.  This can be done as one variable per stack slot.  Or, do
1468   // coalescing by running the register allocator again with an infinite set of
1469   // registers (as a side effect, this gives variables a second chance at
1470   // physical register assignment).
1471   //
1472   // A middle ground approach is to leverage sparsity and allocate one block of
1473   // space on the frame for globals (variables with multi-block lifetime), and
1474   // one block to share for locals (single-block lifetime).
1475 
1476   Context.init(Node);
1477   Context.setInsertPoint(Context.getCur());
1478 
1479   SmallBitVector CalleeSaves = getRegisterSet(RegSet_CalleeSave, RegSet_None);
1480   RegsUsed = SmallBitVector(CalleeSaves.size());
1481   VarList SortedSpilledVariables;
1482   size_t GlobalsSize = 0;
1483   // If there is a separate locals area, this represents that area. Otherwise
1484   // it counts any variable not counted by GlobalsSize.
1485   SpillAreaSizeBytes = 0;
1486   // If there is a separate locals area, this specifies the alignment for it.
1487   uint32_t LocalsSlotsAlignmentBytes = 0;
1488   // The entire spill locations area gets aligned to largest natural alignment
1489   // of the variables that have a spill slot.
1490   uint32_t SpillAreaAlignmentBytes = 0;
1491   // For now, we don't have target-specific variables that need special
1492   // treatment (no stack-slot-linked SpillVariable type).
1493   std::function<bool(Variable *)> TargetVarHook = [](Variable *Var) {
1494     static constexpr bool AssignStackSlot = false;
1495     static constexpr bool DontAssignStackSlot = !AssignStackSlot;
1496     if (llvm::isa<Variable64On32>(Var)) {
1497       return DontAssignStackSlot;
1498     }
1499     return AssignStackSlot;
1500   };
1501 
1502   // Compute the list of spilled variables and bounds for GlobalsSize, etc.
1503   getVarStackSlotParams(SortedSpilledVariables, RegsUsed, &GlobalsSize,
1504                         &SpillAreaSizeBytes, &SpillAreaAlignmentBytes,
1505                         &LocalsSlotsAlignmentBytes, TargetVarHook);
1506   uint32_t LocalsSpillAreaSize = SpillAreaSizeBytes;
1507   SpillAreaSizeBytes += GlobalsSize;
1508 
1509   // Add push instructions for preserved registers. On ARM, "push" can push a
1510   // whole list of GPRs via a bitmask (0-15). Unlike x86, ARM also has
1511   // callee-saved float/vector registers.
1512   //
1513   // The "vpush" instruction can handle a whole list of float/vector registers,
1514   // but it only handles contiguous sequences of registers by specifying the
1515   // start and the length.
1516   PreservedGPRs.reserve(CalleeSaves.size());
1517   PreservedSRegs.reserve(CalleeSaves.size());
1518 
1519   // Consider FP and LR as callee-save / used as needed.
1520   if (UsesFramePointer) {
1521     if (RegsUsed[RegARM32::Reg_fp]) {
1522       llvm::report_fatal_error("Frame pointer has been used.");
1523     }
1524     CalleeSaves[RegARM32::Reg_fp] = true;
1525     RegsUsed[RegARM32::Reg_fp] = true;
1526   }
1527   if (!MaybeLeafFunc) {
1528     CalleeSaves[RegARM32::Reg_lr] = true;
1529     RegsUsed[RegARM32::Reg_lr] = true;
1530   }
1531 
1532   // Make two passes over the used registers. The first pass records all the
1533   // used registers -- and their aliases. Then, we figure out which GPRs and
1534   // VFP S registers should be saved. We don't bother saving D/Q registers
1535   // because their uses are recorded as S regs uses.
1536   SmallBitVector ToPreserve(RegARM32::Reg_NUM);
1537   for (SizeT i = 0; i < CalleeSaves.size(); ++i) {
1538     if (NeedSandboxing && i == RegARM32::Reg_r9) {
1539       // r9 is never updated in sandboxed code.
1540       continue;
1541     }
1542     if (CalleeSaves[i] && RegsUsed[i]) {
1543       ToPreserve |= RegisterAliases[i];
1544     }
1545   }
1546 
1547   uint32_t NumCallee = 0;
1548   size_t PreservedRegsSizeBytes = 0;
1549 
1550   // RegClasses is a tuple of
1551   //
1552   // <First Register in Class, Last Register in Class, Vector of Save Registers>
1553   //
1554   // We use this tuple to figure out which register we should push/pop during
1555   // prolog/epilog.
1556   using RegClassType = std::tuple<uint32_t, uint32_t, VarList *>;
1557   const RegClassType RegClasses[] = {
1558       RegClassType(RegARM32::Reg_GPR_First, RegARM32::Reg_GPR_Last,
1559                    &PreservedGPRs),
1560       RegClassType(RegARM32::Reg_SREG_First, RegARM32::Reg_SREG_Last,
1561                    &PreservedSRegs)};
1562   for (const auto &RegClass : RegClasses) {
1563     const uint32_t FirstRegInClass = std::get<0>(RegClass);
1564     const uint32_t LastRegInClass = std::get<1>(RegClass);
1565     VarList *const PreservedRegsInClass = std::get<2>(RegClass);
1566     for (uint32_t Reg = FirstRegInClass; Reg <= LastRegInClass; ++Reg) {
1567       if (!ToPreserve[Reg]) {
1568         continue;
1569       }
1570       ++NumCallee;
1571       Variable *PhysicalRegister = getPhysicalRegister(RegNumT::fromInt(Reg));
1572       PreservedRegsSizeBytes +=
1573           typeWidthInBytesOnStack(PhysicalRegister->getType());
1574       PreservedRegsInClass->push_back(PhysicalRegister);
1575     }
1576   }
1577 
1578   Ctx->statsUpdateRegistersSaved(NumCallee);
1579   if (!PreservedSRegs.empty())
1580     _push(PreservedSRegs);
1581   if (!PreservedGPRs.empty())
1582     _push(PreservedGPRs);
1583 
1584   // Generate "mov FP, SP" if needed.
1585   if (UsesFramePointer) {
1586     Variable *FP = getPhysicalRegister(RegARM32::Reg_fp);
1587     Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
1588     _mov(FP, SP);
1589     // Keep FP live for late-stage liveness analysis (e.g. asm-verbose mode).
1590     Context.insert<InstFakeUse>(FP);
1591   }
1592 
1593   // Align the variables area. SpillAreaPaddingBytes is the size of the region
1594   // after the preserved registers and before the spill areas.
1595   // LocalsSlotsPaddingBytes is the amount of padding between the globals and
1596   // locals area if they are separate.
1597   assert(SpillAreaAlignmentBytes <= ARM32_STACK_ALIGNMENT_BYTES);
1598   assert(LocalsSlotsAlignmentBytes <= SpillAreaAlignmentBytes);
1599   uint32_t SpillAreaPaddingBytes = 0;
1600   uint32_t LocalsSlotsPaddingBytes = 0;
1601   alignStackSpillAreas(PreservedRegsSizeBytes, SpillAreaAlignmentBytes,
1602                        GlobalsSize, LocalsSlotsAlignmentBytes,
1603                        &SpillAreaPaddingBytes, &LocalsSlotsPaddingBytes);
1604   SpillAreaSizeBytes += SpillAreaPaddingBytes + LocalsSlotsPaddingBytes;
1605   uint32_t GlobalsAndSubsequentPaddingSize =
1606       GlobalsSize + LocalsSlotsPaddingBytes;
1607 
1608   // Adds the out args space to the stack, and align SP if necessary.
1609   if (!NeedsStackAlignment) {
1610     SpillAreaSizeBytes += MaxOutArgsSizeBytes;
1611   } else {
1612     uint32_t StackOffset = PreservedRegsSizeBytes;
1613     uint32_t StackSize = applyStackAlignment(StackOffset + SpillAreaSizeBytes);
1614     StackSize = applyStackAlignment(StackSize + MaxOutArgsSizeBytes);
1615     SpillAreaSizeBytes = StackSize - StackOffset;
1616   }
1617 
1618   // Combine fixed alloca with SpillAreaSize.
1619   SpillAreaSizeBytes += FixedAllocaSizeBytes;
1620 
1621   // Generate "sub sp, SpillAreaSizeBytes"
1622   if (SpillAreaSizeBytes) {
1623     // Use the scratch register if needed to legalize the immediate.
1624     Operand *SubAmount = legalize(Ctx->getConstantInt32(SpillAreaSizeBytes),
1625                                   Legal_Reg | Legal_Flex, getReservedTmpReg());
1626     Sandboxer(this).sub_sp(SubAmount);
1627     if (FixedAllocaAlignBytes > ARM32_STACK_ALIGNMENT_BYTES) {
1628       Sandboxer(this).align_sp(FixedAllocaAlignBytes);
1629     }
1630   }
1631 
1632   Ctx->statsUpdateFrameBytes(SpillAreaSizeBytes);
1633 
1634   // Fill in stack offsets for stack args, and copy args into registers for
1635   // those that were register-allocated. Args are pushed right to left, so
1636   // Arg[0] is closest to the stack/frame pointer.
1637   Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
1638   size_t BasicFrameOffset = PreservedRegsSizeBytes;
1639   if (!UsesFramePointer)
1640     BasicFrameOffset += SpillAreaSizeBytes;
1641 
1642   materializeGotAddr(Node);
1643 
1644   const VarList &Args = Func->getArgs();
1645   size_t InArgsSizeBytes = 0;
1646   TargetARM32::CallingConv CC;
1647   for (Variable *Arg : Args) {
1648     RegNumT DummyReg;
1649     const Type Ty = Arg->getType();
1650 
1651     // Skip arguments passed in registers.
1652     if (isScalarIntegerType(Ty)) {
1653       if (CC.argInGPR(Ty, &DummyReg)) {
1654         continue;
1655       }
1656     } else {
1657       if (CC.argInVFP(Ty, &DummyReg)) {
1658         continue;
1659       }
1660     }
1661     finishArgumentLowering(Arg, FramePtr, BasicFrameOffset, &InArgsSizeBytes);
1662   }
1663 
1664   // Fill in stack offsets for locals.
1665   assignVarStackSlots(SortedSpilledVariables, SpillAreaPaddingBytes,
1666                       SpillAreaSizeBytes, GlobalsAndSubsequentPaddingSize,
1667                       UsesFramePointer);
1668   this->HasComputedFrame = true;
1669 
1670   if (BuildDefs::dump() && Func->isVerbose(IceV_Frame)) {
1671     OstreamLocker _(Func->getContext());
1672     Ostream &Str = Func->getContext()->getStrDump();
1673 
1674     Str << "Stack layout:\n";
1675     uint32_t SPAdjustmentPaddingSize =
1676         SpillAreaSizeBytes - LocalsSpillAreaSize -
1677         GlobalsAndSubsequentPaddingSize - SpillAreaPaddingBytes -
1678         MaxOutArgsSizeBytes;
1679     Str << " in-args = " << InArgsSizeBytes << " bytes\n"
1680         << " preserved registers = " << PreservedRegsSizeBytes << " bytes\n"
1681         << " spill area padding = " << SpillAreaPaddingBytes << " bytes\n"
1682         << " globals spill area = " << GlobalsSize << " bytes\n"
1683         << " globals-locals spill areas intermediate padding = "
1684         << GlobalsAndSubsequentPaddingSize - GlobalsSize << " bytes\n"
1685         << " locals spill area = " << LocalsSpillAreaSize << " bytes\n"
1686         << " SP alignment padding = " << SPAdjustmentPaddingSize << " bytes\n";
1687 
1688     Str << "Stack details:\n"
1689         << " SP adjustment = " << SpillAreaSizeBytes << " bytes\n"
1690         << " spill area alignment = " << SpillAreaAlignmentBytes << " bytes\n"
1691         << " outgoing args size = " << MaxOutArgsSizeBytes << " bytes\n"
1692         << " locals spill area alignment = " << LocalsSlotsAlignmentBytes
1693         << " bytes\n"
1694         << " is FP based = " << UsesFramePointer << "\n";
1695   }
1696 }
1697 
addEpilog(CfgNode * Node)1698 void TargetARM32::addEpilog(CfgNode *Node) {
1699   InstList &Insts = Node->getInsts();
1700   InstList::reverse_iterator RI, E;
1701   for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) {
1702     if (llvm::isa<InstARM32Ret>(*RI))
1703       break;
1704   }
1705   if (RI == E)
1706     return;
1707 
1708   // Convert the reverse_iterator position into its corresponding (forward)
1709   // iterator position.
1710   InstList::iterator InsertPoint = reverseToForwardIterator(RI);
1711   --InsertPoint;
1712   Context.init(Node);
1713   Context.setInsertPoint(InsertPoint);
1714 
1715   Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
1716   if (UsesFramePointer) {
1717     Variable *FP = getPhysicalRegister(RegARM32::Reg_fp);
1718     // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake
1719     // use of SP before the assignment of SP=FP keeps previous SP adjustments
1720     // from being dead-code eliminated.
1721     Context.insert<InstFakeUse>(SP);
1722     Sandboxer(this).reset_sp(FP);
1723   } else {
1724     // add SP, SpillAreaSizeBytes
1725     if (SpillAreaSizeBytes) {
1726       // Use the scratch register if needed to legalize the immediate.
1727       Operand *AddAmount =
1728           legalize(Ctx->getConstantInt32(SpillAreaSizeBytes),
1729                    Legal_Reg | Legal_Flex, getReservedTmpReg());
1730       Sandboxer(this).add_sp(AddAmount);
1731     }
1732   }
1733 
1734   if (!PreservedGPRs.empty())
1735     _pop(PreservedGPRs);
1736   if (!PreservedSRegs.empty())
1737     _pop(PreservedSRegs);
1738 
1739   if (!getFlags().getUseSandboxing())
1740     return;
1741 
1742   // Change the original ret instruction into a sandboxed return sequence.
1743   //
1744   // bundle_lock
1745   // bic lr, #0xc000000f
1746   // bx lr
1747   // bundle_unlock
1748   //
1749   // This isn't just aligning to the getBundleAlignLog2Bytes(). It needs to
1750   // restrict to the lower 1GB as well.
1751   Variable *LR = getPhysicalRegister(RegARM32::Reg_lr);
1752   Variable *RetValue = nullptr;
1753   if (RI->getSrcSize())
1754     RetValue = llvm::cast<Variable>(RI->getSrc(0));
1755 
1756   Sandboxer(this).ret(LR, RetValue);
1757 
1758   RI->setDeleted();
1759 }
1760 
isLegalMemOffset(Type Ty,int32_t Offset) const1761 bool TargetARM32::isLegalMemOffset(Type Ty, int32_t Offset) const {
1762   constexpr bool ZeroExt = false;
1763   return OperandARM32Mem::canHoldOffset(Ty, ZeroExt, Offset);
1764 }
1765 
newBaseRegister(Variable * Base,int32_t Offset,RegNumT ScratchRegNum)1766 Variable *TargetARM32::PostLoweringLegalizer::newBaseRegister(
1767     Variable *Base, int32_t Offset, RegNumT ScratchRegNum) {
1768   // Legalize will likely need a movw/movt combination, but if the top bits are
1769   // all 0 from negating the offset and subtracting, we could use that instead.
1770   const bool ShouldSub = Offset != 0 && (-Offset & 0xFFFF0000) == 0;
1771   Variable *ScratchReg = Target->makeReg(IceType_i32, ScratchRegNum);
1772   if (ShouldSub) {
1773     Operand *OffsetVal =
1774         Target->legalize(Target->Ctx->getConstantInt32(-Offset),
1775                          Legal_Reg | Legal_Flex, ScratchRegNum);
1776     Target->_sub(ScratchReg, Base, OffsetVal);
1777   } else {
1778     Operand *OffsetVal =
1779         Target->legalize(Target->Ctx->getConstantInt32(Offset),
1780                          Legal_Reg | Legal_Flex, ScratchRegNum);
1781     Target->_add(ScratchReg, Base, OffsetVal);
1782   }
1783 
1784   if (ScratchRegNum == Target->getReservedTmpReg()) {
1785     const bool BaseIsStackOrFramePtr =
1786         Base->getRegNum() == Target->getFrameOrStackReg();
1787     // There is currently no code path that would trigger this assertion, so we
1788     // leave this assertion here in case it is ever violated. This is not a
1789     // fatal error (thus the use of assert() and not llvm::report_fatal_error)
1790     // as the program compiled by subzero will still work correctly.
1791     assert(BaseIsStackOrFramePtr);
1792     // Side-effect: updates TempBase to reflect the new Temporary.
1793     if (BaseIsStackOrFramePtr) {
1794       TempBaseReg = ScratchReg;
1795       TempBaseOffset = Offset;
1796     } else {
1797       TempBaseReg = nullptr;
1798       TempBaseOffset = 0;
1799     }
1800   }
1801 
1802   return ScratchReg;
1803 }
1804 
createMemOperand(Type Ty,Variable * Base,int32_t Offset,bool AllowOffsets)1805 OperandARM32Mem *TargetARM32::PostLoweringLegalizer::createMemOperand(
1806     Type Ty, Variable *Base, int32_t Offset, bool AllowOffsets) {
1807   assert(!Base->isRematerializable());
1808   if (Offset == 0 || (AllowOffsets && Target->isLegalMemOffset(Ty, Offset))) {
1809     return OperandARM32Mem::create(
1810         Target->Func, Ty, Base,
1811         llvm::cast<ConstantInteger32>(Target->Ctx->getConstantInt32(Offset)),
1812         OperandARM32Mem::Offset);
1813   }
1814 
1815   if (!AllowOffsets || TempBaseReg == nullptr) {
1816     newBaseRegister(Base, Offset, Target->getReservedTmpReg());
1817   }
1818 
1819   int32_t OffsetDiff = Offset - TempBaseOffset;
1820   assert(AllowOffsets || OffsetDiff == 0);
1821 
1822   if (!Target->isLegalMemOffset(Ty, OffsetDiff)) {
1823     newBaseRegister(Base, Offset, Target->getReservedTmpReg());
1824     OffsetDiff = 0;
1825   }
1826 
1827   assert(!TempBaseReg->isRematerializable());
1828   return OperandARM32Mem::create(
1829       Target->Func, Ty, TempBaseReg,
1830       llvm::cast<ConstantInteger32>(Target->Ctx->getConstantInt32(OffsetDiff)),
1831       OperandARM32Mem::Offset);
1832 }
1833 
resetTempBaseIfClobberedBy(const Inst * Instr)1834 void TargetARM32::PostLoweringLegalizer::resetTempBaseIfClobberedBy(
1835     const Inst *Instr) {
1836   bool ClobbersTempBase = false;
1837   if (TempBaseReg != nullptr) {
1838     Variable *Dest = Instr->getDest();
1839     if (llvm::isa<InstARM32Call>(Instr)) {
1840       // The following assertion is an invariant, so we remove it from the if
1841       // test. If the invariant is ever broken/invalidated/changed, remember
1842       // to add it back to the if condition.
1843       assert(TempBaseReg->getRegNum() == Target->getReservedTmpReg());
1844       // The linker may need to clobber IP if the call is too far from PC. Thus,
1845       // we assume IP will be overwritten.
1846       ClobbersTempBase = true;
1847     } else if (Dest != nullptr &&
1848                Dest->getRegNum() == TempBaseReg->getRegNum()) {
1849       // Register redefinition.
1850       ClobbersTempBase = true;
1851     }
1852   }
1853 
1854   if (ClobbersTempBase) {
1855     TempBaseReg = nullptr;
1856     TempBaseOffset = 0;
1857   }
1858 }
1859 
legalizeMov(InstARM32Mov * MovInstr)1860 void TargetARM32::PostLoweringLegalizer::legalizeMov(InstARM32Mov *MovInstr) {
1861   Variable *Dest = MovInstr->getDest();
1862   assert(Dest != nullptr);
1863   Type DestTy = Dest->getType();
1864   assert(DestTy != IceType_i64);
1865 
1866   Operand *Src = MovInstr->getSrc(0);
1867   Type SrcTy = Src->getType();
1868   (void)SrcTy;
1869   assert(SrcTy != IceType_i64);
1870 
1871   if (MovInstr->isMultiDest() || MovInstr->isMultiSource())
1872     return;
1873 
1874   bool Legalized = false;
1875   if (!Dest->hasReg()) {
1876     auto *SrcR = llvm::cast<Variable>(Src);
1877     assert(SrcR->hasReg());
1878     assert(!SrcR->isRematerializable());
1879     const int32_t Offset = Dest->getStackOffset();
1880     // This is a _mov(Mem(), Variable), i.e., a store.
1881     TargetARM32::Sandboxer(Target)
1882         .str(SrcR, createMemOperand(DestTy, StackOrFrameReg, Offset),
1883              MovInstr->getPredicate());
1884     // _str() does not have a Dest, so we add a fake-def(Dest).
1885     Target->Context.insert<InstFakeDef>(Dest);
1886     Legalized = true;
1887   } else if (auto *Var = llvm::dyn_cast<Variable>(Src)) {
1888     if (Var->isRematerializable()) {
1889       // This is equivalent to an x86 _lea(RematOffset(%esp/%ebp), Variable).
1890 
1891       // ExtraOffset is only needed for frame-pointer based frames as we have
1892       // to account for spill storage.
1893       const int32_t ExtraOffset = (Var->getRegNum() == Target->getFrameReg())
1894                                       ? Target->getFrameFixedAllocaOffset()
1895                                       : 0;
1896 
1897       const int32_t Offset = Var->getStackOffset() + ExtraOffset;
1898       Variable *Base = Target->getPhysicalRegister(Var->getRegNum());
1899       Variable *T = newBaseRegister(Base, Offset, Dest->getRegNum());
1900       Target->_mov(Dest, T);
1901       Legalized = true;
1902     } else {
1903       if (!Var->hasReg()) {
1904         // This is a _mov(Variable, Mem()), i.e., a load.
1905         const int32_t Offset = Var->getStackOffset();
1906         TargetARM32::Sandboxer(Target)
1907             .ldr(Dest, createMemOperand(DestTy, StackOrFrameReg, Offset),
1908                  MovInstr->getPredicate());
1909         Legalized = true;
1910       }
1911     }
1912   }
1913 
1914   if (Legalized) {
1915     if (MovInstr->isDestRedefined()) {
1916       Target->_set_dest_redefined();
1917     }
1918     MovInstr->setDeleted();
1919   }
1920 }
1921 
1922 // ARM32 address modes:
1923 //  ld/st i[8|16|32]: [reg], [reg +/- imm12], [pc +/- imm12],
1924 //                    [reg +/- reg << shamt5]
1925 //  ld/st f[32|64]  : [reg], [reg +/- imm8] , [pc +/- imm8]
1926 //  ld/st vectors   : [reg]
1927 //
1928 // For now, we don't handle address modes with Relocatables.
1929 namespace {
1930 // MemTraits contains per-type valid address mode information.
1931 #define X(tag, elementty, int_width, fp_width, uvec_width, svec_width, sbits,  \
1932           ubits, rraddr, shaddr)                                               \
1933   static_assert(!(shaddr) || rraddr, "Check ICETYPEARM32_TABLE::" #tag);
1934 ICETYPEARM32_TABLE
1935 #undef X
1936 
1937 static const struct {
1938   int32_t ValidImmMask;
1939   bool CanHaveImm;
1940   bool CanHaveIndex;
1941   bool CanHaveShiftedIndex;
1942 } MemTraits[] = {
1943 #define X(tag, elementty, int_width, fp_width, uvec_width, svec_width, sbits,  \
1944           ubits, rraddr, shaddr)                                               \
1945   { (1 << ubits) - 1, (ubits) > 0, rraddr, shaddr, }                           \
1946   ,
1947     ICETYPEARM32_TABLE
1948 #undef X
1949 };
1950 static constexpr SizeT MemTraitsSize = llvm::array_lengthof(MemTraits);
1951 } // end of anonymous namespace
1952 
1953 OperandARM32Mem *
legalizeMemOperand(OperandARM32Mem * Mem,bool AllowOffsets)1954 TargetARM32::PostLoweringLegalizer::legalizeMemOperand(OperandARM32Mem *Mem,
1955                                                        bool AllowOffsets) {
1956   assert(!Mem->isRegReg() || !Mem->getIndex()->isRematerializable());
1957   assert(
1958       Mem->isRegReg() ||
1959       Target->isLegalMemOffset(Mem->getType(), Mem->getOffset()->getValue()));
1960 
1961   bool Legalized = false;
1962   Variable *Base = Mem->getBase();
1963   int32_t Offset = Mem->isRegReg() ? 0 : Mem->getOffset()->getValue();
1964   if (Base->isRematerializable()) {
1965     const int32_t ExtraOffset = (Base->getRegNum() == Target->getFrameReg())
1966                                     ? Target->getFrameFixedAllocaOffset()
1967                                     : 0;
1968     Offset += Base->getStackOffset() + ExtraOffset;
1969     Base = Target->getPhysicalRegister(Base->getRegNum());
1970     assert(!Base->isRematerializable());
1971     Legalized = true;
1972   }
1973 
1974   if (!Legalized && !Target->NeedSandboxing) {
1975     return nullptr;
1976   }
1977 
1978   if (!Mem->isRegReg()) {
1979     return createMemOperand(Mem->getType(), Base, Offset, AllowOffsets);
1980   }
1981 
1982   if (Target->NeedSandboxing) {
1983     llvm::report_fatal_error("Reg-Reg address mode is not allowed.");
1984   }
1985 
1986   assert(MemTraits[Mem->getType()].CanHaveIndex);
1987 
1988   if (Offset != 0) {
1989     if (TempBaseReg == nullptr) {
1990       Base = newBaseRegister(Base, Offset, Target->getReservedTmpReg());
1991     } else {
1992       uint32_t Imm8, Rotate;
1993       const int32_t OffsetDiff = Offset - TempBaseOffset;
1994       if (OffsetDiff == 0) {
1995         Base = TempBaseReg;
1996       } else if (OperandARM32FlexImm::canHoldImm(OffsetDiff, &Rotate, &Imm8)) {
1997         auto *OffsetDiffF = OperandARM32FlexImm::create(
1998             Target->Func, IceType_i32, Imm8, Rotate);
1999         Target->_add(TempBaseReg, TempBaseReg, OffsetDiffF);
2000         TempBaseOffset += OffsetDiff;
2001         Base = TempBaseReg;
2002       } else if (OperandARM32FlexImm::canHoldImm(-OffsetDiff, &Rotate, &Imm8)) {
2003         auto *OffsetDiffF = OperandARM32FlexImm::create(
2004             Target->Func, IceType_i32, Imm8, Rotate);
2005         Target->_sub(TempBaseReg, TempBaseReg, OffsetDiffF);
2006         TempBaseOffset += OffsetDiff;
2007         Base = TempBaseReg;
2008       } else {
2009         Base = newBaseRegister(Base, Offset, Target->getReservedTmpReg());
2010       }
2011     }
2012   }
2013 
2014   return OperandARM32Mem::create(Target->Func, Mem->getType(), Base,
2015                                  Mem->getIndex(), Mem->getShiftOp(),
2016                                  Mem->getShiftAmt(), Mem->getAddrMode());
2017 }
2018 
postLowerLegalization()2019 void TargetARM32::postLowerLegalization() {
2020   // If a stack variable's frame offset doesn't fit, convert from:
2021   //   ldr X, OFF[SP]
2022   // to:
2023   //   movw/movt TMP, OFF_PART
2024   //   add TMP, TMP, SP
2025   //   ldr X, OFF_MORE[TMP]
2026   //
2027   // This is safe because we have reserved TMP, and add for ARM does not
2028   // clobber the flags register.
2029   Func->dump("Before postLowerLegalization");
2030   assert(hasComputedFrame());
2031   // Do a fairly naive greedy clustering for now. Pick the first stack slot
2032   // that's out of bounds and make a new base reg using the architecture's temp
2033   // register. If that works for the next slot, then great. Otherwise, create a
2034   // new base register, clobbering the previous base register. Never share a
2035   // base reg across different basic blocks. This isn't ideal if local and
2036   // multi-block variables are far apart and their references are interspersed.
2037   // It may help to be more coordinated about assign stack slot numbers and may
2038   // help to assign smaller offsets to higher-weight variables so that they
2039   // don't depend on this legalization.
2040   for (CfgNode *Node : Func->getNodes()) {
2041     Context.init(Node);
2042     // One legalizer per basic block, otherwise we would share the Temporary
2043     // Base Register between basic blocks.
2044     PostLoweringLegalizer Legalizer(this);
2045     while (!Context.atEnd()) {
2046       PostIncrLoweringContext PostIncrement(Context);
2047       Inst *CurInstr = iteratorToInst(Context.getCur());
2048 
2049       // Check if the previous TempBaseReg is clobbered, and reset if needed.
2050       Legalizer.resetTempBaseIfClobberedBy(CurInstr);
2051 
2052       if (auto *MovInstr = llvm::dyn_cast<InstARM32Mov>(CurInstr)) {
2053         Legalizer.legalizeMov(MovInstr);
2054       } else if (auto *LdrInstr = llvm::dyn_cast<InstARM32Ldr>(CurInstr)) {
2055         if (OperandARM32Mem *LegalMem = Legalizer.legalizeMemOperand(
2056                 llvm::cast<OperandARM32Mem>(LdrInstr->getSrc(0)))) {
2057           Sandboxer(this)
2058               .ldr(CurInstr->getDest(), LegalMem, LdrInstr->getPredicate());
2059           CurInstr->setDeleted();
2060         }
2061       } else if (auto *LdrexInstr = llvm::dyn_cast<InstARM32Ldrex>(CurInstr)) {
2062         constexpr bool DisallowOffsetsBecauseLdrex = false;
2063         if (OperandARM32Mem *LegalMem = Legalizer.legalizeMemOperand(
2064                 llvm::cast<OperandARM32Mem>(LdrexInstr->getSrc(0)),
2065                 DisallowOffsetsBecauseLdrex)) {
2066           Sandboxer(this)
2067               .ldrex(CurInstr->getDest(), LegalMem, LdrexInstr->getPredicate());
2068           CurInstr->setDeleted();
2069         }
2070       } else if (auto *StrInstr = llvm::dyn_cast<InstARM32Str>(CurInstr)) {
2071         if (OperandARM32Mem *LegalMem = Legalizer.legalizeMemOperand(
2072                 llvm::cast<OperandARM32Mem>(StrInstr->getSrc(1)))) {
2073           Sandboxer(this).str(llvm::cast<Variable>(CurInstr->getSrc(0)),
2074                               LegalMem, StrInstr->getPredicate());
2075           CurInstr->setDeleted();
2076         }
2077       } else if (auto *StrexInstr = llvm::dyn_cast<InstARM32Strex>(CurInstr)) {
2078         constexpr bool DisallowOffsetsBecauseStrex = false;
2079         if (OperandARM32Mem *LegalMem = Legalizer.legalizeMemOperand(
2080                 llvm::cast<OperandARM32Mem>(StrexInstr->getSrc(1)),
2081                 DisallowOffsetsBecauseStrex)) {
2082           Sandboxer(this).strex(CurInstr->getDest(),
2083                                 llvm::cast<Variable>(CurInstr->getSrc(0)),
2084                                 LegalMem, StrexInstr->getPredicate());
2085           CurInstr->setDeleted();
2086         }
2087       }
2088 
2089       // Sanity-check: the Legalizer will either have no Temp, or it will be
2090       // bound to IP.
2091       Legalizer.assertNoTempOrAssignedToIP();
2092     }
2093   }
2094 }
2095 
loOperand(Operand * Operand)2096 Operand *TargetARM32::loOperand(Operand *Operand) {
2097   assert(Operand->getType() == IceType_i64);
2098   if (Operand->getType() != IceType_i64)
2099     return Operand;
2100   if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand))
2101     return Var64On32->getLo();
2102   if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand))
2103     return Ctx->getConstantInt32(static_cast<uint32_t>(Const->getValue()));
2104   if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Operand)) {
2105     // Conservatively disallow memory operands with side-effects (pre/post
2106     // increment) in case of duplication.
2107     assert(Mem->getAddrMode() == OperandARM32Mem::Offset ||
2108            Mem->getAddrMode() == OperandARM32Mem::NegOffset);
2109     if (Mem->isRegReg()) {
2110       Variable *IndexR = legalizeToReg(Mem->getIndex());
2111       return OperandARM32Mem::create(Func, IceType_i32, Mem->getBase(), IndexR,
2112                                      Mem->getShiftOp(), Mem->getShiftAmt(),
2113                                      Mem->getAddrMode());
2114     } else {
2115       return OperandARM32Mem::create(Func, IceType_i32, Mem->getBase(),
2116                                      Mem->getOffset(), Mem->getAddrMode());
2117     }
2118   }
2119   llvm::report_fatal_error("Unsupported operand type");
2120   return nullptr;
2121 }
2122 
hiOperand(Operand * Operand)2123 Operand *TargetARM32::hiOperand(Operand *Operand) {
2124   assert(Operand->getType() == IceType_i64);
2125   if (Operand->getType() != IceType_i64)
2126     return Operand;
2127   if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand))
2128     return Var64On32->getHi();
2129   if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) {
2130     return Ctx->getConstantInt32(
2131         static_cast<uint32_t>(Const->getValue() >> 32));
2132   }
2133   if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Operand)) {
2134     // Conservatively disallow memory operands with side-effects in case of
2135     // duplication.
2136     assert(Mem->getAddrMode() == OperandARM32Mem::Offset ||
2137            Mem->getAddrMode() == OperandARM32Mem::NegOffset);
2138     const Type SplitType = IceType_i32;
2139     if (Mem->isRegReg()) {
2140       // We have to make a temp variable T, and add 4 to either Base or Index.
2141       // The Index may be shifted, so adding 4 can mean something else. Thus,
2142       // prefer T := Base + 4, and use T as the new Base.
2143       Variable *Base = Mem->getBase();
2144       Constant *Four = Ctx->getConstantInt32(4);
2145       Variable *NewBase = Func->makeVariable(Base->getType());
2146       lowerArithmetic(InstArithmetic::create(Func, InstArithmetic::Add, NewBase,
2147                                              Base, Four));
2148       Variable *BaseR = legalizeToReg(NewBase);
2149       Variable *IndexR = legalizeToReg(Mem->getIndex());
2150       return OperandARM32Mem::create(Func, SplitType, BaseR, IndexR,
2151                                      Mem->getShiftOp(), Mem->getShiftAmt(),
2152                                      Mem->getAddrMode());
2153     } else {
2154       Variable *Base = Mem->getBase();
2155       ConstantInteger32 *Offset = Mem->getOffset();
2156       assert(!Utils::WouldOverflowAdd(Offset->getValue(), 4));
2157       int32_t NextOffsetVal = Offset->getValue() + 4;
2158       constexpr bool ZeroExt = false;
2159       if (!OperandARM32Mem::canHoldOffset(SplitType, ZeroExt, NextOffsetVal)) {
2160         // We have to make a temp variable and add 4 to either Base or Offset.
2161         // If we add 4 to Offset, this will convert a non-RegReg addressing
2162         // mode into a RegReg addressing mode. Since NaCl sandboxing disallows
2163         // RegReg addressing modes, prefer adding to base and replacing
2164         // instead. Thus we leave the old offset alone.
2165         Constant *_4 = Ctx->getConstantInt32(4);
2166         Variable *NewBase = Func->makeVariable(Base->getType());
2167         lowerArithmetic(InstArithmetic::create(Func, InstArithmetic::Add,
2168                                                NewBase, Base, _4));
2169         Base = NewBase;
2170       } else {
2171         Offset =
2172             llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(NextOffsetVal));
2173       }
2174       Variable *BaseR = legalizeToReg(Base);
2175       return OperandARM32Mem::create(Func, SplitType, BaseR, Offset,
2176                                      Mem->getAddrMode());
2177     }
2178   }
2179   llvm::report_fatal_error("Unsupported operand type");
2180   return nullptr;
2181 }
2182 
getRegisterSet(RegSetMask Include,RegSetMask Exclude) const2183 SmallBitVector TargetARM32::getRegisterSet(RegSetMask Include,
2184                                            RegSetMask Exclude) const {
2185   SmallBitVector Registers(RegARM32::Reg_NUM);
2186 
2187   for (uint32_t i = 0; i < RegARM32::Reg_NUM; ++i) {
2188     const auto &Entry = RegARM32::RegTable[i];
2189     if (Entry.Scratch && (Include & RegSet_CallerSave))
2190       Registers[i] = true;
2191     if (Entry.Preserved && (Include & RegSet_CalleeSave))
2192       Registers[i] = true;
2193     if (Entry.StackPtr && (Include & RegSet_StackPointer))
2194       Registers[i] = true;
2195     if (Entry.FramePtr && (Include & RegSet_FramePointer))
2196       Registers[i] = true;
2197     if (Entry.Scratch && (Exclude & RegSet_CallerSave))
2198       Registers[i] = false;
2199     if (Entry.Preserved && (Exclude & RegSet_CalleeSave))
2200       Registers[i] = false;
2201     if (Entry.StackPtr && (Exclude & RegSet_StackPointer))
2202       Registers[i] = false;
2203     if (Entry.FramePtr && (Exclude & RegSet_FramePointer))
2204       Registers[i] = false;
2205   }
2206 
2207   return Registers;
2208 }
2209 
lowerAlloca(const InstAlloca * Instr)2210 void TargetARM32::lowerAlloca(const InstAlloca *Instr) {
2211   // Conservatively require the stack to be aligned. Some stack adjustment
2212   // operations implemented below assume that the stack is aligned before the
2213   // alloca. All the alloca code ensures that the stack alignment is preserved
2214   // after the alloca. The stack alignment restriction can be relaxed in some
2215   // cases.
2216   NeedsStackAlignment = true;
2217 
2218   // For default align=0, set it to the real value 1, to avoid any
2219   // bit-manipulation problems below.
2220   const uint32_t AlignmentParam = std::max(1u, Instr->getAlignInBytes());
2221 
2222   // LLVM enforces power of 2 alignment.
2223   assert(llvm::isPowerOf2_32(AlignmentParam));
2224   assert(llvm::isPowerOf2_32(ARM32_STACK_ALIGNMENT_BYTES));
2225 
2226   const uint32_t Alignment =
2227       std::max(AlignmentParam, ARM32_STACK_ALIGNMENT_BYTES);
2228   const bool OverAligned = Alignment > ARM32_STACK_ALIGNMENT_BYTES;
2229   const bool OptM1 = Func->getOptLevel() == Opt_m1;
2230   const bool AllocaWithKnownOffset = Instr->getKnownFrameOffset();
2231   const bool UseFramePointer =
2232       hasFramePointer() || OverAligned || !AllocaWithKnownOffset || OptM1;
2233 
2234   if (UseFramePointer)
2235     setHasFramePointer();
2236 
2237   Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
2238   if (OverAligned) {
2239     Sandboxer(this).align_sp(Alignment);
2240   }
2241 
2242   Variable *Dest = Instr->getDest();
2243   Operand *TotalSize = Instr->getSizeInBytes();
2244 
2245   if (const auto *ConstantTotalSize =
2246           llvm::dyn_cast<ConstantInteger32>(TotalSize)) {
2247     const uint32_t Value =
2248         Utils::applyAlignment(ConstantTotalSize->getValue(), Alignment);
2249     // Constant size alloca.
2250     if (!UseFramePointer) {
2251       // If we don't need a Frame Pointer, this alloca has a known offset to the
2252       // stack pointer. We don't need adjust the stack pointer, nor assign any
2253       // value to Dest, as Dest is rematerializable.
2254       assert(Dest->isRematerializable());
2255       FixedAllocaSizeBytes += Value;
2256       Context.insert<InstFakeDef>(Dest);
2257       return;
2258     }
2259 
2260     // If a frame pointer is required, then we need to store the alloca'd result
2261     // in Dest.
2262     Operand *SubAmountRF =
2263         legalize(Ctx->getConstantInt32(Value), Legal_Reg | Legal_Flex);
2264     Sandboxer(this).sub_sp(SubAmountRF);
2265   } else {
2266     // Non-constant sizes need to be adjusted to the next highest multiple of
2267     // the required alignment at runtime.
2268     TotalSize = legalize(TotalSize, Legal_Reg | Legal_Flex);
2269     Variable *T = makeReg(IceType_i32);
2270     _mov(T, TotalSize);
2271     Operand *AddAmount = legalize(Ctx->getConstantInt32(Alignment - 1));
2272     _add(T, T, AddAmount);
2273     alignRegisterPow2(T, Alignment);
2274     Sandboxer(this).sub_sp(T);
2275   }
2276 
2277   // Adds back a few bytes to SP to account for the out args area.
2278   Variable *T = SP;
2279   if (MaxOutArgsSizeBytes != 0) {
2280     T = makeReg(getPointerType());
2281     Operand *OutArgsSizeRF = legalize(
2282         Ctx->getConstantInt32(MaxOutArgsSizeBytes), Legal_Reg | Legal_Flex);
2283     _add(T, SP, OutArgsSizeRF);
2284   }
2285 
2286   _mov(Dest, T);
2287 }
2288 
div0Check(Type Ty,Operand * SrcLo,Operand * SrcHi)2289 void TargetARM32::div0Check(Type Ty, Operand *SrcLo, Operand *SrcHi) {
2290   if (isGuaranteedNonzeroInt(SrcLo) || isGuaranteedNonzeroInt(SrcHi))
2291     return;
2292   Variable *SrcLoReg = legalizeToReg(SrcLo);
2293   switch (Ty) {
2294   default:
2295     llvm_unreachable(
2296         ("Unexpected type in div0Check: " + typeStdString(Ty)).c_str());
2297   case IceType_i8:
2298   case IceType_i16: {
2299     Operand *ShAmtImm = shAmtImm(32 - getScalarIntBitWidth(Ty));
2300     Variable *T = makeReg(IceType_i32);
2301     _lsls(T, SrcLoReg, ShAmtImm);
2302     Context.insert<InstFakeUse>(T);
2303   } break;
2304   case IceType_i32: {
2305     _tst(SrcLoReg, SrcLoReg);
2306     break;
2307   }
2308   case IceType_i64: {
2309     Variable *T = makeReg(IceType_i32);
2310     _orrs(T, SrcLoReg, legalize(SrcHi, Legal_Reg | Legal_Flex));
2311     // T isn't going to be used, but we need the side-effect of setting flags
2312     // from this operation.
2313     Context.insert<InstFakeUse>(T);
2314   }
2315   }
2316   auto *Label = InstARM32Label::create(Func, this);
2317   _br(Label, CondARM32::NE);
2318   _trap();
2319   Context.insert(Label);
2320 }
2321 
lowerIDivRem(Variable * Dest,Variable * T,Variable * Src0R,Operand * Src1,ExtInstr ExtFunc,DivInstr DivFunc,bool IsRemainder)2322 void TargetARM32::lowerIDivRem(Variable *Dest, Variable *T, Variable *Src0R,
2323                                Operand *Src1, ExtInstr ExtFunc,
2324                                DivInstr DivFunc, bool IsRemainder) {
2325   div0Check(Dest->getType(), Src1, nullptr);
2326   Variable *Src1R = legalizeToReg(Src1);
2327   Variable *T0R = Src0R;
2328   Variable *T1R = Src1R;
2329   if (Dest->getType() != IceType_i32) {
2330     T0R = makeReg(IceType_i32);
2331     (this->*ExtFunc)(T0R, Src0R, CondARM32::AL);
2332     T1R = makeReg(IceType_i32);
2333     (this->*ExtFunc)(T1R, Src1R, CondARM32::AL);
2334   }
2335   if (hasCPUFeature(TargetARM32Features::HWDivArm)) {
2336     (this->*DivFunc)(T, T0R, T1R, CondARM32::AL);
2337     if (IsRemainder) {
2338       Variable *T2 = makeReg(IceType_i32);
2339       _mls(T2, T, T1R, T0R);
2340       T = T2;
2341     }
2342     _mov(Dest, T);
2343   } else {
2344     llvm::report_fatal_error("div should have already been turned into a call");
2345   }
2346 }
2347 
2348 TargetARM32::SafeBoolChain
lowerInt1Arithmetic(const InstArithmetic * Instr)2349 TargetARM32::lowerInt1Arithmetic(const InstArithmetic *Instr) {
2350   Variable *Dest = Instr->getDest();
2351   assert(Dest->getType() == IceType_i1);
2352 
2353   // So folding didn't work for Instr. Not a problem: We just need to
2354   // materialize the Sources, and perform the operation. We create regular
2355   // Variables (and not infinite-weight ones) because this call might recurse a
2356   // lot, and we might end up with tons of infinite weight temporaries.
2357   assert(Instr->getSrcSize() == 2);
2358   Variable *Src0 = Func->makeVariable(IceType_i1);
2359   SafeBoolChain Src0Safe = lowerInt1(Src0, Instr->getSrc(0));
2360 
2361   Operand *Src1 = Instr->getSrc(1);
2362   SafeBoolChain Src1Safe = SBC_Yes;
2363 
2364   if (!llvm::isa<Constant>(Src1)) {
2365     Variable *Src1V = Func->makeVariable(IceType_i1);
2366     Src1Safe = lowerInt1(Src1V, Src1);
2367     Src1 = Src1V;
2368   }
2369 
2370   Variable *T = makeReg(IceType_i1);
2371   Src0 = legalizeToReg(Src0);
2372   Operand *Src1RF = legalize(Src1, Legal_Reg | Legal_Flex);
2373   switch (Instr->getOp()) {
2374   default:
2375     // If this Unreachable is ever executed, add the offending operation to
2376     // the list of valid consumers.
2377     llvm::report_fatal_error("Unhandled i1 Op");
2378   case InstArithmetic::And:
2379     _and(T, Src0, Src1RF);
2380     break;
2381   case InstArithmetic::Or:
2382     _orr(T, Src0, Src1RF);
2383     break;
2384   case InstArithmetic::Xor:
2385     _eor(T, Src0, Src1RF);
2386     break;
2387   }
2388   _mov(Dest, T);
2389   return Src0Safe == SBC_Yes && Src1Safe == SBC_Yes ? SBC_Yes : SBC_No;
2390 }
2391 
2392 namespace {
2393 // NumericOperands is used during arithmetic/icmp lowering for constant folding.
2394 // It holds the two sources operands, and maintains some state as to whether one
2395 // of them is a constant. If one of the operands is a constant, then it will be
2396 // be stored as the operation's second source, with a bit indicating whether the
2397 // operands were swapped.
2398 //
2399 // The class is split into a base class with operand type-independent methods,
2400 // and a derived, templated class, for each type of operand we want to fold
2401 // constants for:
2402 //
2403 // NumericOperandsBase --> NumericOperands<ConstantFloat>
2404 //                     --> NumericOperands<ConstantDouble>
2405 //                     --> NumericOperands<ConstantInt32>
2406 //
2407 // NumericOperands<ConstantInt32> also exposes helper methods for emitting
2408 // inverted/negated immediates.
2409 class NumericOperandsBase {
2410   NumericOperandsBase() = delete;
2411   NumericOperandsBase(const NumericOperandsBase &) = delete;
2412   NumericOperandsBase &operator=(const NumericOperandsBase &) = delete;
2413 
2414 public:
NumericOperandsBase(Operand * S0,Operand * S1)2415   NumericOperandsBase(Operand *S0, Operand *S1)
2416       : Src0(NonConstOperand(S0, S1)), Src1(ConstOperand(S0, S1)),
2417         Swapped(Src0 == S1 && S0 != S1) {
2418     assert(Src0 != nullptr);
2419     assert(Src1 != nullptr);
2420     assert(Src0 != Src1 || S0 == S1);
2421   }
2422 
hasConstOperand() const2423   bool hasConstOperand() const {
2424     return llvm::isa<Constant>(Src1) && !llvm::isa<ConstantRelocatable>(Src1);
2425   }
2426 
swappedOperands() const2427   bool swappedOperands() const { return Swapped; }
2428 
src0R(TargetARM32 * Target) const2429   Variable *src0R(TargetARM32 *Target) const {
2430     return legalizeToReg(Target, Src0);
2431   }
2432 
unswappedSrc0R(TargetARM32 * Target) const2433   Variable *unswappedSrc0R(TargetARM32 *Target) const {
2434     return legalizeToReg(Target, Swapped ? Src1 : Src0);
2435   }
2436 
src1RF(TargetARM32 * Target) const2437   Operand *src1RF(TargetARM32 *Target) const {
2438     return legalizeToRegOrFlex(Target, Src1);
2439   }
2440 
unswappedSrc1R(TargetARM32 * Target) const2441   Variable *unswappedSrc1R(TargetARM32 *Target) const {
2442     return legalizeToReg(Target, Swapped ? Src0 : Src1);
2443   }
2444 
2445 protected:
2446   Operand *const Src0;
2447   Operand *const Src1;
2448   const bool Swapped;
2449 
legalizeToReg(TargetARM32 * Target,Operand * Src)2450   static Variable *legalizeToReg(TargetARM32 *Target, Operand *Src) {
2451     return Target->legalizeToReg(Src);
2452   }
2453 
legalizeToRegOrFlex(TargetARM32 * Target,Operand * Src)2454   static Operand *legalizeToRegOrFlex(TargetARM32 *Target, Operand *Src) {
2455     return Target->legalize(Src,
2456                             TargetARM32::Legal_Reg | TargetARM32::Legal_Flex);
2457   }
2458 
2459 private:
NonConstOperand(Operand * S0,Operand * S1)2460   static Operand *NonConstOperand(Operand *S0, Operand *S1) {
2461     if (!llvm::isa<Constant>(S0))
2462       return S0;
2463     if (!llvm::isa<Constant>(S1))
2464       return S1;
2465     if (llvm::isa<ConstantRelocatable>(S1) &&
2466         !llvm::isa<ConstantRelocatable>(S0))
2467       return S1;
2468     return S0;
2469   }
2470 
ConstOperand(Operand * S0,Operand * S1)2471   static Operand *ConstOperand(Operand *S0, Operand *S1) {
2472     if (!llvm::isa<Constant>(S0))
2473       return S1;
2474     if (!llvm::isa<Constant>(S1))
2475       return S0;
2476     if (llvm::isa<ConstantRelocatable>(S1) &&
2477         !llvm::isa<ConstantRelocatable>(S0))
2478       return S0;
2479     return S1;
2480   }
2481 };
2482 
2483 template <typename C> class NumericOperands : public NumericOperandsBase {
2484   NumericOperands() = delete;
2485   NumericOperands(const NumericOperands &) = delete;
2486   NumericOperands &operator=(const NumericOperands &) = delete;
2487 
2488 public:
NumericOperands(Operand * S0,Operand * S1)2489   NumericOperands(Operand *S0, Operand *S1) : NumericOperandsBase(S0, S1) {
2490     assert(!hasConstOperand() || llvm::isa<C>(this->Src1));
2491   }
2492 
getConstantValue() const2493   typename C::PrimType getConstantValue() const {
2494     return llvm::cast<C>(Src1)->getValue();
2495   }
2496 };
2497 
2498 using FloatOperands = NumericOperands<ConstantFloat>;
2499 using DoubleOperands = NumericOperands<ConstantDouble>;
2500 
2501 class Int32Operands : public NumericOperands<ConstantInteger32> {
2502   Int32Operands() = delete;
2503   Int32Operands(const Int32Operands &) = delete;
2504   Int32Operands &operator=(const Int32Operands &) = delete;
2505 
2506 public:
Int32Operands(Operand * S0,Operand * S1)2507   Int32Operands(Operand *S0, Operand *S1) : NumericOperands(S0, S1) {}
2508 
unswappedSrc1RShAmtImm(TargetARM32 * Target) const2509   Operand *unswappedSrc1RShAmtImm(TargetARM32 *Target) const {
2510     if (!swappedOperands() && hasConstOperand()) {
2511       return Target->shAmtImm(getConstantValue() & 0x1F);
2512     }
2513     return legalizeToReg(Target, Swapped ? Src0 : Src1);
2514   }
2515 
isSrc1ImmediateZero() const2516   bool isSrc1ImmediateZero() const {
2517     if (!swappedOperands() && hasConstOperand()) {
2518       return getConstantValue() == 0;
2519     }
2520     return false;
2521   }
2522 
immediateIsFlexEncodable() const2523   bool immediateIsFlexEncodable() const {
2524     uint32_t Rotate, Imm8;
2525     return OperandARM32FlexImm::canHoldImm(getConstantValue(), &Rotate, &Imm8);
2526   }
2527 
negatedImmediateIsFlexEncodable() const2528   bool negatedImmediateIsFlexEncodable() const {
2529     uint32_t Rotate, Imm8;
2530     return OperandARM32FlexImm::canHoldImm(
2531         -static_cast<int32_t>(getConstantValue()), &Rotate, &Imm8);
2532   }
2533 
negatedSrc1F(TargetARM32 * Target) const2534   Operand *negatedSrc1F(TargetARM32 *Target) const {
2535     return legalizeToRegOrFlex(Target,
2536                                Target->getCtx()->getConstantInt32(
2537                                    -static_cast<int32_t>(getConstantValue())));
2538   }
2539 
invertedImmediateIsFlexEncodable() const2540   bool invertedImmediateIsFlexEncodable() const {
2541     uint32_t Rotate, Imm8;
2542     return OperandARM32FlexImm::canHoldImm(
2543         ~static_cast<uint32_t>(getConstantValue()), &Rotate, &Imm8);
2544   }
2545 
invertedSrc1F(TargetARM32 * Target) const2546   Operand *invertedSrc1F(TargetARM32 *Target) const {
2547     return legalizeToRegOrFlex(Target,
2548                                Target->getCtx()->getConstantInt32(
2549                                    ~static_cast<uint32_t>(getConstantValue())));
2550   }
2551 };
2552 } // end of anonymous namespace
2553 
preambleDivRem(const InstCall * Instr)2554 void TargetARM32::preambleDivRem(const InstCall *Instr) {
2555   Operand *Src1 = Instr->getArg(1);
2556 
2557   switch (Src1->getType()) {
2558   default:
2559     llvm::report_fatal_error("Invalid type for idiv.");
2560   case IceType_i64: {
2561     if (auto *C = llvm::dyn_cast<ConstantInteger64>(Src1)) {
2562       if (C->getValue() == 0) {
2563         _trap();
2564         return;
2565       }
2566     }
2567     div0Check(IceType_i64, loOperand(Src1), hiOperand(Src1));
2568     return;
2569   }
2570   case IceType_i32: {
2571     // Src0 and Src1 have already been appropriately extended to an i32, so we
2572     // don't check for i8 and i16.
2573     if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) {
2574       if (C->getValue() == 0) {
2575         _trap();
2576         return;
2577       }
2578     }
2579     div0Check(IceType_i32, Src1, nullptr);
2580     return;
2581   }
2582   }
2583 }
2584 
lowerInt64Arithmetic(InstArithmetic::OpKind Op,Variable * Dest,Operand * Src0,Operand * Src1)2585 void TargetARM32::lowerInt64Arithmetic(InstArithmetic::OpKind Op,
2586                                        Variable *Dest, Operand *Src0,
2587                                        Operand *Src1) {
2588   Int32Operands SrcsLo(loOperand(Src0), loOperand(Src1));
2589   Int32Operands SrcsHi(hiOperand(Src0), hiOperand(Src1));
2590   assert(SrcsLo.swappedOperands() == SrcsHi.swappedOperands());
2591   assert(SrcsLo.hasConstOperand() == SrcsHi.hasConstOperand());
2592 
2593   auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
2594   auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
2595   Variable *T_Lo = makeReg(DestLo->getType());
2596   Variable *T_Hi = makeReg(DestHi->getType());
2597 
2598   switch (Op) {
2599   case InstArithmetic::_num:
2600     llvm::report_fatal_error("Unknown arithmetic operator");
2601     return;
2602   case InstArithmetic::Add: {
2603     Variable *Src0LoR = SrcsLo.src0R(this);
2604     Operand *Src1LoRF = SrcsLo.src1RF(this);
2605     Variable *Src0HiR = SrcsHi.src0R(this);
2606     Operand *Src1HiRF = SrcsHi.src1RF(this);
2607     _adds(T_Lo, Src0LoR, Src1LoRF);
2608     _mov(DestLo, T_Lo);
2609     _adc(T_Hi, Src0HiR, Src1HiRF);
2610     _mov(DestHi, T_Hi);
2611     return;
2612   }
2613   case InstArithmetic::And: {
2614     Variable *Src0LoR = SrcsLo.src0R(this);
2615     Operand *Src1LoRF = SrcsLo.src1RF(this);
2616     Variable *Src0HiR = SrcsHi.src0R(this);
2617     Operand *Src1HiRF = SrcsHi.src1RF(this);
2618     _and(T_Lo, Src0LoR, Src1LoRF);
2619     _mov(DestLo, T_Lo);
2620     _and(T_Hi, Src0HiR, Src1HiRF);
2621     _mov(DestHi, T_Hi);
2622     return;
2623   }
2624   case InstArithmetic::Or: {
2625     Variable *Src0LoR = SrcsLo.src0R(this);
2626     Operand *Src1LoRF = SrcsLo.src1RF(this);
2627     Variable *Src0HiR = SrcsHi.src0R(this);
2628     Operand *Src1HiRF = SrcsHi.src1RF(this);
2629     _orr(T_Lo, Src0LoR, Src1LoRF);
2630     _mov(DestLo, T_Lo);
2631     _orr(T_Hi, Src0HiR, Src1HiRF);
2632     _mov(DestHi, T_Hi);
2633     return;
2634   }
2635   case InstArithmetic::Xor: {
2636     Variable *Src0LoR = SrcsLo.src0R(this);
2637     Operand *Src1LoRF = SrcsLo.src1RF(this);
2638     Variable *Src0HiR = SrcsHi.src0R(this);
2639     Operand *Src1HiRF = SrcsHi.src1RF(this);
2640     _eor(T_Lo, Src0LoR, Src1LoRF);
2641     _mov(DestLo, T_Lo);
2642     _eor(T_Hi, Src0HiR, Src1HiRF);
2643     _mov(DestHi, T_Hi);
2644     return;
2645   }
2646   case InstArithmetic::Sub: {
2647     Variable *Src0LoR = SrcsLo.src0R(this);
2648     Operand *Src1LoRF = SrcsLo.src1RF(this);
2649     Variable *Src0HiR = SrcsHi.src0R(this);
2650     Operand *Src1HiRF = SrcsHi.src1RF(this);
2651     if (SrcsLo.swappedOperands()) {
2652       _rsbs(T_Lo, Src0LoR, Src1LoRF);
2653       _mov(DestLo, T_Lo);
2654       _rsc(T_Hi, Src0HiR, Src1HiRF);
2655       _mov(DestHi, T_Hi);
2656     } else {
2657       _subs(T_Lo, Src0LoR, Src1LoRF);
2658       _mov(DestLo, T_Lo);
2659       _sbc(T_Hi, Src0HiR, Src1HiRF);
2660       _mov(DestHi, T_Hi);
2661     }
2662     return;
2663   }
2664   case InstArithmetic::Mul: {
2665     // GCC 4.8 does:
2666     // a=b*c ==>
2667     //   t_acc =(mul) (b.lo * c.hi)
2668     //   t_acc =(mla) (c.lo * b.hi) + t_acc
2669     //   t.hi,t.lo =(umull) b.lo * c.lo
2670     //   t.hi += t_acc
2671     //   a.lo = t.lo
2672     //   a.hi = t.hi
2673     //
2674     // LLVM does:
2675     //   t.hi,t.lo =(umull) b.lo * c.lo
2676     //   t.hi =(mla) (b.lo * c.hi) + t.hi
2677     //   t.hi =(mla) (b.hi * c.lo) + t.hi
2678     //   a.lo = t.lo
2679     //   a.hi = t.hi
2680     //
2681     // LLVM's lowering has fewer instructions, but more register pressure:
2682     // t.lo is live from beginning to end, while GCC delays the two-dest
2683     // instruction till the end, and kills c.hi immediately.
2684     Variable *T_Acc = makeReg(IceType_i32);
2685     Variable *T_Acc1 = makeReg(IceType_i32);
2686     Variable *T_Hi1 = makeReg(IceType_i32);
2687     Variable *Src0RLo = SrcsLo.unswappedSrc0R(this);
2688     Variable *Src0RHi = SrcsHi.unswappedSrc0R(this);
2689     Variable *Src1RLo = SrcsLo.unswappedSrc1R(this);
2690     Variable *Src1RHi = SrcsHi.unswappedSrc1R(this);
2691     _mul(T_Acc, Src0RLo, Src1RHi);
2692     _mla(T_Acc1, Src1RLo, Src0RHi, T_Acc);
2693     _umull(T_Lo, T_Hi1, Src0RLo, Src1RLo);
2694     _add(T_Hi, T_Hi1, T_Acc1);
2695     _mov(DestLo, T_Lo);
2696     _mov(DestHi, T_Hi);
2697     return;
2698   }
2699   case InstArithmetic::Shl: {
2700     if (!SrcsLo.swappedOperands() && SrcsLo.hasConstOperand()) {
2701       Variable *Src0RLo = SrcsLo.src0R(this);
2702       // Truncating the ShAmt to [0, 63] because that's what ARM does anyway.
2703       const int32_t ShAmtImm = SrcsLo.getConstantValue() & 0x3F;
2704       if (ShAmtImm == 0) {
2705         _mov(DestLo, Src0RLo);
2706         _mov(DestHi, SrcsHi.src0R(this));
2707         return;
2708       }
2709 
2710       if (ShAmtImm >= 32) {
2711         if (ShAmtImm == 32) {
2712           _mov(DestHi, Src0RLo);
2713         } else {
2714           Operand *ShAmtOp = shAmtImm(ShAmtImm - 32);
2715           _lsl(T_Hi, Src0RLo, ShAmtOp);
2716           _mov(DestHi, T_Hi);
2717         }
2718 
2719         Operand *_0 =
2720             legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
2721         _mov(T_Lo, _0);
2722         _mov(DestLo, T_Lo);
2723         return;
2724       }
2725 
2726       Variable *Src0RHi = SrcsHi.src0R(this);
2727       Operand *ShAmtOp = shAmtImm(ShAmtImm);
2728       Operand *ComplShAmtOp = shAmtImm(32 - ShAmtImm);
2729       _lsl(T_Hi, Src0RHi, ShAmtOp);
2730       _orr(T_Hi, T_Hi,
2731            OperandARM32FlexReg::create(Func, IceType_i32, Src0RLo,
2732                                        OperandARM32::LSR, ComplShAmtOp));
2733       _mov(DestHi, T_Hi);
2734 
2735       _lsl(T_Lo, Src0RLo, ShAmtOp);
2736       _mov(DestLo, T_Lo);
2737       return;
2738     }
2739 
2740     // a=b<<c ==>
2741     // pnacl-llc does:
2742     // mov     t_b.lo, b.lo
2743     // mov     t_b.hi, b.hi
2744     // mov     t_c.lo, c.lo
2745     // rsb     T0, t_c.lo, #32
2746     // lsr     T1, t_b.lo, T0
2747     // orr     t_a.hi, T1, t_b.hi, lsl t_c.lo
2748     // sub     T2, t_c.lo, #32
2749     // cmp     T2, #0
2750     // lslge   t_a.hi, t_b.lo, T2
2751     // lsl     t_a.lo, t_b.lo, t_c.lo
2752     // mov     a.lo, t_a.lo
2753     // mov     a.hi, t_a.hi
2754     //
2755     // GCC 4.8 does:
2756     // sub t_c1, c.lo, #32
2757     // lsl t_hi, b.hi, c.lo
2758     // orr t_hi, t_hi, b.lo, lsl t_c1
2759     // rsb t_c2, c.lo, #32
2760     // orr t_hi, t_hi, b.lo, lsr t_c2
2761     // lsl t_lo, b.lo, c.lo
2762     // a.lo = t_lo
2763     // a.hi = t_hi
2764     //
2765     // These are incompatible, therefore we mimic pnacl-llc.
2766     // Can be strength-reduced for constant-shifts, but we don't do that for
2767     // now.
2768     // Given the sub/rsb T_C, C.lo, #32, one of the T_C will be negative. On
2769     // ARM, shifts only take the lower 8 bits of the shift register, and
2770     // saturate to the range 0-32, so the negative value will saturate to 32.
2771     Operand *_32 = legalize(Ctx->getConstantInt32(32), Legal_Reg | Legal_Flex);
2772     Operand *_0 =
2773         legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
2774     Variable *T0 = makeReg(IceType_i32);
2775     Variable *T1 = makeReg(IceType_i32);
2776     Variable *T2 = makeReg(IceType_i32);
2777     Variable *TA_Hi = makeReg(IceType_i32);
2778     Variable *TA_Lo = makeReg(IceType_i32);
2779     Variable *Src0RLo = SrcsLo.unswappedSrc0R(this);
2780     Variable *Src0RHi = SrcsHi.unswappedSrc0R(this);
2781     Variable *Src1RLo = SrcsLo.unswappedSrc1R(this);
2782     _rsb(T0, Src1RLo, _32);
2783     _lsr(T1, Src0RLo, T0);
2784     _orr(TA_Hi, T1, OperandARM32FlexReg::create(Func, IceType_i32, Src0RHi,
2785                                                 OperandARM32::LSL, Src1RLo));
2786     _sub(T2, Src1RLo, _32);
2787     _cmp(T2, _0);
2788     _lsl(TA_Hi, Src0RLo, T2, CondARM32::GE);
2789     _set_dest_redefined();
2790     _lsl(TA_Lo, Src0RLo, Src1RLo);
2791     _mov(DestLo, TA_Lo);
2792     _mov(DestHi, TA_Hi);
2793     return;
2794   }
2795   case InstArithmetic::Lshr:
2796   case InstArithmetic::Ashr: {
2797     const bool ASR = Op == InstArithmetic::Ashr;
2798     if (!SrcsLo.swappedOperands() && SrcsLo.hasConstOperand()) {
2799       Variable *Src0RHi = SrcsHi.src0R(this);
2800       // Truncating the ShAmt to [0, 63] because that's what ARM does anyway.
2801       const int32_t ShAmt = SrcsLo.getConstantValue() & 0x3F;
2802       if (ShAmt == 0) {
2803         _mov(DestHi, Src0RHi);
2804         _mov(DestLo, SrcsLo.src0R(this));
2805         return;
2806       }
2807 
2808       if (ShAmt >= 32) {
2809         if (ShAmt == 32) {
2810           _mov(DestLo, Src0RHi);
2811         } else {
2812           Operand *ShAmtImm = shAmtImm(ShAmt - 32);
2813           if (ASR) {
2814             _asr(T_Lo, Src0RHi, ShAmtImm);
2815           } else {
2816             _lsr(T_Lo, Src0RHi, ShAmtImm);
2817           }
2818           _mov(DestLo, T_Lo);
2819         }
2820 
2821         if (ASR) {
2822           Operand *_31 = shAmtImm(31);
2823           _asr(T_Hi, Src0RHi, _31);
2824         } else {
2825           Operand *_0 = legalize(Ctx->getConstantZero(IceType_i32),
2826                                  Legal_Reg | Legal_Flex);
2827           _mov(T_Hi, _0);
2828         }
2829         _mov(DestHi, T_Hi);
2830         return;
2831       }
2832 
2833       Variable *Src0RLo = SrcsLo.src0R(this);
2834       Operand *ShAmtImm = shAmtImm(ShAmt);
2835       Operand *ComplShAmtImm = shAmtImm(32 - ShAmt);
2836       _lsr(T_Lo, Src0RLo, ShAmtImm);
2837       _orr(T_Lo, T_Lo,
2838            OperandARM32FlexReg::create(Func, IceType_i32, Src0RHi,
2839                                        OperandARM32::LSL, ComplShAmtImm));
2840       _mov(DestLo, T_Lo);
2841 
2842       if (ASR) {
2843         _asr(T_Hi, Src0RHi, ShAmtImm);
2844       } else {
2845         _lsr(T_Hi, Src0RHi, ShAmtImm);
2846       }
2847       _mov(DestHi, T_Hi);
2848       return;
2849     }
2850 
2851     // a=b>>c
2852     // pnacl-llc does:
2853     // mov        t_b.lo, b.lo
2854     // mov        t_b.hi, b.hi
2855     // mov        t_c.lo, c.lo
2856     // lsr        T0, t_b.lo, t_c.lo
2857     // rsb        T1, t_c.lo, #32
2858     // orr        t_a.lo, T0, t_b.hi, lsl T1
2859     // sub        T2, t_c.lo, #32
2860     // cmp        T2, #0
2861     // [al]srge   t_a.lo, t_b.hi, T2
2862     // [al]sr     t_a.hi, t_b.hi, t_c.lo
2863     // mov        a.lo, t_a.lo
2864     // mov        a.hi, t_a.hi
2865     //
2866     // GCC 4.8 does (lsr):
2867     // rsb        t_c1, c.lo, #32
2868     // lsr        t_lo, b.lo, c.lo
2869     // orr        t_lo, t_lo, b.hi, lsl t_c1
2870     // sub        t_c2, c.lo, #32
2871     // orr        t_lo, t_lo, b.hi, lsr t_c2
2872     // lsr        t_hi, b.hi, c.lo
2873     // mov        a.lo, t_lo
2874     // mov        a.hi, t_hi
2875     //
2876     // These are incompatible, therefore we mimic pnacl-llc.
2877     Operand *_32 = legalize(Ctx->getConstantInt32(32), Legal_Reg | Legal_Flex);
2878     Operand *_0 =
2879         legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
2880     Variable *T0 = makeReg(IceType_i32);
2881     Variable *T1 = makeReg(IceType_i32);
2882     Variable *T2 = makeReg(IceType_i32);
2883     Variable *TA_Lo = makeReg(IceType_i32);
2884     Variable *TA_Hi = makeReg(IceType_i32);
2885     Variable *Src0RLo = SrcsLo.unswappedSrc0R(this);
2886     Variable *Src0RHi = SrcsHi.unswappedSrc0R(this);
2887     Variable *Src1RLo = SrcsLo.unswappedSrc1R(this);
2888     _lsr(T0, Src0RLo, Src1RLo);
2889     _rsb(T1, Src1RLo, _32);
2890     _orr(TA_Lo, T0, OperandARM32FlexReg::create(Func, IceType_i32, Src0RHi,
2891                                                 OperandARM32::LSL, T1));
2892     _sub(T2, Src1RLo, _32);
2893     _cmp(T2, _0);
2894     if (ASR) {
2895       _asr(TA_Lo, Src0RHi, T2, CondARM32::GE);
2896       _set_dest_redefined();
2897       _asr(TA_Hi, Src0RHi, Src1RLo);
2898     } else {
2899       _lsr(TA_Lo, Src0RHi, T2, CondARM32::GE);
2900       _set_dest_redefined();
2901       _lsr(TA_Hi, Src0RHi, Src1RLo);
2902     }
2903     _mov(DestLo, TA_Lo);
2904     _mov(DestHi, TA_Hi);
2905     return;
2906   }
2907   case InstArithmetic::Fadd:
2908   case InstArithmetic::Fsub:
2909   case InstArithmetic::Fmul:
2910   case InstArithmetic::Fdiv:
2911   case InstArithmetic::Frem:
2912     llvm::report_fatal_error("FP instruction with i64 type");
2913     return;
2914   case InstArithmetic::Udiv:
2915   case InstArithmetic::Sdiv:
2916   case InstArithmetic::Urem:
2917   case InstArithmetic::Srem:
2918     llvm::report_fatal_error("Call-helper-involved instruction for i64 type "
2919                              "should have already been handled before");
2920     return;
2921   }
2922 }
2923 
2924 namespace {
2925 // StrengthReduction is a namespace with the strength reduction machinery. The
2926 // entry point is the StrengthReduction::tryToOptimize method. It returns true
2927 // if the optimization can be performed, and false otherwise.
2928 //
2929 // If the optimization can be performed, tryToOptimize sets its NumOperations
2930 // parameter to the number of shifts that are needed to perform the
2931 // multiplication; and it sets the Operations parameter with <ShAmt, AddOrSub>
2932 // tuples that describe how to materialize the multiplication.
2933 //
2934 // The algorithm finds contiguous 1s in the Multiplication source, and uses one
2935 // or two shifts to materialize it. A sequence of 1s, e.g.,
2936 //
2937 //                  M           N
2938 //   ...00000000000011111...111110000000...
2939 //
2940 // is materializable with (1 << (M + 1)) - (1 << N):
2941 //
2942 //   ...00000000000100000...000000000000...      [1 << (M + 1)]
2943 //   ...00000000000000000...000010000000... (-)  [1 << N]
2944 //   --------------------------------------
2945 //   ...00000000000011111...111110000000...
2946 //
2947 // And a single bit set, which is just a left shift.
2948 namespace StrengthReduction {
2949 enum AggregationOperation {
2950   AO_Invalid,
2951   AO_Add,
2952   AO_Sub,
2953 };
2954 
2955 // AggregateElement is a glorified <ShAmt, AddOrSub> tuple.
2956 class AggregationElement {
2957   AggregationElement(const AggregationElement &) = delete;
2958 
2959 public:
2960   AggregationElement() = default;
2961   AggregationElement &operator=(const AggregationElement &) = default;
AggregationElement(AggregationOperation Op,uint32_t ShAmt)2962   AggregationElement(AggregationOperation Op, uint32_t ShAmt)
2963       : Op(Op), ShAmt(ShAmt) {}
2964 
createShiftedOperand(Cfg * Func,Variable * OpR) const2965   Operand *createShiftedOperand(Cfg *Func, Variable *OpR) const {
2966     assert(OpR->mustHaveReg());
2967     if (ShAmt == 0) {
2968       return OpR;
2969     }
2970     return OperandARM32FlexReg::create(
2971         Func, IceType_i32, OpR, OperandARM32::LSL,
2972         OperandARM32ShAmtImm::create(
2973             Func, llvm::cast<ConstantInteger32>(
2974                       Func->getContext()->getConstantInt32(ShAmt))));
2975   }
2976 
aggregateWithAdd() const2977   bool aggregateWithAdd() const {
2978     switch (Op) {
2979     case AO_Invalid:
2980       llvm::report_fatal_error("Invalid Strength Reduction Operations.");
2981     case AO_Add:
2982       return true;
2983     case AO_Sub:
2984       return false;
2985     }
2986     llvm_unreachable("(silence g++ warning)");
2987   }
2988 
shAmt() const2989   uint32_t shAmt() const { return ShAmt; }
2990 
2991 private:
2992   AggregationOperation Op = AO_Invalid;
2993   uint32_t ShAmt;
2994 };
2995 
2996 // [RangeStart, RangeEnd] is a range of 1s in Src.
2997 template <std::size_t N>
addOperations(uint32_t RangeStart,uint32_t RangeEnd,SizeT * NumOperations,std::array<AggregationElement,N> * Operations)2998 bool addOperations(uint32_t RangeStart, uint32_t RangeEnd, SizeT *NumOperations,
2999                    std::array<AggregationElement, N> *Operations) {
3000   assert(*NumOperations < N);
3001   if (RangeStart == RangeEnd) {
3002     // Single bit set:
3003     // Src           : 0...00010...
3004     // RangeStart    :        ^
3005     // RangeEnd      :        ^
3006     // NegSrc        : 0...00001...
3007     (*Operations)[*NumOperations] = AggregationElement(AO_Add, RangeStart);
3008     ++(*NumOperations);
3009     return true;
3010   }
3011 
3012   // Sequence of 1s: (two operations required.)
3013   // Src           : 0...00011...110...
3014   // RangeStart    :        ^
3015   // RangeEnd      :              ^
3016   // NegSrc        : 0...00000...001...
3017   if (*NumOperations + 1 >= N) {
3018     return false;
3019   }
3020   (*Operations)[*NumOperations] = AggregationElement(AO_Add, RangeStart + 1);
3021   ++(*NumOperations);
3022   (*Operations)[*NumOperations] = AggregationElement(AO_Sub, RangeEnd);
3023   ++(*NumOperations);
3024   return true;
3025 }
3026 
3027 // tryToOptmize scans Src looking for sequences of 1s (including the unitary bit
3028 // 1 surrounded by zeroes.
3029 template <std::size_t N>
tryToOptimize(uint32_t Src,SizeT * NumOperations,std::array<AggregationElement,N> * Operations)3030 bool tryToOptimize(uint32_t Src, SizeT *NumOperations,
3031                    std::array<AggregationElement, N> *Operations) {
3032   constexpr uint32_t SrcSizeBits = sizeof(Src) * CHAR_BIT;
3033   uint32_t NegSrc = ~Src;
3034 
3035   *NumOperations = 0;
3036   while (Src != 0 && *NumOperations < N) {
3037     // Each step of the algorithm:
3038     //   * finds L, the last bit set in Src;
3039     //   * clears all the upper bits in NegSrc up to bit L;
3040     //   * finds nL, the last bit set in NegSrc;
3041     //   * clears all the upper bits in Src up to bit nL;
3042     //
3043     // if L == nL + 1, then a unitary 1 was found in Src. Otherwise, a sequence
3044     // of 1s starting at L, and ending at nL + 1, was found.
3045     const uint32_t SrcLastBitSet = llvm::findLastSet(Src);
3046     const uint32_t NegSrcClearMask =
3047         (SrcLastBitSet == 0) ? 0
3048                              : (0xFFFFFFFFu) >> (SrcSizeBits - SrcLastBitSet);
3049     NegSrc &= NegSrcClearMask;
3050     if (NegSrc == 0) {
3051       if (addOperations(SrcLastBitSet, 0, NumOperations, Operations)) {
3052         return true;
3053       }
3054       return false;
3055     }
3056     const uint32_t NegSrcLastBitSet = llvm::findLastSet(NegSrc);
3057     assert(NegSrcLastBitSet < SrcLastBitSet);
3058     const uint32_t SrcClearMask =
3059         (NegSrcLastBitSet == 0) ? 0 : (0xFFFFFFFFu) >>
3060                                           (SrcSizeBits - NegSrcLastBitSet);
3061     Src &= SrcClearMask;
3062     if (!addOperations(SrcLastBitSet, NegSrcLastBitSet + 1, NumOperations,
3063                        Operations)) {
3064       return false;
3065     }
3066   }
3067 
3068   return Src == 0;
3069 }
3070 } // end of namespace StrengthReduction
3071 } // end of anonymous namespace
3072 
lowerArithmetic(const InstArithmetic * Instr)3073 void TargetARM32::lowerArithmetic(const InstArithmetic *Instr) {
3074   Variable *Dest = Instr->getDest();
3075 
3076   if (Dest->isRematerializable()) {
3077     Context.insert<InstFakeDef>(Dest);
3078     return;
3079   }
3080 
3081   Type DestTy = Dest->getType();
3082   if (DestTy == IceType_i1) {
3083     lowerInt1Arithmetic(Instr);
3084     return;
3085   }
3086 
3087   Operand *Src0 = legalizeUndef(Instr->getSrc(0));
3088   Operand *Src1 = legalizeUndef(Instr->getSrc(1));
3089   if (DestTy == IceType_i64) {
3090     lowerInt64Arithmetic(Instr->getOp(), Instr->getDest(), Src0, Src1);
3091     return;
3092   }
3093 
3094   if (isVectorType(DestTy)) {
3095     switch (Instr->getOp()) {
3096     default:
3097       UnimplementedLoweringError(this, Instr);
3098       return;
3099     // Explicitly whitelist vector instructions we have implemented/enabled.
3100     case InstArithmetic::Add:
3101     case InstArithmetic::And:
3102     case InstArithmetic::Ashr:
3103     case InstArithmetic::Fadd:
3104     case InstArithmetic::Fmul:
3105     case InstArithmetic::Fsub:
3106     case InstArithmetic::Lshr:
3107     case InstArithmetic::Mul:
3108     case InstArithmetic::Or:
3109     case InstArithmetic::Shl:
3110     case InstArithmetic::Sub:
3111     case InstArithmetic::Xor:
3112       break;
3113     }
3114   }
3115 
3116   Variable *T = makeReg(DestTy);
3117 
3118   // * Handle div/rem separately. They require a non-legalized Src1 to inspect
3119   // whether or not Src1 is a non-zero constant. Once legalized it is more
3120   // difficult to determine (constant may be moved to a register).
3121   // * Handle floating point arithmetic separately: they require Src1 to be
3122   // legalized to a register.
3123   switch (Instr->getOp()) {
3124   default:
3125     break;
3126   case InstArithmetic::Udiv: {
3127     constexpr bool NotRemainder = false;
3128     Variable *Src0R = legalizeToReg(Src0);
3129     lowerIDivRem(Dest, T, Src0R, Src1, &TargetARM32::_uxt, &TargetARM32::_udiv,
3130                  NotRemainder);
3131     return;
3132   }
3133   case InstArithmetic::Sdiv: {
3134     constexpr bool NotRemainder = false;
3135     Variable *Src0R = legalizeToReg(Src0);
3136     lowerIDivRem(Dest, T, Src0R, Src1, &TargetARM32::_sxt, &TargetARM32::_sdiv,
3137                  NotRemainder);
3138     return;
3139   }
3140   case InstArithmetic::Urem: {
3141     constexpr bool IsRemainder = true;
3142     Variable *Src0R = legalizeToReg(Src0);
3143     lowerIDivRem(Dest, T, Src0R, Src1, &TargetARM32::_uxt, &TargetARM32::_udiv,
3144                  IsRemainder);
3145     return;
3146   }
3147   case InstArithmetic::Srem: {
3148     constexpr bool IsRemainder = true;
3149     Variable *Src0R = legalizeToReg(Src0);
3150     lowerIDivRem(Dest, T, Src0R, Src1, &TargetARM32::_sxt, &TargetARM32::_sdiv,
3151                  IsRemainder);
3152     return;
3153   }
3154   case InstArithmetic::Frem: {
3155     if (!isScalarFloatingType(DestTy)) {
3156       llvm::report_fatal_error("Unexpected type when lowering frem.");
3157     }
3158     llvm::report_fatal_error("Frem should have already been lowered.");
3159   }
3160   case InstArithmetic::Fadd: {
3161     Variable *Src0R = legalizeToReg(Src0);
3162     if (const Inst *Src1Producer = Computations.getProducerOf(Src1)) {
3163       Variable *Src1R = legalizeToReg(Src1Producer->getSrc(0));
3164       Variable *Src2R = legalizeToReg(Src1Producer->getSrc(1));
3165       _vmla(Src0R, Src1R, Src2R);
3166       _mov(Dest, Src0R);
3167       return;
3168     }
3169 
3170     Variable *Src1R = legalizeToReg(Src1);
3171     _vadd(T, Src0R, Src1R);
3172     _mov(Dest, T);
3173     return;
3174   }
3175   case InstArithmetic::Fsub: {
3176     Variable *Src0R = legalizeToReg(Src0);
3177     if (const Inst *Src1Producer = Computations.getProducerOf(Src1)) {
3178       Variable *Src1R = legalizeToReg(Src1Producer->getSrc(0));
3179       Variable *Src2R = legalizeToReg(Src1Producer->getSrc(1));
3180       _vmls(Src0R, Src1R, Src2R);
3181       _mov(Dest, Src0R);
3182       return;
3183     }
3184     Variable *Src1R = legalizeToReg(Src1);
3185     _vsub(T, Src0R, Src1R);
3186     _mov(Dest, T);
3187     return;
3188   }
3189   case InstArithmetic::Fmul: {
3190     Variable *Src0R = legalizeToReg(Src0);
3191     Variable *Src1R = legalizeToReg(Src1);
3192     _vmul(T, Src0R, Src1R);
3193     _mov(Dest, T);
3194     return;
3195   }
3196   case InstArithmetic::Fdiv: {
3197     Variable *Src0R = legalizeToReg(Src0);
3198     Variable *Src1R = legalizeToReg(Src1);
3199     _vdiv(T, Src0R, Src1R);
3200     _mov(Dest, T);
3201     return;
3202   }
3203   }
3204 
3205   // Handle everything else here.
3206   Int32Operands Srcs(Src0, Src1);
3207   switch (Instr->getOp()) {
3208   case InstArithmetic::_num:
3209     llvm::report_fatal_error("Unknown arithmetic operator");
3210     return;
3211   case InstArithmetic::Add: {
3212     if (const Inst *Src1Producer = Computations.getProducerOf(Src1)) {
3213       assert(!isVectorType(DestTy));
3214       Variable *Src0R = legalizeToReg(Src0);
3215       Variable *Src1R = legalizeToReg(Src1Producer->getSrc(0));
3216       Variable *Src2R = legalizeToReg(Src1Producer->getSrc(1));
3217       _mla(T, Src1R, Src2R, Src0R);
3218       _mov(Dest, T);
3219       return;
3220     }
3221 
3222     if (Srcs.hasConstOperand()) {
3223       if (!Srcs.immediateIsFlexEncodable() &&
3224           Srcs.negatedImmediateIsFlexEncodable()) {
3225         assert(!isVectorType(DestTy));
3226         Variable *Src0R = Srcs.src0R(this);
3227         Operand *Src1F = Srcs.negatedSrc1F(this);
3228         if (!Srcs.swappedOperands()) {
3229           _sub(T, Src0R, Src1F);
3230         } else {
3231           _rsb(T, Src0R, Src1F);
3232         }
3233         _mov(Dest, T);
3234         return;
3235       }
3236     }
3237     Variable *Src0R = Srcs.src0R(this);
3238     if (isVectorType(DestTy)) {
3239       Variable *Src1R = legalizeToReg(Src1);
3240       _vadd(T, Src0R, Src1R);
3241     } else {
3242       Operand *Src1RF = Srcs.src1RF(this);
3243       _add(T, Src0R, Src1RF);
3244     }
3245     _mov(Dest, T);
3246     return;
3247   }
3248   case InstArithmetic::And: {
3249     if (Srcs.hasConstOperand()) {
3250       if (!Srcs.immediateIsFlexEncodable() &&
3251           Srcs.invertedImmediateIsFlexEncodable()) {
3252         Variable *Src0R = Srcs.src0R(this);
3253         Operand *Src1F = Srcs.invertedSrc1F(this);
3254         _bic(T, Src0R, Src1F);
3255         _mov(Dest, T);
3256         return;
3257       }
3258     }
3259     assert(isIntegerType(DestTy));
3260     Variable *Src0R = Srcs.src0R(this);
3261     if (isVectorType(DestTy)) {
3262       Variable *Src1R = legalizeToReg(Src1);
3263       _vand(T, Src0R, Src1R);
3264     } else {
3265       Operand *Src1RF = Srcs.src1RF(this);
3266       _and(T, Src0R, Src1RF);
3267     }
3268     _mov(Dest, T);
3269     return;
3270   }
3271   case InstArithmetic::Or: {
3272     Variable *Src0R = Srcs.src0R(this);
3273     assert(isIntegerType(DestTy));
3274     if (isVectorType(DestTy)) {
3275       Variable *Src1R = legalizeToReg(Src1);
3276       _vorr(T, Src0R, Src1R);
3277     } else {
3278       Operand *Src1RF = Srcs.src1RF(this);
3279       _orr(T, Src0R, Src1RF);
3280     }
3281     _mov(Dest, T);
3282     return;
3283   }
3284   case InstArithmetic::Xor: {
3285     Variable *Src0R = Srcs.src0R(this);
3286     assert(isIntegerType(DestTy));
3287     if (isVectorType(DestTy)) {
3288       Variable *Src1R = legalizeToReg(Src1);
3289       _veor(T, Src0R, Src1R);
3290     } else {
3291       Operand *Src1RF = Srcs.src1RF(this);
3292       _eor(T, Src0R, Src1RF);
3293     }
3294     _mov(Dest, T);
3295     return;
3296   }
3297   case InstArithmetic::Sub: {
3298     if (const Inst *Src1Producer = Computations.getProducerOf(Src1)) {
3299       assert(!isVectorType(DestTy));
3300       Variable *Src0R = legalizeToReg(Src0);
3301       Variable *Src1R = legalizeToReg(Src1Producer->getSrc(0));
3302       Variable *Src2R = legalizeToReg(Src1Producer->getSrc(1));
3303       _mls(T, Src1R, Src2R, Src0R);
3304       _mov(Dest, T);
3305       return;
3306     }
3307 
3308     if (Srcs.hasConstOperand()) {
3309       assert(!isVectorType(DestTy));
3310       if (Srcs.immediateIsFlexEncodable()) {
3311         Variable *Src0R = Srcs.src0R(this);
3312         Operand *Src1RF = Srcs.src1RF(this);
3313         if (Srcs.swappedOperands()) {
3314           _rsb(T, Src0R, Src1RF);
3315         } else {
3316           _sub(T, Src0R, Src1RF);
3317         }
3318         _mov(Dest, T);
3319         return;
3320       }
3321       if (!Srcs.swappedOperands() && Srcs.negatedImmediateIsFlexEncodable()) {
3322         Variable *Src0R = Srcs.src0R(this);
3323         Operand *Src1F = Srcs.negatedSrc1F(this);
3324         _add(T, Src0R, Src1F);
3325         _mov(Dest, T);
3326         return;
3327       }
3328     }
3329     Variable *Src0R = Srcs.unswappedSrc0R(this);
3330     Variable *Src1R = Srcs.unswappedSrc1R(this);
3331     if (isVectorType(DestTy)) {
3332       _vsub(T, Src0R, Src1R);
3333     } else {
3334       _sub(T, Src0R, Src1R);
3335     }
3336     _mov(Dest, T);
3337     return;
3338   }
3339   case InstArithmetic::Mul: {
3340     const bool OptM1 = Func->getOptLevel() == Opt_m1;
3341     if (!OptM1 && Srcs.hasConstOperand()) {
3342       constexpr std::size_t MaxShifts = 4;
3343       std::array<StrengthReduction::AggregationElement, MaxShifts> Shifts;
3344       SizeT NumOperations;
3345       int32_t Const = Srcs.getConstantValue();
3346       const bool Invert = Const < 0;
3347       const bool MultiplyByZero = Const == 0;
3348       Operand *_0 =
3349           legalize(Ctx->getConstantZero(DestTy), Legal_Reg | Legal_Flex);
3350 
3351       if (MultiplyByZero) {
3352         _mov(T, _0);
3353         _mov(Dest, T);
3354         return;
3355       }
3356 
3357       if (Invert) {
3358         Const = -Const;
3359       }
3360 
3361       if (StrengthReduction::tryToOptimize(Const, &NumOperations, &Shifts)) {
3362         assert(NumOperations >= 1);
3363         Variable *Src0R = Srcs.src0R(this);
3364         int32_t Start;
3365         int32_t End;
3366         if (NumOperations == 1 || Shifts[NumOperations - 1].shAmt() != 0) {
3367           // Multiplication by a power of 2 (NumOperations == 1); or
3368           // Multiplication by a even number not a power of 2.
3369           Start = 1;
3370           End = NumOperations;
3371           assert(Shifts[0].aggregateWithAdd());
3372           _lsl(T, Src0R, shAmtImm(Shifts[0].shAmt()));
3373         } else {
3374           // Multiplication by an odd number. Put the free barrel shifter to a
3375           // good use.
3376           Start = 0;
3377           End = NumOperations - 2;
3378           const StrengthReduction::AggregationElement &Last =
3379               Shifts[NumOperations - 1];
3380           const StrengthReduction::AggregationElement &SecondToLast =
3381               Shifts[NumOperations - 2];
3382           if (!Last.aggregateWithAdd()) {
3383             assert(SecondToLast.aggregateWithAdd());
3384             _rsb(T, Src0R, SecondToLast.createShiftedOperand(Func, Src0R));
3385           } else if (!SecondToLast.aggregateWithAdd()) {
3386             assert(Last.aggregateWithAdd());
3387             _sub(T, Src0R, SecondToLast.createShiftedOperand(Func, Src0R));
3388           } else {
3389             _add(T, Src0R, SecondToLast.createShiftedOperand(Func, Src0R));
3390           }
3391         }
3392 
3393         // Odd numbers :   S                                 E   I   I
3394         //               +---+---+---+---+---+---+ ... +---+---+---+---+
3395         //     Shifts  = |   |   |   |   |   |   | ... |   |   |   |   |
3396         //               +---+---+---+---+---+---+ ... +---+---+---+---+
3397         // Even numbers:   I   S                                     E
3398         //
3399         // S: Start; E: End; I: Init
3400         for (int32_t I = Start; I < End; ++I) {
3401           const StrengthReduction::AggregationElement &Current = Shifts[I];
3402           Operand *SrcF = Current.createShiftedOperand(Func, Src0R);
3403           if (Current.aggregateWithAdd()) {
3404             _add(T, T, SrcF);
3405           } else {
3406             _sub(T, T, SrcF);
3407           }
3408         }
3409 
3410         if (Invert) {
3411           // T = 0 - T.
3412           _rsb(T, T, _0);
3413         }
3414 
3415         _mov(Dest, T);
3416         return;
3417       }
3418     }
3419     Variable *Src0R = Srcs.unswappedSrc0R(this);
3420     Variable *Src1R = Srcs.unswappedSrc1R(this);
3421     if (isVectorType(DestTy)) {
3422       _vmul(T, Src0R, Src1R);
3423     } else {
3424       _mul(T, Src0R, Src1R);
3425     }
3426     _mov(Dest, T);
3427     return;
3428   }
3429   case InstArithmetic::Shl: {
3430     Variable *Src0R = Srcs.unswappedSrc0R(this);
3431     if (!isVectorType(T->getType())) {
3432       if (Srcs.isSrc1ImmediateZero()) {
3433         _mov(T, Src0R);
3434       } else {
3435         Operand *Src1R = Srcs.unswappedSrc1RShAmtImm(this);
3436         _lsl(T, Src0R, Src1R);
3437       }
3438     } else {
3439       auto *Src1R = Srcs.unswappedSrc1R(this);
3440       _vshl(T, Src0R, Src1R)->setSignType(InstARM32::FS_Unsigned);
3441     }
3442     _mov(Dest, T);
3443     return;
3444   }
3445   case InstArithmetic::Lshr: {
3446     Variable *Src0R = Srcs.unswappedSrc0R(this);
3447     if (!isVectorType(T->getType())) {
3448       if (DestTy != IceType_i32) {
3449         _uxt(Src0R, Src0R);
3450       }
3451       if (Srcs.isSrc1ImmediateZero()) {
3452         _mov(T, Src0R);
3453       } else {
3454         Operand *Src1R = Srcs.unswappedSrc1RShAmtImm(this);
3455         _lsr(T, Src0R, Src1R);
3456       }
3457     } else {
3458       auto *Src1R = Srcs.unswappedSrc1R(this);
3459       auto *Src1RNeg = makeReg(Src1R->getType());
3460       _vneg(Src1RNeg, Src1R);
3461       _vshl(T, Src0R, Src1RNeg)->setSignType(InstARM32::FS_Unsigned);
3462     }
3463     _mov(Dest, T);
3464     return;
3465   }
3466   case InstArithmetic::Ashr: {
3467     Variable *Src0R = Srcs.unswappedSrc0R(this);
3468     if (!isVectorType(T->getType())) {
3469       if (DestTy != IceType_i32) {
3470         _sxt(Src0R, Src0R);
3471       }
3472       if (Srcs.isSrc1ImmediateZero()) {
3473         _mov(T, Src0R);
3474       } else {
3475         _asr(T, Src0R, Srcs.unswappedSrc1RShAmtImm(this));
3476       }
3477     } else {
3478       auto *Src1R = Srcs.unswappedSrc1R(this);
3479       auto *Src1RNeg = makeReg(Src1R->getType());
3480       _vneg(Src1RNeg, Src1R);
3481       _vshl(T, Src0R, Src1RNeg)->setSignType(InstARM32::FS_Signed);
3482     }
3483     _mov(Dest, T);
3484     return;
3485   }
3486   case InstArithmetic::Udiv:
3487   case InstArithmetic::Sdiv:
3488   case InstArithmetic::Urem:
3489   case InstArithmetic::Srem:
3490     llvm::report_fatal_error(
3491         "Integer div/rem should have been handled earlier.");
3492     return;
3493   case InstArithmetic::Fadd:
3494   case InstArithmetic::Fsub:
3495   case InstArithmetic::Fmul:
3496   case InstArithmetic::Fdiv:
3497   case InstArithmetic::Frem:
3498     llvm::report_fatal_error(
3499         "Floating point arith should have been handled earlier.");
3500     return;
3501   }
3502 }
3503 
lowerAssign(const InstAssign * Instr)3504 void TargetARM32::lowerAssign(const InstAssign *Instr) {
3505   Variable *Dest = Instr->getDest();
3506 
3507   if (Dest->isRematerializable()) {
3508     Context.insert<InstFakeDef>(Dest);
3509     return;
3510   }
3511 
3512   Operand *Src0 = Instr->getSrc(0);
3513   assert(Dest->getType() == Src0->getType());
3514   if (Dest->getType() == IceType_i64) {
3515     Src0 = legalizeUndef(Src0);
3516 
3517     Variable *T_Lo = makeReg(IceType_i32);
3518     auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
3519     Operand *Src0Lo = legalize(loOperand(Src0), Legal_Reg | Legal_Flex);
3520     _mov(T_Lo, Src0Lo);
3521     _mov(DestLo, T_Lo);
3522 
3523     Variable *T_Hi = makeReg(IceType_i32);
3524     auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
3525     Operand *Src0Hi = legalize(hiOperand(Src0), Legal_Reg | Legal_Flex);
3526     _mov(T_Hi, Src0Hi);
3527     _mov(DestHi, T_Hi);
3528 
3529     return;
3530   }
3531 
3532   Operand *NewSrc;
3533   if (Dest->hasReg()) {
3534     // If Dest already has a physical register, then legalize the Src operand
3535     // into a Variable with the same register assignment. This especially
3536     // helps allow the use of Flex operands.
3537     NewSrc = legalize(Src0, Legal_Reg | Legal_Flex, Dest->getRegNum());
3538   } else {
3539     // Dest could be a stack operand. Since we could potentially need to do a
3540     // Store (and store can only have Register operands), legalize this to a
3541     // register.
3542     NewSrc = legalize(Src0, Legal_Reg);
3543   }
3544 
3545   if (isVectorType(Dest->getType()) || isScalarFloatingType(Dest->getType())) {
3546     NewSrc = legalize(NewSrc, Legal_Reg | Legal_Mem);
3547   }
3548   _mov(Dest, NewSrc);
3549 }
3550 
lowerInt1ForBranch(Operand * Boolean,const LowerInt1BranchTarget & TargetTrue,const LowerInt1BranchTarget & TargetFalse,uint32_t ShortCircuitable)3551 TargetARM32::ShortCircuitCondAndLabel TargetARM32::lowerInt1ForBranch(
3552     Operand *Boolean, const LowerInt1BranchTarget &TargetTrue,
3553     const LowerInt1BranchTarget &TargetFalse, uint32_t ShortCircuitable) {
3554   InstARM32Label *NewShortCircuitLabel = nullptr;
3555   Operand *_1 = legalize(Ctx->getConstantInt1(1), Legal_Reg | Legal_Flex);
3556 
3557   const Inst *Producer = Computations.getProducerOf(Boolean);
3558 
3559   if (Producer == nullptr) {
3560     // No producer, no problem: just do emit code to perform (Boolean & 1) and
3561     // set the flags register. The branch should be taken if the resulting flags
3562     // indicate a non-zero result.
3563     _tst(legalizeToReg(Boolean), _1);
3564     return ShortCircuitCondAndLabel(CondWhenTrue(CondARM32::NE));
3565   }
3566 
3567   switch (Producer->getKind()) {
3568   default:
3569     llvm::report_fatal_error("Unexpected producer.");
3570   case Inst::Icmp: {
3571     return ShortCircuitCondAndLabel(
3572         lowerIcmpCond(llvm::cast<InstIcmp>(Producer)));
3573   } break;
3574   case Inst::Fcmp: {
3575     return ShortCircuitCondAndLabel(
3576         lowerFcmpCond(llvm::cast<InstFcmp>(Producer)));
3577   } break;
3578   case Inst::Cast: {
3579     const auto *CastProducer = llvm::cast<InstCast>(Producer);
3580     assert(CastProducer->getCastKind() == InstCast::Trunc);
3581     Operand *Src = CastProducer->getSrc(0);
3582     if (Src->getType() == IceType_i64)
3583       Src = loOperand(Src);
3584     _tst(legalizeToReg(Src), _1);
3585     return ShortCircuitCondAndLabel(CondWhenTrue(CondARM32::NE));
3586   } break;
3587   case Inst::Arithmetic: {
3588     const auto *ArithProducer = llvm::cast<InstArithmetic>(Producer);
3589     switch (ArithProducer->getOp()) {
3590     default:
3591       llvm::report_fatal_error("Unhandled Arithmetic Producer.");
3592     case InstArithmetic::And: {
3593       if (!(ShortCircuitable & SC_And)) {
3594         NewShortCircuitLabel = InstARM32Label::create(Func, this);
3595       }
3596 
3597       LowerInt1BranchTarget NewTarget =
3598           TargetFalse.createForLabelOrDuplicate(NewShortCircuitLabel);
3599 
3600       ShortCircuitCondAndLabel CondAndLabel = lowerInt1ForBranch(
3601           Producer->getSrc(0), TargetTrue, NewTarget, SC_And);
3602       const CondWhenTrue &Cond = CondAndLabel.Cond;
3603 
3604       _br_short_circuit(NewTarget, Cond.invert());
3605 
3606       InstARM32Label *const ShortCircuitLabel = CondAndLabel.ShortCircuitTarget;
3607       if (ShortCircuitLabel != nullptr)
3608         Context.insert(ShortCircuitLabel);
3609 
3610       return ShortCircuitCondAndLabel(
3611           lowerInt1ForBranch(Producer->getSrc(1), TargetTrue, NewTarget, SC_All)
3612               .assertNoLabelAndReturnCond(),
3613           NewShortCircuitLabel);
3614     } break;
3615     case InstArithmetic::Or: {
3616       if (!(ShortCircuitable & SC_Or)) {
3617         NewShortCircuitLabel = InstARM32Label::create(Func, this);
3618       }
3619 
3620       LowerInt1BranchTarget NewTarget =
3621           TargetTrue.createForLabelOrDuplicate(NewShortCircuitLabel);
3622 
3623       ShortCircuitCondAndLabel CondAndLabel = lowerInt1ForBranch(
3624           Producer->getSrc(0), NewTarget, TargetFalse, SC_Or);
3625       const CondWhenTrue &Cond = CondAndLabel.Cond;
3626 
3627       _br_short_circuit(NewTarget, Cond);
3628 
3629       InstARM32Label *const ShortCircuitLabel = CondAndLabel.ShortCircuitTarget;
3630       if (ShortCircuitLabel != nullptr)
3631         Context.insert(ShortCircuitLabel);
3632 
3633       return ShortCircuitCondAndLabel(lowerInt1ForBranch(Producer->getSrc(1),
3634                                                          NewTarget, TargetFalse,
3635                                                          SC_All)
3636                                           .assertNoLabelAndReturnCond(),
3637                                       NewShortCircuitLabel);
3638     } break;
3639     }
3640   }
3641   }
3642 }
3643 
lowerBr(const InstBr * Instr)3644 void TargetARM32::lowerBr(const InstBr *Instr) {
3645   if (Instr->isUnconditional()) {
3646     _br(Instr->getTargetUnconditional());
3647     return;
3648   }
3649 
3650   CfgNode *TargetTrue = Instr->getTargetTrue();
3651   CfgNode *TargetFalse = Instr->getTargetFalse();
3652   ShortCircuitCondAndLabel CondAndLabel = lowerInt1ForBranch(
3653       Instr->getCondition(), LowerInt1BranchTarget(TargetTrue),
3654       LowerInt1BranchTarget(TargetFalse), SC_All);
3655   assert(CondAndLabel.ShortCircuitTarget == nullptr);
3656 
3657   const CondWhenTrue &Cond = CondAndLabel.Cond;
3658   if (Cond.WhenTrue1 != CondARM32::kNone) {
3659     assert(Cond.WhenTrue0 != CondARM32::AL);
3660     _br(TargetTrue, Cond.WhenTrue1);
3661   }
3662 
3663   switch (Cond.WhenTrue0) {
3664   default:
3665     _br(TargetTrue, TargetFalse, Cond.WhenTrue0);
3666     break;
3667   case CondARM32::kNone:
3668     _br(TargetFalse);
3669     break;
3670   case CondARM32::AL:
3671     _br(TargetTrue);
3672     break;
3673   }
3674 }
3675 
lowerCall(const InstCall * Instr)3676 void TargetARM32::lowerCall(const InstCall *Instr) {
3677   Operand *CallTarget = Instr->getCallTarget();
3678   if (Instr->isTargetHelperCall()) {
3679     auto TargetHelperPreamble = ARM32HelpersPreamble.find(CallTarget);
3680     if (TargetHelperPreamble != ARM32HelpersPreamble.end()) {
3681       (this->*TargetHelperPreamble->second)(Instr);
3682     }
3683   }
3684   MaybeLeafFunc = false;
3685   NeedsStackAlignment = true;
3686 
3687   // Assign arguments to registers and stack. Also reserve stack.
3688   TargetARM32::CallingConv CC;
3689   // Pair of Arg Operand -> GPR number assignments.
3690   llvm::SmallVector<std::pair<Operand *, RegNumT>, NumGPRArgs> GPRArgs;
3691   llvm::SmallVector<std::pair<Operand *, RegNumT>, NumFP32Args> FPArgs;
3692   // Pair of Arg Operand -> stack offset.
3693   llvm::SmallVector<std::pair<Operand *, int32_t>, 8> StackArgs;
3694   size_t ParameterAreaSizeBytes = 0;
3695 
3696   // Classify each argument operand according to the location where the
3697   // argument is passed.
3698   for (SizeT i = 0, NumArgs = Instr->getNumArgs(); i < NumArgs; ++i) {
3699     Operand *Arg = legalizeUndef(Instr->getArg(i));
3700     const Type Ty = Arg->getType();
3701     bool InReg = false;
3702     RegNumT Reg;
3703     if (isScalarIntegerType(Ty)) {
3704       InReg = CC.argInGPR(Ty, &Reg);
3705     } else {
3706       InReg = CC.argInVFP(Ty, &Reg);
3707     }
3708 
3709     if (!InReg) {
3710       ParameterAreaSizeBytes =
3711           applyStackAlignmentTy(ParameterAreaSizeBytes, Ty);
3712       StackArgs.push_back(std::make_pair(Arg, ParameterAreaSizeBytes));
3713       ParameterAreaSizeBytes += typeWidthInBytesOnStack(Ty);
3714       continue;
3715     }
3716 
3717     if (Ty == IceType_i64) {
3718       Operand *Lo = loOperand(Arg);
3719       Operand *Hi = hiOperand(Arg);
3720       GPRArgs.push_back(std::make_pair(
3721           Lo, RegNumT::fixme(RegARM32::getI64PairFirstGPRNum(Reg))));
3722       GPRArgs.push_back(std::make_pair(
3723           Hi, RegNumT::fixme(RegARM32::getI64PairSecondGPRNum(Reg))));
3724     } else if (isScalarIntegerType(Ty)) {
3725       GPRArgs.push_back(std::make_pair(Arg, Reg));
3726     } else {
3727       FPArgs.push_back(std::make_pair(Arg, Reg));
3728     }
3729   }
3730 
3731   // Adjust the parameter area so that the stack is aligned. It is assumed that
3732   // the stack is already aligned at the start of the calling sequence.
3733   ParameterAreaSizeBytes = applyStackAlignment(ParameterAreaSizeBytes);
3734 
3735   if (ParameterAreaSizeBytes > MaxOutArgsSizeBytes) {
3736     llvm::report_fatal_error("MaxOutArgsSizeBytes is not really a max.");
3737   }
3738 
3739   // Copy arguments that are passed on the stack to the appropriate stack
3740   // locations.
3741   Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
3742   for (auto &StackArg : StackArgs) {
3743     ConstantInteger32 *Loc =
3744         llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(StackArg.second));
3745     Type Ty = StackArg.first->getType();
3746     OperandARM32Mem *Addr;
3747     constexpr bool SignExt = false;
3748     if (OperandARM32Mem::canHoldOffset(Ty, SignExt, StackArg.second)) {
3749       Addr = OperandARM32Mem::create(Func, Ty, SP, Loc);
3750     } else {
3751       Variable *NewBase = Func->makeVariable(SP->getType());
3752       lowerArithmetic(
3753           InstArithmetic::create(Func, InstArithmetic::Add, NewBase, SP, Loc));
3754       Addr = formMemoryOperand(NewBase, Ty);
3755     }
3756     lowerStore(InstStore::create(Func, StackArg.first, Addr));
3757   }
3758 
3759   // Generate the call instruction. Assign its result to a temporary with high
3760   // register allocation weight.
3761   Variable *Dest = Instr->getDest();
3762   // ReturnReg doubles as ReturnRegLo as necessary.
3763   Variable *ReturnReg = nullptr;
3764   Variable *ReturnRegHi = nullptr;
3765   if (Dest) {
3766     switch (Dest->getType()) {
3767     case IceType_NUM:
3768       llvm::report_fatal_error("Invalid Call dest type");
3769       break;
3770     case IceType_void:
3771       break;
3772     case IceType_i1:
3773       assert(Computations.getProducerOf(Dest) == nullptr);
3774     // Fall-through intended.
3775     case IceType_i8:
3776     case IceType_i16:
3777     case IceType_i32:
3778       ReturnReg = makeReg(Dest->getType(), RegARM32::Reg_r0);
3779       break;
3780     case IceType_i64:
3781       ReturnReg = makeReg(IceType_i32, RegARM32::Reg_r0);
3782       ReturnRegHi = makeReg(IceType_i32, RegARM32::Reg_r1);
3783       break;
3784     case IceType_f32:
3785       ReturnReg = makeReg(Dest->getType(), RegARM32::Reg_s0);
3786       break;
3787     case IceType_f64:
3788       ReturnReg = makeReg(Dest->getType(), RegARM32::Reg_d0);
3789       break;
3790     case IceType_v4i1:
3791     case IceType_v8i1:
3792     case IceType_v16i1:
3793     case IceType_v16i8:
3794     case IceType_v8i16:
3795     case IceType_v4i32:
3796     case IceType_v4f32:
3797       ReturnReg = makeReg(Dest->getType(), RegARM32::Reg_q0);
3798       break;
3799     }
3800   }
3801 
3802   // Allow ConstantRelocatable to be left alone as a direct call, but force
3803   // other constants like ConstantInteger32 to be in a register and make it an
3804   // indirect call.
3805   if (!llvm::isa<ConstantRelocatable>(CallTarget)) {
3806     CallTarget = legalize(CallTarget, Legal_Reg);
3807   }
3808 
3809   // Copy arguments to be passed in registers to the appropriate registers.
3810   CfgVector<Variable *> RegArgs;
3811   for (auto &FPArg : FPArgs) {
3812     RegArgs.emplace_back(legalizeToReg(FPArg.first, FPArg.second));
3813   }
3814   for (auto &GPRArg : GPRArgs) {
3815     RegArgs.emplace_back(legalizeToReg(GPRArg.first, GPRArg.second));
3816   }
3817 
3818   // Generate a FakeUse of register arguments so that they do not get dead code
3819   // eliminated as a result of the FakeKill of scratch registers after the call.
3820   // These fake-uses need to be placed here to avoid argument registers from
3821   // being used during the legalizeToReg() calls above.
3822   for (auto *RegArg : RegArgs) {
3823     Context.insert<InstFakeUse>(RegArg);
3824   }
3825 
3826   InstARM32Call *NewCall =
3827       Sandboxer(this, InstBundleLock::Opt_AlignToEnd).bl(ReturnReg, CallTarget);
3828 
3829   if (ReturnRegHi)
3830     Context.insert<InstFakeDef>(ReturnRegHi);
3831 
3832   // Insert a register-kill pseudo instruction.
3833   Context.insert<InstFakeKill>(NewCall);
3834 
3835   // Generate a FakeUse to keep the call live if necessary.
3836   if (Instr->hasSideEffects() && ReturnReg) {
3837     Context.insert<InstFakeUse>(ReturnReg);
3838   }
3839 
3840   if (Dest != nullptr) {
3841     // Assign the result of the call to Dest.
3842     if (ReturnReg != nullptr) {
3843       if (ReturnRegHi) {
3844         auto *Dest64On32 = llvm::cast<Variable64On32>(Dest);
3845         Variable *DestLo = Dest64On32->getLo();
3846         Variable *DestHi = Dest64On32->getHi();
3847         _mov(DestLo, ReturnReg);
3848         _mov(DestHi, ReturnRegHi);
3849       } else {
3850         if (isFloatingType(Dest->getType()) || isVectorType(Dest->getType())) {
3851           _mov(Dest, ReturnReg);
3852         } else {
3853           assert(isIntegerType(Dest->getType()) &&
3854                  typeWidthInBytes(Dest->getType()) <= 4);
3855           _mov(Dest, ReturnReg);
3856         }
3857       }
3858     }
3859   }
3860 
3861   if (Instr->isTargetHelperCall()) {
3862     auto TargetHelpersPostamble = ARM32HelpersPostamble.find(CallTarget);
3863     if (TargetHelpersPostamble != ARM32HelpersPostamble.end()) {
3864       (this->*TargetHelpersPostamble->second)(Instr);
3865     }
3866   }
3867 }
3868 
3869 namespace {
configureBitcastTemporary(Variable64On32 * Var)3870 void configureBitcastTemporary(Variable64On32 *Var) {
3871   Var->setMustNotHaveReg();
3872   Var->getHi()->setMustHaveReg();
3873   Var->getLo()->setMustHaveReg();
3874 }
3875 } // end of anonymous namespace
3876 
lowerCast(const InstCast * Instr)3877 void TargetARM32::lowerCast(const InstCast *Instr) {
3878   InstCast::OpKind CastKind = Instr->getCastKind();
3879   Variable *Dest = Instr->getDest();
3880   const Type DestTy = Dest->getType();
3881   Operand *Src0 = legalizeUndef(Instr->getSrc(0));
3882   switch (CastKind) {
3883   default:
3884     Func->setError("Cast type not supported");
3885     return;
3886   case InstCast::Sext: {
3887     if (isVectorType(DestTy)) {
3888       Variable *T0 = makeReg(DestTy);
3889       Variable *T1 = makeReg(DestTy);
3890       ConstantInteger32 *ShAmt = nullptr;
3891       switch (DestTy) {
3892       default:
3893         llvm::report_fatal_error("Unexpected type in vector sext.");
3894       case IceType_v16i8:
3895         ShAmt = llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(7));
3896         break;
3897       case IceType_v8i16:
3898         ShAmt = llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(15));
3899         break;
3900       case IceType_v4i32:
3901         ShAmt = llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(31));
3902         break;
3903       }
3904       auto *Src0R = legalizeToReg(Src0);
3905       _vshl(T0, Src0R, ShAmt);
3906       _vshr(T1, T0, ShAmt)->setSignType(InstARM32::FS_Signed);
3907       _mov(Dest, T1);
3908     } else if (DestTy == IceType_i64) {
3909       // t1=sxtb src; t2= mov t1 asr #31; dst.lo=t1; dst.hi=t2
3910       Constant *ShiftAmt = Ctx->getConstantInt32(31);
3911       auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
3912       auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
3913       Variable *T_Lo = makeReg(DestLo->getType());
3914       if (Src0->getType() == IceType_i32) {
3915         Operand *Src0RF = legalize(Src0, Legal_Reg | Legal_Flex);
3916         _mov(T_Lo, Src0RF);
3917       } else if (Src0->getType() != IceType_i1) {
3918         Variable *Src0R = legalizeToReg(Src0);
3919         _sxt(T_Lo, Src0R);
3920       } else {
3921         Operand *_0 = Ctx->getConstantZero(IceType_i32);
3922         Operand *_m1 = Ctx->getConstantInt32(-1);
3923         lowerInt1ForSelect(T_Lo, Src0, _m1, _0);
3924       }
3925       _mov(DestLo, T_Lo);
3926       Variable *T_Hi = makeReg(DestHi->getType());
3927       if (Src0->getType() != IceType_i1) {
3928         _mov(T_Hi, OperandARM32FlexReg::create(Func, IceType_i32, T_Lo,
3929                                                OperandARM32::ASR, ShiftAmt));
3930       } else {
3931         // For i1, the asr instruction is already done above.
3932         _mov(T_Hi, T_Lo);
3933       }
3934       _mov(DestHi, T_Hi);
3935     } else if (Src0->getType() != IceType_i1) {
3936       // t1 = sxt src; dst = t1
3937       Variable *Src0R = legalizeToReg(Src0);
3938       Variable *T = makeReg(DestTy);
3939       _sxt(T, Src0R);
3940       _mov(Dest, T);
3941     } else {
3942       Constant *_0 = Ctx->getConstantZero(IceType_i32);
3943       Operand *_m1 = Ctx->getConstantInt(DestTy, -1);
3944       Variable *T = makeReg(DestTy);
3945       lowerInt1ForSelect(T, Src0, _m1, _0);
3946       _mov(Dest, T);
3947     }
3948     break;
3949   }
3950   case InstCast::Zext: {
3951     if (isVectorType(DestTy)) {
3952       auto *Mask = makeReg(DestTy);
3953       auto *_1 = Ctx->getConstantInt32(1);
3954       auto *T = makeReg(DestTy);
3955       auto *Src0R = legalizeToReg(Src0);
3956       _mov(Mask, _1);
3957       _vand(T, Src0R, Mask);
3958       _mov(Dest, T);
3959     } else if (DestTy == IceType_i64) {
3960       // t1=uxtb src; dst.lo=t1; dst.hi=0
3961       Operand *_0 =
3962           legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
3963       auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
3964       auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
3965       Variable *T_Lo = makeReg(DestLo->getType());
3966 
3967       switch (Src0->getType()) {
3968       default: {
3969         assert(Src0->getType() != IceType_i64);
3970         _uxt(T_Lo, legalizeToReg(Src0));
3971       } break;
3972       case IceType_i32: {
3973         _mov(T_Lo, legalize(Src0, Legal_Reg | Legal_Flex));
3974       } break;
3975       case IceType_i1: {
3976         SafeBoolChain Safe = lowerInt1(T_Lo, Src0);
3977         if (Safe == SBC_No) {
3978           Operand *_1 =
3979               legalize(Ctx->getConstantInt1(1), Legal_Reg | Legal_Flex);
3980           _and(T_Lo, T_Lo, _1);
3981         }
3982       } break;
3983       }
3984 
3985       _mov(DestLo, T_Lo);
3986 
3987       Variable *T_Hi = makeReg(DestLo->getType());
3988       _mov(T_Hi, _0);
3989       _mov(DestHi, T_Hi);
3990     } else if (Src0->getType() == IceType_i1) {
3991       Variable *T = makeReg(DestTy);
3992 
3993       SafeBoolChain Safe = lowerInt1(T, Src0);
3994       if (Safe == SBC_No) {
3995         Operand *_1 = legalize(Ctx->getConstantInt1(1), Legal_Reg | Legal_Flex);
3996         _and(T, T, _1);
3997       }
3998 
3999       _mov(Dest, T);
4000     } else {
4001       // t1 = uxt src; dst = t1
4002       Variable *Src0R = legalizeToReg(Src0);
4003       Variable *T = makeReg(DestTy);
4004       _uxt(T, Src0R);
4005       _mov(Dest, T);
4006     }
4007     break;
4008   }
4009   case InstCast::Trunc: {
4010     if (isVectorType(DestTy)) {
4011       auto *T = makeReg(DestTy);
4012       auto *Src0R = legalizeToReg(Src0);
4013       _mov(T, Src0R);
4014       _mov(Dest, T);
4015     } else {
4016       if (Src0->getType() == IceType_i64)
4017         Src0 = loOperand(Src0);
4018       Operand *Src0RF = legalize(Src0, Legal_Reg | Legal_Flex);
4019       // t1 = trunc Src0RF; Dest = t1
4020       Variable *T = makeReg(DestTy);
4021       _mov(T, Src0RF);
4022       if (DestTy == IceType_i1)
4023         _and(T, T, Ctx->getConstantInt1(1));
4024       _mov(Dest, T);
4025     }
4026     break;
4027   }
4028   case InstCast::Fptrunc:
4029   case InstCast::Fpext: {
4030     // fptrunc: dest.f32 = fptrunc src0.fp64
4031     // fpext: dest.f64 = fptrunc src0.fp32
4032     const bool IsTrunc = CastKind == InstCast::Fptrunc;
4033     assert(!isVectorType(DestTy));
4034     assert(DestTy == (IsTrunc ? IceType_f32 : IceType_f64));
4035     assert(Src0->getType() == (IsTrunc ? IceType_f64 : IceType_f32));
4036     Variable *Src0R = legalizeToReg(Src0);
4037     Variable *T = makeReg(DestTy);
4038     _vcvt(T, Src0R, IsTrunc ? InstARM32Vcvt::D2s : InstARM32Vcvt::S2d);
4039     _mov(Dest, T);
4040     break;
4041   }
4042   case InstCast::Fptosi:
4043   case InstCast::Fptoui: {
4044     const bool DestIsSigned = CastKind == InstCast::Fptosi;
4045     Variable *Src0R = legalizeToReg(Src0);
4046 
4047     if (isVectorType(DestTy)) {
4048       assert(typeElementType(Src0->getType()) == IceType_f32);
4049       auto *T = makeReg(DestTy);
4050       _vcvt(T, Src0R,
4051             DestIsSigned ? InstARM32Vcvt::Vs2si : InstARM32Vcvt::Vs2ui);
4052       _mov(Dest, T);
4053       break;
4054     }
4055 
4056     const bool Src0IsF32 = isFloat32Asserting32Or64(Src0->getType());
4057     if (llvm::isa<Variable64On32>(Dest)) {
4058       llvm::report_fatal_error("fp-to-i64 should have been pre-lowered.");
4059     }
4060     // fptosi:
4061     //     t1.fp = vcvt src0.fp
4062     //     t2.i32 = vmov t1.fp
4063     //     dest.int = conv t2.i32     @ Truncates the result if needed.
4064     // fptoui:
4065     //     t1.fp = vcvt src0.fp
4066     //     t2.u32 = vmov t1.fp
4067     //     dest.uint = conv t2.u32    @ Truncates the result if needed.
4068     Variable *T_fp = makeReg(IceType_f32);
4069     const InstARM32Vcvt::VcvtVariant Conversion =
4070         Src0IsF32 ? (DestIsSigned ? InstARM32Vcvt::S2si : InstARM32Vcvt::S2ui)
4071                   : (DestIsSigned ? InstARM32Vcvt::D2si : InstARM32Vcvt::D2ui);
4072     _vcvt(T_fp, Src0R, Conversion);
4073     Variable *T = makeReg(IceType_i32);
4074     _mov(T, T_fp);
4075     if (DestTy != IceType_i32) {
4076       Variable *T_1 = makeReg(DestTy);
4077       lowerCast(InstCast::create(Func, InstCast::Trunc, T_1, T));
4078       T = T_1;
4079     }
4080     _mov(Dest, T);
4081     break;
4082   }
4083   case InstCast::Sitofp:
4084   case InstCast::Uitofp: {
4085     const bool SourceIsSigned = CastKind == InstCast::Sitofp;
4086 
4087     if (isVectorType(DestTy)) {
4088       assert(typeElementType(DestTy) == IceType_f32);
4089       auto *T = makeReg(DestTy);
4090       Variable *Src0R = legalizeToReg(Src0);
4091       _vcvt(T, Src0R,
4092             SourceIsSigned ? InstARM32Vcvt::Vsi2s : InstARM32Vcvt::Vui2s);
4093       _mov(Dest, T);
4094       break;
4095     }
4096 
4097     const bool DestIsF32 = isFloat32Asserting32Or64(DestTy);
4098     if (Src0->getType() == IceType_i64) {
4099       llvm::report_fatal_error("i64-to-fp should have been pre-lowered.");
4100     }
4101     // sitofp:
4102     //     t1.i32 = sext src.int    @ sign-extends src0 if needed.
4103     //     t2.fp32 = vmov t1.i32
4104     //     t3.fp = vcvt.{fp}.s32    @ fp is either f32 or f64
4105     // uitofp:
4106     //     t1.i32 = zext src.int    @ zero-extends src0 if needed.
4107     //     t2.fp32 = vmov t1.i32
4108     //     t3.fp = vcvt.{fp}.s32    @ fp is either f32 or f64
4109     if (Src0->getType() != IceType_i32) {
4110       Variable *Src0R_32 = makeReg(IceType_i32);
4111       lowerCast(InstCast::create(Func, SourceIsSigned ? InstCast::Sext
4112                                                       : InstCast::Zext,
4113                                  Src0R_32, Src0));
4114       Src0 = Src0R_32;
4115     }
4116     Variable *Src0R = legalizeToReg(Src0);
4117     Variable *Src0R_f32 = makeReg(IceType_f32);
4118     _mov(Src0R_f32, Src0R);
4119     Src0R = Src0R_f32;
4120     Variable *T = makeReg(DestTy);
4121     const InstARM32Vcvt::VcvtVariant Conversion =
4122         DestIsF32
4123             ? (SourceIsSigned ? InstARM32Vcvt::Si2s : InstARM32Vcvt::Ui2s)
4124             : (SourceIsSigned ? InstARM32Vcvt::Si2d : InstARM32Vcvt::Ui2d);
4125     _vcvt(T, Src0R, Conversion);
4126     _mov(Dest, T);
4127     break;
4128   }
4129   case InstCast::Bitcast: {
4130     Operand *Src0 = Instr->getSrc(0);
4131     if (DestTy == Src0->getType()) {
4132       auto *Assign = InstAssign::create(Func, Dest, Src0);
4133       lowerAssign(Assign);
4134       return;
4135     }
4136     switch (DestTy) {
4137     case IceType_NUM:
4138     case IceType_void:
4139       llvm::report_fatal_error("Unexpected bitcast.");
4140     case IceType_i1:
4141       UnimplementedLoweringError(this, Instr);
4142       break;
4143     case IceType_i8:
4144       assert(Src0->getType() == IceType_v8i1);
4145       llvm::report_fatal_error(
4146           "i8 to v8i1 conversion should have been prelowered.");
4147       break;
4148     case IceType_i16:
4149       assert(Src0->getType() == IceType_v16i1);
4150       llvm::report_fatal_error(
4151           "i16 to v16i1 conversion should have been prelowered.");
4152       break;
4153     case IceType_i32:
4154     case IceType_f32: {
4155       Variable *Src0R = legalizeToReg(Src0);
4156       Variable *T = makeReg(DestTy);
4157       _mov(T, Src0R);
4158       lowerAssign(InstAssign::create(Func, Dest, T));
4159       break;
4160     }
4161     case IceType_i64: {
4162       // t0, t1 <- src0
4163       // dest[31..0]  = t0
4164       // dest[63..32] = t1
4165       assert(Src0->getType() == IceType_f64);
4166       auto *T = llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
4167       T->initHiLo(Func);
4168       configureBitcastTemporary(T);
4169       Variable *Src0R = legalizeToReg(Src0);
4170       _mov(T, Src0R);
4171       Context.insert<InstFakeUse>(T->getHi());
4172       Context.insert<InstFakeUse>(T->getLo());
4173       lowerAssign(InstAssign::create(Func, Dest, T));
4174       break;
4175     }
4176     case IceType_f64: {
4177       // T0 <- lo(src)
4178       // T1 <- hi(src)
4179       // vmov T2, T0, T1
4180       // Dest <- T2
4181       assert(Src0->getType() == IceType_i64);
4182       Variable *T = makeReg(DestTy);
4183       auto *Src64 = llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
4184       Src64->initHiLo(Func);
4185       configureBitcastTemporary(Src64);
4186       lowerAssign(InstAssign::create(Func, Src64, Src0));
4187       _mov(T, Src64);
4188       lowerAssign(InstAssign::create(Func, Dest, T));
4189       break;
4190     }
4191     case IceType_v8i1:
4192       assert(Src0->getType() == IceType_i8);
4193       llvm::report_fatal_error(
4194           "v8i1 to i8 conversion should have been prelowered.");
4195       break;
4196     case IceType_v16i1:
4197       assert(Src0->getType() == IceType_i16);
4198       llvm::report_fatal_error(
4199           "v16i1 to i16 conversion should have been prelowered.");
4200       break;
4201     case IceType_v4i1:
4202     case IceType_v8i16:
4203     case IceType_v16i8:
4204     case IceType_v4f32:
4205     case IceType_v4i32: {
4206       assert(typeWidthInBytes(DestTy) == typeWidthInBytes(Src0->getType()));
4207       assert(isVectorType(DestTy) == isVectorType(Src0->getType()));
4208       Variable *T = makeReg(DestTy);
4209       _mov(T, Src0);
4210       _mov(Dest, T);
4211       break;
4212     }
4213     }
4214     break;
4215   }
4216   }
4217 }
4218 
lowerExtractElement(const InstExtractElement * Instr)4219 void TargetARM32::lowerExtractElement(const InstExtractElement *Instr) {
4220   Variable *Dest = Instr->getDest();
4221   Type DestTy = Dest->getType();
4222 
4223   Variable *Src0 = legalizeToReg(Instr->getSrc(0));
4224   Operand *Src1 = Instr->getSrc(1);
4225 
4226   if (const auto *Imm = llvm::dyn_cast<ConstantInteger32>(Src1)) {
4227     const uint32_t Index = Imm->getValue();
4228     Variable *T = makeReg(DestTy);
4229     Variable *TSrc0 = makeReg(Src0->getType());
4230 
4231     if (isFloatingType(DestTy)) {
4232       // We need to make sure the source is in a suitable register.
4233       TSrc0->setRegClass(RegARM32::RCARM32_QtoS);
4234     }
4235 
4236     _mov(TSrc0, Src0);
4237     _extractelement(T, TSrc0, Index);
4238     _mov(Dest, T);
4239     return;
4240   }
4241   assert(false && "extractelement requires a constant index");
4242 }
4243 
4244 namespace {
4245 // Validates FCMPARM32_TABLE's declaration w.r.t. InstFcmp::FCondition ordering
4246 // (and naming).
4247 enum {
4248 #define X(val, CC0, CC1, CC0_V, CC1_V, INV_V, NEG_V) _fcmp_ll_##val,
4249   FCMPARM32_TABLE
4250 #undef X
4251       _fcmp_ll_NUM
4252 };
4253 
4254 enum {
4255 #define X(tag, str) _fcmp_hl_##tag = InstFcmp::tag,
4256   ICEINSTFCMP_TABLE
4257 #undef X
4258       _fcmp_hl_NUM
4259 };
4260 
4261 static_assert((uint32_t)_fcmp_hl_NUM == (uint32_t)_fcmp_ll_NUM,
4262               "Inconsistency between high-level and low-level fcmp tags.");
4263 #define X(tag, str)                                                            \
4264   static_assert(                                                               \
4265       (uint32_t)_fcmp_hl_##tag == (uint32_t)_fcmp_ll_##tag,                    \
4266       "Inconsistency between high-level and low-level fcmp tag " #tag);
4267 ICEINSTFCMP_TABLE
4268 #undef X
4269 
4270 struct {
4271   CondARM32::Cond CC0;
4272   CondARM32::Cond CC1;
4273 } TableFcmp[] = {
4274 #define X(val, CC0, CC1, CC0_V, CC1_V, INV_V, NEG_V)                           \
4275   { CondARM32::CC0, CondARM32::CC1 }                                           \
4276   ,
4277     FCMPARM32_TABLE
4278 #undef X
4279 };
4280 
isFloatingPointZero(const Operand * Src)4281 bool isFloatingPointZero(const Operand *Src) {
4282   if (const auto *F32 = llvm::dyn_cast<const ConstantFloat>(Src)) {
4283     return Utils::isPositiveZero(F32->getValue());
4284   }
4285 
4286   if (const auto *F64 = llvm::dyn_cast<const ConstantDouble>(Src)) {
4287     return Utils::isPositiveZero(F64->getValue());
4288   }
4289 
4290   return false;
4291 }
4292 } // end of anonymous namespace
4293 
lowerFcmpCond(const InstFcmp * Instr)4294 TargetARM32::CondWhenTrue TargetARM32::lowerFcmpCond(const InstFcmp *Instr) {
4295   InstFcmp::FCond Condition = Instr->getCondition();
4296   switch (Condition) {
4297   case InstFcmp::False:
4298     return CondWhenTrue(CondARM32::kNone);
4299   case InstFcmp::True:
4300     return CondWhenTrue(CondARM32::AL);
4301     break;
4302   default: {
4303     Variable *Src0R = legalizeToReg(Instr->getSrc(0));
4304     Operand *Src1 = Instr->getSrc(1);
4305     if (isFloatingPointZero(Src1)) {
4306       _vcmp(Src0R, OperandARM32FlexFpZero::create(Func, Src0R->getType()));
4307     } else {
4308       _vcmp(Src0R, legalizeToReg(Src1));
4309     }
4310     _vmrs();
4311     assert(Condition < llvm::array_lengthof(TableFcmp));
4312     return CondWhenTrue(TableFcmp[Condition].CC0, TableFcmp[Condition].CC1);
4313   }
4314   }
4315 }
4316 
lowerFcmp(const InstFcmp * Instr)4317 void TargetARM32::lowerFcmp(const InstFcmp *Instr) {
4318   Variable *Dest = Instr->getDest();
4319   const Type DestTy = Dest->getType();
4320 
4321   if (isVectorType(DestTy)) {
4322     if (Instr->getCondition() == InstFcmp::False) {
4323       constexpr Type SafeTypeForMovingConstant = IceType_v4i32;
4324       auto *T = makeReg(SafeTypeForMovingConstant);
4325       _mov(T, llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(0)));
4326       _mov(Dest, T);
4327       return;
4328     }
4329 
4330     if (Instr->getCondition() == InstFcmp::True) {
4331       constexpr Type SafeTypeForMovingConstant = IceType_v4i32;
4332       auto *T = makeReg(SafeTypeForMovingConstant);
4333       _mov(T, llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(1)));
4334       _mov(Dest, T);
4335       return;
4336     }
4337 
4338     Variable *T0;
4339     Variable *T1;
4340     bool Negate = false;
4341     auto *Src0 = legalizeToReg(Instr->getSrc(0));
4342     auto *Src1 = legalizeToReg(Instr->getSrc(1));
4343 
4344     switch (Instr->getCondition()) {
4345     default:
4346       llvm::report_fatal_error("Unhandled fp comparison.");
4347 #define _Vcnone(Tptr, S0, S1)                                                  \
4348   do {                                                                         \
4349     *(Tptr) = nullptr;                                                         \
4350   } while (0)
4351 #define _Vceq(Tptr, S0, S1)                                                    \
4352   do {                                                                         \
4353     *(Tptr) = makeReg(DestTy);                                                 \
4354     _vceq(*(Tptr), S0, S1);                                                    \
4355   } while (0)
4356 #define _Vcge(Tptr, S0, S1)                                                    \
4357   do {                                                                         \
4358     *(Tptr) = makeReg(DestTy);                                                 \
4359     _vcge(*(Tptr), S0, S1)->setSignType(InstARM32::FS_Signed);                 \
4360   } while (0)
4361 #define _Vcgt(Tptr, S0, S1)                                                    \
4362   do {                                                                         \
4363     *(Tptr) = makeReg(DestTy);                                                 \
4364     _vcgt(*(Tptr), S0, S1)->setSignType(InstARM32::FS_Signed);                 \
4365   } while (0)
4366 #define X(val, CC0, CC1, CC0_V, CC1_V, INV_V, NEG_V)                           \
4367   case InstFcmp::val: {                                                        \
4368     _Vc##CC0_V(&T0, (INV_V) ? Src1 : Src0, (INV_V) ? Src0 : Src1);             \
4369     _Vc##CC1_V(&T1, (INV_V) ? Src0 : Src1, (INV_V) ? Src1 : Src0);             \
4370     Negate = NEG_V;                                                            \
4371   } break;
4372       FCMPARM32_TABLE
4373 #undef X
4374 #undef _Vcgt
4375 #undef _Vcge
4376 #undef _Vceq
4377 #undef _Vcnone
4378     }
4379     assert(T0 != nullptr);
4380     Variable *T = T0;
4381     if (T1 != nullptr) {
4382       T = makeReg(DestTy);
4383       _vorr(T, T0, T1);
4384     }
4385 
4386     if (Negate) {
4387       auto *TNeg = makeReg(DestTy);
4388       _vmvn(TNeg, T);
4389       T = TNeg;
4390     }
4391 
4392     _mov(Dest, T);
4393     return;
4394   }
4395 
4396   Variable *T = makeReg(IceType_i1);
4397   Operand *_1 = legalize(Ctx->getConstantInt32(1), Legal_Reg | Legal_Flex);
4398   Operand *_0 =
4399       legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
4400 
4401   CondWhenTrue Cond = lowerFcmpCond(Instr);
4402 
4403   bool RedefineT = false;
4404   if (Cond.WhenTrue0 != CondARM32::AL) {
4405     _mov(T, _0);
4406     RedefineT = true;
4407   }
4408 
4409   if (Cond.WhenTrue0 == CondARM32::kNone) {
4410     _mov(Dest, T);
4411     return;
4412   }
4413 
4414   if (RedefineT) {
4415     _mov_redefined(T, _1, Cond.WhenTrue0);
4416   } else {
4417     _mov(T, _1, Cond.WhenTrue0);
4418   }
4419 
4420   if (Cond.WhenTrue1 != CondARM32::kNone) {
4421     _mov_redefined(T, _1, Cond.WhenTrue1);
4422   }
4423 
4424   _mov(Dest, T);
4425 }
4426 
4427 TargetARM32::CondWhenTrue
lowerInt64IcmpCond(InstIcmp::ICond Condition,Operand * Src0,Operand * Src1)4428 TargetARM32::lowerInt64IcmpCond(InstIcmp::ICond Condition, Operand *Src0,
4429                                 Operand *Src1) {
4430   assert(Condition < llvm::array_lengthof(TableIcmp64));
4431 
4432   Int32Operands SrcsLo(loOperand(Src0), loOperand(Src1));
4433   Int32Operands SrcsHi(hiOperand(Src0), hiOperand(Src1));
4434   assert(SrcsLo.hasConstOperand() == SrcsHi.hasConstOperand());
4435   assert(SrcsLo.swappedOperands() == SrcsHi.swappedOperands());
4436 
4437   if (SrcsLo.hasConstOperand()) {
4438     const uint32_t ValueLo = SrcsLo.getConstantValue();
4439     const uint32_t ValueHi = SrcsHi.getConstantValue();
4440     const uint64_t Value = (static_cast<uint64_t>(ValueHi) << 32) | ValueLo;
4441     if ((Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) &&
4442         Value == 0) {
4443       Variable *T = makeReg(IceType_i32);
4444       Variable *Src0LoR = SrcsLo.src0R(this);
4445       Variable *Src0HiR = SrcsHi.src0R(this);
4446       _orrs(T, Src0LoR, Src0HiR);
4447       Context.insert<InstFakeUse>(T);
4448       return CondWhenTrue(TableIcmp64[Condition].C1);
4449     }
4450 
4451     Variable *Src0RLo = SrcsLo.src0R(this);
4452     Variable *Src0RHi = SrcsHi.src0R(this);
4453     Operand *Src1RFLo = SrcsLo.src1RF(this);
4454     Operand *Src1RFHi = ValueLo == ValueHi ? Src1RFLo : SrcsHi.src1RF(this);
4455 
4456     const bool UseRsb =
4457         TableIcmp64[Condition].Swapped != SrcsLo.swappedOperands();
4458 
4459     if (UseRsb) {
4460       if (TableIcmp64[Condition].IsSigned) {
4461         Variable *T = makeReg(IceType_i32);
4462         _rsbs(T, Src0RLo, Src1RFLo);
4463         Context.insert<InstFakeUse>(T);
4464 
4465         T = makeReg(IceType_i32);
4466         _rscs(T, Src0RHi, Src1RFHi);
4467         // We need to add a FakeUse here because liveness gets mad at us (Def
4468         // without Use.) Note that flag-setting instructions are considered to
4469         // have side effects and, therefore, are not DCE'ed.
4470         Context.insert<InstFakeUse>(T);
4471       } else {
4472         Variable *T = makeReg(IceType_i32);
4473         _rsbs(T, Src0RHi, Src1RFHi);
4474         Context.insert<InstFakeUse>(T);
4475 
4476         T = makeReg(IceType_i32);
4477         _rsbs(T, Src0RLo, Src1RFLo, CondARM32::EQ);
4478         Context.insert<InstFakeUse>(T);
4479       }
4480     } else {
4481       if (TableIcmp64[Condition].IsSigned) {
4482         _cmp(Src0RLo, Src1RFLo);
4483         Variable *T = makeReg(IceType_i32);
4484         _sbcs(T, Src0RHi, Src1RFHi);
4485         Context.insert<InstFakeUse>(T);
4486       } else {
4487         _cmp(Src0RHi, Src1RFHi);
4488         _cmp(Src0RLo, Src1RFLo, CondARM32::EQ);
4489       }
4490     }
4491 
4492     return CondWhenTrue(TableIcmp64[Condition].C1);
4493   }
4494 
4495   Variable *Src0RLo, *Src0RHi;
4496   Operand *Src1RFLo, *Src1RFHi;
4497   if (TableIcmp64[Condition].Swapped) {
4498     Src0RLo = legalizeToReg(loOperand(Src1));
4499     Src0RHi = legalizeToReg(hiOperand(Src1));
4500     Src1RFLo = legalizeToReg(loOperand(Src0));
4501     Src1RFHi = legalizeToReg(hiOperand(Src0));
4502   } else {
4503     Src0RLo = legalizeToReg(loOperand(Src0));
4504     Src0RHi = legalizeToReg(hiOperand(Src0));
4505     Src1RFLo = legalizeToReg(loOperand(Src1));
4506     Src1RFHi = legalizeToReg(hiOperand(Src1));
4507   }
4508 
4509   // a=icmp cond, b, c ==>
4510   // GCC does:
4511   //   cmp      b.hi, c.hi     or  cmp      b.lo, c.lo
4512   //   cmp.eq   b.lo, c.lo         sbcs t1, b.hi, c.hi
4513   //   mov.<C1> t, #1              mov.<C1> t, #1
4514   //   mov.<C2> t, #0              mov.<C2> t, #0
4515   //   mov      a, t               mov      a, t
4516   // where the "cmp.eq b.lo, c.lo" is used for unsigned and "sbcs t1, hi, hi"
4517   // is used for signed compares. In some cases, b and c need to be swapped as
4518   // well.
4519   //
4520   // LLVM does:
4521   // for EQ and NE:
4522   //   eor  t1, b.hi, c.hi
4523   //   eor  t2, b.lo, c.hi
4524   //   orrs t, t1, t2
4525   //   mov.<C> t, #1
4526   //   mov  a, t
4527   //
4528   // that's nice in that it's just as short but has fewer dependencies for
4529   // better ILP at the cost of more registers.
4530   //
4531   // Otherwise for signed/unsigned <, <=, etc. LLVM uses a sequence with two
4532   // unconditional mov #0, two cmps, two conditional mov #1, and one
4533   // conditional reg mov. That has few dependencies for good ILP, but is a
4534   // longer sequence.
4535   //
4536   // So, we are going with the GCC version since it's usually better (except
4537   // perhaps for eq/ne). We could revisit special-casing eq/ne later.
4538   if (TableIcmp64[Condition].IsSigned) {
4539     Variable *ScratchReg = makeReg(IceType_i32);
4540     _cmp(Src0RLo, Src1RFLo);
4541     _sbcs(ScratchReg, Src0RHi, Src1RFHi);
4542     // ScratchReg isn't going to be used, but we need the side-effect of
4543     // setting flags from this operation.
4544     Context.insert<InstFakeUse>(ScratchReg);
4545   } else {
4546     _cmp(Src0RHi, Src1RFHi);
4547     _cmp(Src0RLo, Src1RFLo, CondARM32::EQ);
4548   }
4549   return CondWhenTrue(TableIcmp64[Condition].C1);
4550 }
4551 
4552 TargetARM32::CondWhenTrue
lowerInt32IcmpCond(InstIcmp::ICond Condition,Operand * Src0,Operand * Src1)4553 TargetARM32::lowerInt32IcmpCond(InstIcmp::ICond Condition, Operand *Src0,
4554                                 Operand *Src1) {
4555   Int32Operands Srcs(Src0, Src1);
4556   if (!Srcs.hasConstOperand()) {
4557 
4558     Variable *Src0R = Srcs.src0R(this);
4559     Operand *Src1RF = Srcs.src1RF(this);
4560     _cmp(Src0R, Src1RF);
4561     return CondWhenTrue(getIcmp32Mapping(Condition));
4562   }
4563 
4564   Variable *Src0R = Srcs.src0R(this);
4565   const int32_t Value = Srcs.getConstantValue();
4566   if ((Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) && Value == 0) {
4567     _tst(Src0R, Src0R);
4568     return CondWhenTrue(getIcmp32Mapping(Condition));
4569   }
4570 
4571   if (!Srcs.swappedOperands() && !Srcs.immediateIsFlexEncodable() &&
4572       Srcs.negatedImmediateIsFlexEncodable()) {
4573     Operand *Src1F = Srcs.negatedSrc1F(this);
4574     _cmn(Src0R, Src1F);
4575     return CondWhenTrue(getIcmp32Mapping(Condition));
4576   }
4577 
4578   Operand *Src1RF = Srcs.src1RF(this);
4579   if (!Srcs.swappedOperands()) {
4580     _cmp(Src0R, Src1RF);
4581   } else {
4582     Variable *T = makeReg(IceType_i32);
4583     _rsbs(T, Src0R, Src1RF);
4584     Context.insert<InstFakeUse>(T);
4585   }
4586   return CondWhenTrue(getIcmp32Mapping(Condition));
4587 }
4588 
4589 TargetARM32::CondWhenTrue
lowerInt8AndInt16IcmpCond(InstIcmp::ICond Condition,Operand * Src0,Operand * Src1)4590 TargetARM32::lowerInt8AndInt16IcmpCond(InstIcmp::ICond Condition, Operand *Src0,
4591                                        Operand *Src1) {
4592   Int32Operands Srcs(Src0, Src1);
4593   const int32_t ShAmt = 32 - getScalarIntBitWidth(Src0->getType());
4594   assert(ShAmt >= 0);
4595 
4596   if (!Srcs.hasConstOperand()) {
4597     Variable *Src0R = makeReg(IceType_i32);
4598     Operand *ShAmtImm = shAmtImm(ShAmt);
4599     _lsl(Src0R, legalizeToReg(Src0), ShAmtImm);
4600 
4601     Variable *Src1R = legalizeToReg(Src1);
4602     auto *Src1F = OperandARM32FlexReg::create(Func, IceType_i32, Src1R,
4603                                               OperandARM32::LSL, ShAmtImm);
4604     _cmp(Src0R, Src1F);
4605     return CondWhenTrue(getIcmp32Mapping(Condition));
4606   }
4607 
4608   const int32_t Value = Srcs.getConstantValue();
4609   if ((Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) && Value == 0) {
4610     Operand *ShAmtImm = shAmtImm(ShAmt);
4611     Variable *T = makeReg(IceType_i32);
4612     _lsls(T, Srcs.src0R(this), ShAmtImm);
4613     Context.insert<InstFakeUse>(T);
4614     return CondWhenTrue(getIcmp32Mapping(Condition));
4615   }
4616 
4617   Variable *ConstR = makeReg(IceType_i32);
4618   _mov(ConstR,
4619        legalize(Ctx->getConstantInt32(Value << ShAmt), Legal_Reg | Legal_Flex));
4620   Operand *NonConstF = OperandARM32FlexReg::create(
4621       Func, IceType_i32, Srcs.src0R(this), OperandARM32::LSL,
4622       Ctx->getConstantInt32(ShAmt));
4623 
4624   if (Srcs.swappedOperands()) {
4625     _cmp(ConstR, NonConstF);
4626   } else {
4627     Variable *T = makeReg(IceType_i32);
4628     _rsbs(T, ConstR, NonConstF);
4629     Context.insert<InstFakeUse>(T);
4630   }
4631   return CondWhenTrue(getIcmp32Mapping(Condition));
4632 }
4633 
lowerIcmpCond(const InstIcmp * Instr)4634 TargetARM32::CondWhenTrue TargetARM32::lowerIcmpCond(const InstIcmp *Instr) {
4635   return lowerIcmpCond(Instr->getCondition(), Instr->getSrc(0),
4636                        Instr->getSrc(1));
4637 }
4638 
lowerIcmpCond(InstIcmp::ICond Condition,Operand * Src0,Operand * Src1)4639 TargetARM32::CondWhenTrue TargetARM32::lowerIcmpCond(InstIcmp::ICond Condition,
4640                                                      Operand *Src0,
4641                                                      Operand *Src1) {
4642   Src0 = legalizeUndef(Src0);
4643   Src1 = legalizeUndef(Src1);
4644 
4645   // a=icmp cond b, c ==>
4646   // GCC does:
4647   //   <u/s>xtb tb, b
4648   //   <u/s>xtb tc, c
4649   //   cmp      tb, tc
4650   //   mov.C1   t, #0
4651   //   mov.C2   t, #1
4652   //   mov      a, t
4653   // where the unsigned/sign extension is not needed for 32-bit. They also have
4654   // special cases for EQ and NE. E.g., for NE:
4655   //   <extend to tb, tc>
4656   //   subs     t, tb, tc
4657   //   movne    t, #1
4658   //   mov      a, t
4659   //
4660   // LLVM does:
4661   //   lsl     tb, b, #<N>
4662   //   mov     t, #0
4663   //   cmp     tb, c, lsl #<N>
4664   //   mov.<C> t, #1
4665   //   mov     a, t
4666   //
4667   // the left shift is by 0, 16, or 24, which allows the comparison to focus on
4668   // the digits that actually matter (for 16-bit or 8-bit signed/unsigned). For
4669   // the unsigned case, for some reason it does similar to GCC and does a uxtb
4670   // first. It's not clear to me why that special-casing is needed.
4671   //
4672   // We'll go with the LLVM way for now, since it's shorter and has just as few
4673   // dependencies.
4674   switch (Src0->getType()) {
4675   default:
4676     llvm::report_fatal_error("Unhandled type in lowerIcmpCond");
4677   case IceType_i1:
4678   case IceType_i8:
4679   case IceType_i16:
4680     return lowerInt8AndInt16IcmpCond(Condition, Src0, Src1);
4681   case IceType_i32:
4682     return lowerInt32IcmpCond(Condition, Src0, Src1);
4683   case IceType_i64:
4684     return lowerInt64IcmpCond(Condition, Src0, Src1);
4685   }
4686 }
4687 
lowerIcmp(const InstIcmp * Instr)4688 void TargetARM32::lowerIcmp(const InstIcmp *Instr) {
4689   Variable *Dest = Instr->getDest();
4690   const Type DestTy = Dest->getType();
4691 
4692   if (isVectorType(DestTy)) {
4693     auto *T = makeReg(DestTy);
4694     auto *Src0 = legalizeToReg(Instr->getSrc(0));
4695     auto *Src1 = legalizeToReg(Instr->getSrc(1));
4696     const Type SrcTy = Src0->getType();
4697 
4698     bool NeedsShl = false;
4699     Type NewTypeAfterShl;
4700     SizeT ShAmt;
4701     switch (SrcTy) {
4702     default:
4703       break;
4704     case IceType_v16i1:
4705       NeedsShl = true;
4706       NewTypeAfterShl = IceType_v16i8;
4707       ShAmt = 7;
4708       break;
4709     case IceType_v8i1:
4710       NeedsShl = true;
4711       NewTypeAfterShl = IceType_v8i16;
4712       ShAmt = 15;
4713       break;
4714     case IceType_v4i1:
4715       NeedsShl = true;
4716       NewTypeAfterShl = IceType_v4i32;
4717       ShAmt = 31;
4718       break;
4719     }
4720 
4721     if (NeedsShl) {
4722       auto *Imm = llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(ShAmt));
4723       auto *Src0T = makeReg(NewTypeAfterShl);
4724       auto *Src0Shl = makeReg(NewTypeAfterShl);
4725       _mov(Src0T, Src0);
4726       _vshl(Src0Shl, Src0T, Imm);
4727       Src0 = Src0Shl;
4728 
4729       auto *Src1T = makeReg(NewTypeAfterShl);
4730       auto *Src1Shl = makeReg(NewTypeAfterShl);
4731       _mov(Src1T, Src1);
4732       _vshl(Src1Shl, Src1T, Imm);
4733       Src1 = Src1Shl;
4734     }
4735 
4736     switch (Instr->getCondition()) {
4737     default:
4738       llvm::report_fatal_error("Unhandled integer comparison.");
4739 #define _Vceq(T, S0, S1, Signed) _vceq(T, S0, S1)
4740 #define _Vcge(T, S0, S1, Signed)                                               \
4741   _vcge(T, S0, S1)                                                             \
4742       ->setSignType(Signed ? InstARM32::FS_Signed : InstARM32::FS_Unsigned)
4743 #define _Vcgt(T, S0, S1, Signed)                                               \
4744   _vcgt(T, S0, S1)                                                             \
4745       ->setSignType(Signed ? InstARM32::FS_Signed : InstARM32::FS_Unsigned)
4746 #define X(val, is_signed, swapped64, C_32, C1_64, C2_64, C_V, INV_V, NEG_V)    \
4747   case InstIcmp::val: {                                                        \
4748     _Vc##C_V(T, (INV_V) ? Src1 : Src0, (INV_V) ? Src0 : Src1, is_signed);      \
4749     if (NEG_V) {                                                               \
4750       auto *TInv = makeReg(DestTy);                                            \
4751       _vmvn(TInv, T);                                                          \
4752       T = TInv;                                                                \
4753     }                                                                          \
4754   } break;
4755       ICMPARM32_TABLE
4756 #undef X
4757 #undef _Vcgt
4758 #undef _Vcge
4759 #undef _Vceq
4760     }
4761     _mov(Dest, T);
4762     return;
4763   }
4764 
4765   Operand *_0 =
4766       legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
4767   Operand *_1 = legalize(Ctx->getConstantInt32(1), Legal_Reg | Legal_Flex);
4768   Variable *T = makeReg(IceType_i1);
4769 
4770   _mov(T, _0);
4771   CondWhenTrue Cond = lowerIcmpCond(Instr);
4772   _mov_redefined(T, _1, Cond.WhenTrue0);
4773   _mov(Dest, T);
4774 
4775   assert(Cond.WhenTrue1 == CondARM32::kNone);
4776 
4777   return;
4778 }
4779 
lowerInsertElement(const InstInsertElement * Instr)4780 void TargetARM32::lowerInsertElement(const InstInsertElement *Instr) {
4781   Variable *Dest = Instr->getDest();
4782   Type DestTy = Dest->getType();
4783 
4784   Variable *Src0 = legalizeToReg(Instr->getSrc(0));
4785   Variable *Src1 = legalizeToReg(Instr->getSrc(1));
4786   Operand *Src2 = Instr->getSrc(2);
4787 
4788   if (const auto *Imm = llvm::dyn_cast<ConstantInteger32>(Src2)) {
4789     const uint32_t Index = Imm->getValue();
4790     Variable *T = makeReg(DestTy);
4791 
4792     if (isFloatingType(DestTy)) {
4793       T->setRegClass(RegARM32::RCARM32_QtoS);
4794     }
4795 
4796     _mov(T, Src0);
4797     _insertelement(T, Src1, Index);
4798     _set_dest_redefined();
4799     _mov(Dest, T);
4800     return;
4801   }
4802   assert(false && "insertelement requires a constant index");
4803 }
4804 
4805 namespace {
getConstantMemoryOrder(Operand * Opnd)4806 inline uint64_t getConstantMemoryOrder(Operand *Opnd) {
4807   if (auto *Integer = llvm::dyn_cast<ConstantInteger32>(Opnd))
4808     return Integer->getValue();
4809   return Intrinsics::MemoryOrderInvalid;
4810 }
4811 } // end of anonymous namespace
4812 
lowerLoadLinkedStoreExclusive(Type Ty,Operand * Addr,std::function<Variable * (Variable *)> Operation,CondARM32::Cond Cond)4813 void TargetARM32::lowerLoadLinkedStoreExclusive(
4814     Type Ty, Operand *Addr, std::function<Variable *(Variable *)> Operation,
4815     CondARM32::Cond Cond) {
4816 
4817   auto *Retry = Context.insert<InstARM32Label>(this);
4818 
4819   { // scoping for loop highlighting.
4820     Variable *Success = makeReg(IceType_i32);
4821     Variable *Tmp = (Ty == IceType_i64) ? makeI64RegPair() : makeReg(Ty);
4822     auto *_0 = Ctx->getConstantZero(IceType_i32);
4823 
4824     Context.insert<InstFakeDef>(Tmp);
4825     Context.insert<InstFakeUse>(Tmp);
4826     Variable *AddrR = legalizeToReg(Addr);
4827     _ldrex(Tmp, formMemoryOperand(AddrR, Ty))->setDestRedefined();
4828     auto *StoreValue = Operation(Tmp);
4829     assert(StoreValue->mustHaveReg());
4830     // strex requires Dest to be a register other than Value or Addr. This
4831     // restriction is cleanly represented by adding an "early" definition of
4832     // Dest (or a latter use of all the sources.)
4833     Context.insert<InstFakeDef>(Success);
4834     if (Cond != CondARM32::AL) {
4835       _mov_redefined(Success, legalize(_0, Legal_Reg | Legal_Flex),
4836                      InstARM32::getOppositeCondition(Cond));
4837     }
4838     _strex(Success, StoreValue, formMemoryOperand(AddrR, Ty), Cond)
4839         ->setDestRedefined();
4840     _cmp(Success, _0);
4841   }
4842 
4843   _br(Retry, CondARM32::NE);
4844 }
4845 
4846 namespace {
createArithInst(Cfg * Func,uint32_t Operation,Variable * Dest,Variable * Src0,Operand * Src1)4847 InstArithmetic *createArithInst(Cfg *Func, uint32_t Operation, Variable *Dest,
4848                                 Variable *Src0, Operand *Src1) {
4849   InstArithmetic::OpKind Oper;
4850   switch (Operation) {
4851   default:
4852     llvm::report_fatal_error("Unknown AtomicRMW operation");
4853   case Intrinsics::AtomicExchange:
4854     llvm::report_fatal_error("Can't handle Atomic xchg operation");
4855   case Intrinsics::AtomicAdd:
4856     Oper = InstArithmetic::Add;
4857     break;
4858   case Intrinsics::AtomicAnd:
4859     Oper = InstArithmetic::And;
4860     break;
4861   case Intrinsics::AtomicSub:
4862     Oper = InstArithmetic::Sub;
4863     break;
4864   case Intrinsics::AtomicOr:
4865     Oper = InstArithmetic::Or;
4866     break;
4867   case Intrinsics::AtomicXor:
4868     Oper = InstArithmetic::Xor;
4869     break;
4870   }
4871   return InstArithmetic::create(Func, Oper, Dest, Src0, Src1);
4872 }
4873 } // end of anonymous namespace
4874 
lowerAtomicRMW(Variable * Dest,uint32_t Operation,Operand * Addr,Operand * Val)4875 void TargetARM32::lowerAtomicRMW(Variable *Dest, uint32_t Operation,
4876                                  Operand *Addr, Operand *Val) {
4877   // retry:
4878   //     ldrex tmp, [addr]
4879   //     mov contents, tmp
4880   //     op result, contents, Val
4881   //     strex success, result, [addr]
4882   //     cmp success, 0
4883   //     jne retry
4884   //     fake-use(addr, operand)  @ prevents undesirable clobbering.
4885   //     mov dest, contents
4886   auto DestTy = Dest->getType();
4887 
4888   if (DestTy == IceType_i64) {
4889     lowerInt64AtomicRMW(Dest, Operation, Addr, Val);
4890     return;
4891   }
4892 
4893   Operand *ValRF = nullptr;
4894   if (llvm::isa<ConstantInteger32>(Val)) {
4895     ValRF = Val;
4896   } else {
4897     ValRF = legalizeToReg(Val);
4898   }
4899   auto *ContentsR = makeReg(DestTy);
4900   auto *ResultR = makeReg(DestTy);
4901 
4902   _dmb();
4903   lowerLoadLinkedStoreExclusive(
4904       DestTy, Addr,
4905       [this, Operation, ResultR, ContentsR, ValRF](Variable *Tmp) {
4906         lowerAssign(InstAssign::create(Func, ContentsR, Tmp));
4907         if (Operation == Intrinsics::AtomicExchange) {
4908           lowerAssign(InstAssign::create(Func, ResultR, ValRF));
4909         } else {
4910           lowerArithmetic(
4911               createArithInst(Func, Operation, ResultR, ContentsR, ValRF));
4912         }
4913         return ResultR;
4914       });
4915   _dmb();
4916   if (auto *ValR = llvm::dyn_cast<Variable>(ValRF)) {
4917     Context.insert<InstFakeUse>(ValR);
4918   }
4919   // Can't dce ContentsR.
4920   Context.insert<InstFakeUse>(ContentsR);
4921   lowerAssign(InstAssign::create(Func, Dest, ContentsR));
4922 }
4923 
lowerInt64AtomicRMW(Variable * Dest,uint32_t Operation,Operand * Addr,Operand * Val)4924 void TargetARM32::lowerInt64AtomicRMW(Variable *Dest, uint32_t Operation,
4925                                       Operand *Addr, Operand *Val) {
4926   assert(Dest->getType() == IceType_i64);
4927 
4928   auto *ResultR = makeI64RegPair();
4929 
4930   Context.insert<InstFakeDef>(ResultR);
4931 
4932   Operand *ValRF = nullptr;
4933   if (llvm::dyn_cast<ConstantInteger64>(Val)) {
4934     ValRF = Val;
4935   } else {
4936     auto *ValR64 = llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
4937     ValR64->initHiLo(Func);
4938     ValR64->setMustNotHaveReg();
4939     ValR64->getLo()->setMustHaveReg();
4940     ValR64->getHi()->setMustHaveReg();
4941     lowerAssign(InstAssign::create(Func, ValR64, Val));
4942     ValRF = ValR64;
4943   }
4944 
4945   auto *ContentsR = llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
4946   ContentsR->initHiLo(Func);
4947   ContentsR->setMustNotHaveReg();
4948   ContentsR->getLo()->setMustHaveReg();
4949   ContentsR->getHi()->setMustHaveReg();
4950 
4951   _dmb();
4952   lowerLoadLinkedStoreExclusive(
4953       IceType_i64, Addr,
4954       [this, Operation, ResultR, ContentsR, ValRF](Variable *Tmp) {
4955         lowerAssign(InstAssign::create(Func, ContentsR, Tmp));
4956         Context.insert<InstFakeUse>(Tmp);
4957         if (Operation == Intrinsics::AtomicExchange) {
4958           lowerAssign(InstAssign::create(Func, ResultR, ValRF));
4959         } else {
4960           lowerArithmetic(
4961               createArithInst(Func, Operation, ResultR, ContentsR, ValRF));
4962         }
4963         Context.insert<InstFakeUse>(ResultR->getHi());
4964         Context.insert<InstFakeDef>(ResultR, ResultR->getLo())
4965             ->setDestRedefined();
4966         return ResultR;
4967       });
4968   _dmb();
4969   if (auto *ValR64 = llvm::dyn_cast<Variable64On32>(ValRF)) {
4970     Context.insert<InstFakeUse>(ValR64->getLo());
4971     Context.insert<InstFakeUse>(ValR64->getHi());
4972   }
4973   lowerAssign(InstAssign::create(Func, Dest, ContentsR));
4974 }
4975 
postambleCtpop64(const InstCall * Instr)4976 void TargetARM32::postambleCtpop64(const InstCall *Instr) {
4977   Operand *Arg0 = Instr->getArg(0);
4978   if (isInt32Asserting32Or64(Arg0->getType())) {
4979     return;
4980   }
4981   // The popcount helpers always return 32-bit values, while the intrinsic's
4982   // signature matches some 64-bit platform's native instructions and expect to
4983   // fill a 64-bit reg. Thus, clear the upper bits of the dest just in case the
4984   // user doesn't do that in the IR or doesn't toss the bits via truncate.
4985   auto *DestHi = llvm::cast<Variable>(hiOperand(Instr->getDest()));
4986   Variable *T = makeReg(IceType_i32);
4987   Operand *_0 =
4988       legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
4989   _mov(T, _0);
4990   _mov(DestHi, T);
4991 }
4992 
lowerIntrinsicCall(const InstIntrinsicCall * Instr)4993 void TargetARM32::lowerIntrinsicCall(const InstIntrinsicCall *Instr) {
4994   Variable *Dest = Instr->getDest();
4995   Type DestTy = (Dest != nullptr) ? Dest->getType() : IceType_void;
4996   Intrinsics::IntrinsicID ID = Instr->getIntrinsicInfo().ID;
4997   switch (ID) {
4998   case Intrinsics::AtomicFence:
4999   case Intrinsics::AtomicFenceAll:
5000     assert(Dest == nullptr);
5001     _dmb();
5002     return;
5003   case Intrinsics::AtomicIsLockFree: {
5004     Operand *ByteSize = Instr->getArg(0);
5005     auto *CI = llvm::dyn_cast<ConstantInteger32>(ByteSize);
5006     if (CI == nullptr) {
5007       // The PNaCl ABI requires the byte size to be a compile-time constant.
5008       Func->setError("AtomicIsLockFree byte size should be compile-time const");
5009       return;
5010     }
5011     static constexpr int32_t NotLockFree = 0;
5012     static constexpr int32_t LockFree = 1;
5013     int32_t Result = NotLockFree;
5014     switch (CI->getValue()) {
5015     case 1:
5016     case 2:
5017     case 4:
5018     case 8:
5019       Result = LockFree;
5020       break;
5021     }
5022     _mov(Dest, legalizeToReg(Ctx->getConstantInt32(Result)));
5023     return;
5024   }
5025   case Intrinsics::AtomicLoad: {
5026     assert(isScalarIntegerType(DestTy));
5027     // We require the memory address to be naturally aligned. Given that is the
5028     // case, then normal loads are atomic.
5029     if (!Intrinsics::isMemoryOrderValid(
5030             ID, getConstantMemoryOrder(Instr->getArg(1)))) {
5031       Func->setError("Unexpected memory ordering for AtomicLoad");
5032       return;
5033     }
5034     Variable *T;
5035 
5036     if (DestTy == IceType_i64) {
5037       // ldrex is the only arm instruction that is guaranteed to load a 64-bit
5038       // integer atomically. Everything else works with a regular ldr.
5039       T = makeI64RegPair();
5040       _ldrex(T, formMemoryOperand(Instr->getArg(0), IceType_i64));
5041     } else {
5042       T = makeReg(DestTy);
5043       _ldr(T, formMemoryOperand(Instr->getArg(0), DestTy));
5044     }
5045     _dmb();
5046     lowerAssign(InstAssign::create(Func, Dest, T));
5047     // Adding a fake-use T to ensure the atomic load is not removed if Dest is
5048     // unused.
5049     Context.insert<InstFakeUse>(T);
5050     return;
5051   }
5052   case Intrinsics::AtomicStore: {
5053     // We require the memory address to be naturally aligned. Given that is the
5054     // case, then normal loads are atomic.
5055     if (!Intrinsics::isMemoryOrderValid(
5056             ID, getConstantMemoryOrder(Instr->getArg(2)))) {
5057       Func->setError("Unexpected memory ordering for AtomicStore");
5058       return;
5059     }
5060 
5061     auto *Value = Instr->getArg(0);
5062     if (Value->getType() == IceType_i64) {
5063       auto *ValueR = makeI64RegPair();
5064       Context.insert<InstFakeDef>(ValueR);
5065       lowerAssign(InstAssign::create(Func, ValueR, Value));
5066       _dmb();
5067       lowerLoadLinkedStoreExclusive(
5068           IceType_i64, Instr->getArg(1), [this, ValueR](Variable *Tmp) {
5069             // The following fake-use prevents the ldrex instruction from being
5070             // dead code eliminated.
5071             Context.insert<InstFakeUse>(llvm::cast<Variable>(loOperand(Tmp)));
5072             Context.insert<InstFakeUse>(llvm::cast<Variable>(hiOperand(Tmp)));
5073             Context.insert<InstFakeUse>(Tmp);
5074             return ValueR;
5075           });
5076       Context.insert<InstFakeUse>(ValueR);
5077       _dmb();
5078       return;
5079     }
5080 
5081     auto *ValueR = legalizeToReg(Instr->getArg(0));
5082     const auto ValueTy = ValueR->getType();
5083     assert(isScalarIntegerType(ValueTy));
5084     auto *Addr = legalizeToReg(Instr->getArg(1));
5085 
5086     // non-64-bit stores are atomically as long as the address is aligned. This
5087     // is PNaCl, so addresses are aligned.
5088     _dmb();
5089     _str(ValueR, formMemoryOperand(Addr, ValueTy));
5090     _dmb();
5091     return;
5092   }
5093   case Intrinsics::AtomicCmpxchg: {
5094     // retry:
5095     //     ldrex tmp, [addr]
5096     //     cmp tmp, expected
5097     //     mov expected, tmp
5098     //     strexeq success, new, [addr]
5099     //     cmpeq success, #0
5100     //     bne retry
5101     //     mov dest, expected
5102     assert(isScalarIntegerType(DestTy));
5103     // We require the memory address to be naturally aligned. Given that is the
5104     // case, then normal loads are atomic.
5105     if (!Intrinsics::isMemoryOrderValid(
5106             ID, getConstantMemoryOrder(Instr->getArg(3)),
5107             getConstantMemoryOrder(Instr->getArg(4)))) {
5108       Func->setError("Unexpected memory ordering for AtomicCmpxchg");
5109       return;
5110     }
5111 
5112     if (DestTy == IceType_i64) {
5113       Variable *LoadedValue = nullptr;
5114 
5115       auto *New = makeI64RegPair();
5116       Context.insert<InstFakeDef>(New);
5117       lowerAssign(InstAssign::create(Func, New, Instr->getArg(2)));
5118 
5119       auto *Expected = makeI64RegPair();
5120       Context.insert<InstFakeDef>(Expected);
5121       lowerAssign(InstAssign::create(Func, Expected, Instr->getArg(1)));
5122 
5123       _dmb();
5124       lowerLoadLinkedStoreExclusive(
5125           DestTy, Instr->getArg(0),
5126           [this, Expected, New, Instr, DestTy, &LoadedValue](Variable *Tmp) {
5127             auto *ExpectedLoR = llvm::cast<Variable>(loOperand(Expected));
5128             auto *ExpectedHiR = llvm::cast<Variable>(hiOperand(Expected));
5129             auto *TmpLoR = llvm::cast<Variable>(loOperand(Tmp));
5130             auto *TmpHiR = llvm::cast<Variable>(hiOperand(Tmp));
5131             _cmp(TmpLoR, ExpectedLoR);
5132             _cmp(TmpHiR, ExpectedHiR, CondARM32::EQ);
5133             LoadedValue = Tmp;
5134             return New;
5135           },
5136           CondARM32::EQ);
5137       _dmb();
5138 
5139       Context.insert<InstFakeUse>(LoadedValue);
5140       lowerAssign(InstAssign::create(Func, Dest, LoadedValue));
5141       // The fake-use Expected prevents the assignments to Expected (above)
5142       // from being removed if Dest is not used.
5143       Context.insert<InstFakeUse>(Expected);
5144       // New needs to be alive here, or its live range will end in the
5145       // strex instruction.
5146       Context.insert<InstFakeUse>(New);
5147       return;
5148     }
5149 
5150     auto *New = legalizeToReg(Instr->getArg(2));
5151     auto *Expected = legalizeToReg(Instr->getArg(1));
5152     Variable *LoadedValue = nullptr;
5153 
5154     _dmb();
5155     lowerLoadLinkedStoreExclusive(
5156         DestTy, Instr->getArg(0),
5157         [this, Expected, New, Instr, DestTy, &LoadedValue](Variable *Tmp) {
5158           lowerIcmpCond(InstIcmp::Eq, Tmp, Expected);
5159           LoadedValue = Tmp;
5160           return New;
5161         },
5162         CondARM32::EQ);
5163     _dmb();
5164 
5165     lowerAssign(InstAssign::create(Func, Dest, LoadedValue));
5166     Context.insert<InstFakeUse>(Expected);
5167     Context.insert<InstFakeUse>(New);
5168     return;
5169   }
5170   case Intrinsics::AtomicRMW: {
5171     if (!Intrinsics::isMemoryOrderValid(
5172             ID, getConstantMemoryOrder(Instr->getArg(3)))) {
5173       Func->setError("Unexpected memory ordering for AtomicRMW");
5174       return;
5175     }
5176     lowerAtomicRMW(
5177         Dest, static_cast<uint32_t>(
5178                   llvm::cast<ConstantInteger32>(Instr->getArg(0))->getValue()),
5179         Instr->getArg(1), Instr->getArg(2));
5180     return;
5181   }
5182   case Intrinsics::Bswap: {
5183     Operand *Val = Instr->getArg(0);
5184     Type Ty = Val->getType();
5185     if (Ty == IceType_i64) {
5186       Val = legalizeUndef(Val);
5187       Variable *Val_Lo = legalizeToReg(loOperand(Val));
5188       Variable *Val_Hi = legalizeToReg(hiOperand(Val));
5189       Variable *T_Lo = makeReg(IceType_i32);
5190       Variable *T_Hi = makeReg(IceType_i32);
5191       auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
5192       auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
5193       _rev(T_Lo, Val_Lo);
5194       _rev(T_Hi, Val_Hi);
5195       _mov(DestLo, T_Hi);
5196       _mov(DestHi, T_Lo);
5197     } else {
5198       assert(Ty == IceType_i32 || Ty == IceType_i16);
5199       Variable *ValR = legalizeToReg(Val);
5200       Variable *T = makeReg(Ty);
5201       _rev(T, ValR);
5202       if (Val->getType() == IceType_i16) {
5203         Operand *_16 = shAmtImm(16);
5204         _lsr(T, T, _16);
5205       }
5206       _mov(Dest, T);
5207     }
5208     return;
5209   }
5210   case Intrinsics::Ctpop: {
5211     llvm::report_fatal_error("Ctpop should have been prelowered.");
5212   }
5213   case Intrinsics::Ctlz: {
5214     // The "is zero undef" parameter is ignored and we always return a
5215     // well-defined value.
5216     Operand *Val = Instr->getArg(0);
5217     Variable *ValLoR;
5218     Variable *ValHiR = nullptr;
5219     if (Val->getType() == IceType_i64) {
5220       Val = legalizeUndef(Val);
5221       ValLoR = legalizeToReg(loOperand(Val));
5222       ValHiR = legalizeToReg(hiOperand(Val));
5223     } else {
5224       ValLoR = legalizeToReg(Val);
5225     }
5226     lowerCLZ(Dest, ValLoR, ValHiR);
5227     return;
5228   }
5229   case Intrinsics::Cttz: {
5230     // Essentially like Clz, but reverse the bits first.
5231     Operand *Val = Instr->getArg(0);
5232     Variable *ValLoR;
5233     Variable *ValHiR = nullptr;
5234     if (Val->getType() == IceType_i64) {
5235       Val = legalizeUndef(Val);
5236       ValLoR = legalizeToReg(loOperand(Val));
5237       ValHiR = legalizeToReg(hiOperand(Val));
5238       Variable *TLo = makeReg(IceType_i32);
5239       Variable *THi = makeReg(IceType_i32);
5240       _rbit(TLo, ValLoR);
5241       _rbit(THi, ValHiR);
5242       ValLoR = THi;
5243       ValHiR = TLo;
5244     } else {
5245       ValLoR = legalizeToReg(Val);
5246       Variable *T = makeReg(IceType_i32);
5247       _rbit(T, ValLoR);
5248       ValLoR = T;
5249     }
5250     lowerCLZ(Dest, ValLoR, ValHiR);
5251     return;
5252   }
5253   case Intrinsics::Fabs: {
5254     Type DestTy = Dest->getType();
5255     Variable *T = makeReg(DestTy);
5256     _vabs(T, legalizeToReg(Instr->getArg(0)));
5257     _mov(Dest, T);
5258     return;
5259   }
5260   case Intrinsics::Longjmp: {
5261     llvm::report_fatal_error("longjmp should have been prelowered.");
5262   }
5263   case Intrinsics::Memcpy: {
5264     llvm::report_fatal_error("memcpy should have been prelowered.");
5265   }
5266   case Intrinsics::Memmove: {
5267     llvm::report_fatal_error("memmove should have been prelowered.");
5268   }
5269   case Intrinsics::Memset: {
5270     llvm::report_fatal_error("memmove should have been prelowered.");
5271   }
5272   case Intrinsics::NaClReadTP: {
5273     if (SandboxingType != ST_NaCl) {
5274       llvm::report_fatal_error("nacl-read-tp should have been prelowered.");
5275     }
5276     Variable *TP = legalizeToReg(OperandARM32Mem::create(
5277         Func, getPointerType(), getPhysicalRegister(RegARM32::Reg_r9),
5278         llvm::cast<ConstantInteger32>(Ctx->getConstantZero(IceType_i32))));
5279     _mov(Dest, TP);
5280     return;
5281   }
5282   case Intrinsics::Setjmp: {
5283     llvm::report_fatal_error("setjmp should have been prelowered.");
5284   }
5285   case Intrinsics::Sqrt: {
5286     assert(isScalarFloatingType(Dest->getType()) ||
5287            getFlags().getApplicationBinaryInterface() != ::Ice::ABI_PNaCl);
5288     Variable *Src = legalizeToReg(Instr->getArg(0));
5289     Variable *T = makeReg(Dest->getType());
5290     _vsqrt(T, Src);
5291     _mov(Dest, T);
5292     return;
5293   }
5294   case Intrinsics::Stacksave: {
5295     Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
5296     _mov(Dest, SP);
5297     return;
5298   }
5299   case Intrinsics::Stackrestore: {
5300     Variable *Val = legalizeToReg(Instr->getArg(0));
5301     Sandboxer(this).reset_sp(Val);
5302     return;
5303   }
5304   case Intrinsics::Trap:
5305     _trap();
5306     return;
5307   case Intrinsics::LoadSubVector: {
5308     UnimplementedLoweringError(this, Instr);
5309     return;
5310   }
5311   case Intrinsics::StoreSubVector: {
5312     UnimplementedLoweringError(this, Instr);
5313     return;
5314   }
5315   default: // UnknownIntrinsic
5316     Func->setError("Unexpected intrinsic");
5317     return;
5318   }
5319   return;
5320 }
5321 
lowerCLZ(Variable * Dest,Variable * ValLoR,Variable * ValHiR)5322 void TargetARM32::lowerCLZ(Variable *Dest, Variable *ValLoR, Variable *ValHiR) {
5323   Type Ty = Dest->getType();
5324   assert(Ty == IceType_i32 || Ty == IceType_i64);
5325   Variable *T = makeReg(IceType_i32);
5326   _clz(T, ValLoR);
5327   if (Ty == IceType_i64) {
5328     auto *DestLo = llvm::cast<Variable>(loOperand(Dest));
5329     auto *DestHi = llvm::cast<Variable>(hiOperand(Dest));
5330     Operand *Zero =
5331         legalize(Ctx->getConstantZero(IceType_i32), Legal_Reg | Legal_Flex);
5332     Operand *ThirtyTwo =
5333         legalize(Ctx->getConstantInt32(32), Legal_Reg | Legal_Flex);
5334     _cmp(ValHiR, Zero);
5335     Variable *T2 = makeReg(IceType_i32);
5336     _add(T2, T, ThirtyTwo);
5337     _clz(T2, ValHiR, CondARM32::NE);
5338     // T2 is actually a source as well when the predicate is not AL (since it
5339     // may leave T2 alone). We use _set_dest_redefined to prolong the liveness
5340     // of T2 as if it was used as a source.
5341     _set_dest_redefined();
5342     _mov(DestLo, T2);
5343     Variable *T3 = makeReg(Zero->getType());
5344     _mov(T3, Zero);
5345     _mov(DestHi, T3);
5346     return;
5347   }
5348   _mov(Dest, T);
5349   return;
5350 }
5351 
lowerLoad(const InstLoad * Load)5352 void TargetARM32::lowerLoad(const InstLoad *Load) {
5353   // A Load instruction can be treated the same as an Assign instruction, after
5354   // the source operand is transformed into an OperandARM32Mem operand.
5355   Type Ty = Load->getDest()->getType();
5356   Operand *Src0 = formMemoryOperand(Load->getSourceAddress(), Ty);
5357   Variable *DestLoad = Load->getDest();
5358 
5359   // TODO(jvoung): handled folding opportunities. Sign and zero extension can
5360   // be folded into a load.
5361   auto *Assign = InstAssign::create(Func, DestLoad, Src0);
5362   lowerAssign(Assign);
5363 }
5364 
5365 namespace {
dumpAddressOpt(const Cfg * Func,const Variable * Base,int32_t Offset,const Variable * OffsetReg,int16_t OffsetRegShAmt,const Inst * Reason)5366 void dumpAddressOpt(const Cfg *Func, const Variable *Base, int32_t Offset,
5367                     const Variable *OffsetReg, int16_t OffsetRegShAmt,
5368                     const Inst *Reason) {
5369   if (!BuildDefs::dump())
5370     return;
5371   if (!Func->isVerbose(IceV_AddrOpt))
5372     return;
5373   OstreamLocker _(Func->getContext());
5374   Ostream &Str = Func->getContext()->getStrDump();
5375   Str << "Instruction: ";
5376   Reason->dumpDecorated(Func);
5377   Str << "  results in Base=";
5378   if (Base)
5379     Base->dump(Func);
5380   else
5381     Str << "<null>";
5382   Str << ", OffsetReg=";
5383   if (OffsetReg)
5384     OffsetReg->dump(Func);
5385   else
5386     Str << "<null>";
5387   Str << ", Shift=" << OffsetRegShAmt << ", Offset=" << Offset << "\n";
5388 }
5389 
matchAssign(const VariablesMetadata * VMetadata,Variable ** Var,int32_t * Offset,const Inst ** Reason)5390 bool matchAssign(const VariablesMetadata *VMetadata, Variable **Var,
5391                  int32_t *Offset, const Inst **Reason) {
5392   // Var originates from Var=SrcVar ==> set Var:=SrcVar
5393   if (*Var == nullptr)
5394     return false;
5395   const Inst *VarAssign = VMetadata->getSingleDefinition(*Var);
5396   if (!VarAssign)
5397     return false;
5398   assert(!VMetadata->isMultiDef(*Var));
5399   if (!llvm::isa<InstAssign>(VarAssign))
5400     return false;
5401 
5402   Operand *SrcOp = VarAssign->getSrc(0);
5403   bool Optimized = false;
5404   if (auto *SrcVar = llvm::dyn_cast<Variable>(SrcOp)) {
5405     if (!VMetadata->isMultiDef(SrcVar) ||
5406         // TODO: ensure SrcVar stays single-BB
5407         false) {
5408       Optimized = true;
5409       *Var = SrcVar;
5410     } else if (auto *Const = llvm::dyn_cast<ConstantInteger32>(SrcOp)) {
5411       int32_t MoreOffset = Const->getValue();
5412       int32_t NewOffset = MoreOffset + *Offset;
5413       if (Utils::WouldOverflowAdd(*Offset, MoreOffset))
5414         return false;
5415       *Var = nullptr;
5416       *Offset += NewOffset;
5417       Optimized = true;
5418     }
5419   }
5420 
5421   if (Optimized) {
5422     *Reason = VarAssign;
5423   }
5424 
5425   return Optimized;
5426 }
5427 
isAddOrSub(const Inst * Instr,InstArithmetic::OpKind * Kind)5428 bool isAddOrSub(const Inst *Instr, InstArithmetic::OpKind *Kind) {
5429   if (const auto *Arith = llvm::dyn_cast<InstArithmetic>(Instr)) {
5430     switch (Arith->getOp()) {
5431     default:
5432       return false;
5433     case InstArithmetic::Add:
5434     case InstArithmetic::Sub:
5435       *Kind = Arith->getOp();
5436       return true;
5437     }
5438   }
5439   return false;
5440 }
5441 
matchCombinedBaseIndex(const VariablesMetadata * VMetadata,Variable ** Base,Variable ** OffsetReg,int32_t OffsetRegShamt,const Inst ** Reason)5442 bool matchCombinedBaseIndex(const VariablesMetadata *VMetadata, Variable **Base,
5443                             Variable **OffsetReg, int32_t OffsetRegShamt,
5444                             const Inst **Reason) {
5445   // OffsetReg==nullptr && Base is Base=Var1+Var2 ==>
5446   //   set Base=Var1, OffsetReg=Var2, Shift=0
5447   if (*Base == nullptr)
5448     return false;
5449   if (*OffsetReg != nullptr)
5450     return false;
5451   (void)OffsetRegShamt;
5452   assert(OffsetRegShamt == 0);
5453   const Inst *BaseInst = VMetadata->getSingleDefinition(*Base);
5454   if (BaseInst == nullptr)
5455     return false;
5456   assert(!VMetadata->isMultiDef(*Base));
5457   if (BaseInst->getSrcSize() < 2)
5458     return false;
5459   auto *Var1 = llvm::dyn_cast<Variable>(BaseInst->getSrc(0));
5460   if (!Var1)
5461     return false;
5462   if (VMetadata->isMultiDef(Var1))
5463     return false;
5464   auto *Var2 = llvm::dyn_cast<Variable>(BaseInst->getSrc(1));
5465   if (!Var2)
5466     return false;
5467   if (VMetadata->isMultiDef(Var2))
5468     return false;
5469   InstArithmetic::OpKind _;
5470   if (!isAddOrSub(BaseInst, &_) ||
5471       // TODO: ensure Var1 and Var2 stay single-BB
5472       false)
5473     return false;
5474   *Base = Var1;
5475   *OffsetReg = Var2;
5476   // OffsetRegShamt is already 0.
5477   *Reason = BaseInst;
5478   return true;
5479 }
5480 
matchShiftedOffsetReg(const VariablesMetadata * VMetadata,Variable ** OffsetReg,OperandARM32::ShiftKind * Kind,int32_t * OffsetRegShamt,const Inst ** Reason)5481 bool matchShiftedOffsetReg(const VariablesMetadata *VMetadata,
5482                            Variable **OffsetReg, OperandARM32::ShiftKind *Kind,
5483                            int32_t *OffsetRegShamt, const Inst **Reason) {
5484   // OffsetReg is OffsetReg=Var*Const && log2(Const)+Shift<=32 ==>
5485   //   OffsetReg=Var, Shift+=log2(Const)
5486   // OffsetReg is OffsetReg=Var<<Const && Const+Shift<=32 ==>
5487   //   OffsetReg=Var, Shift+=Const
5488   // OffsetReg is OffsetReg=Var>>Const && Const-Shift>=-32 ==>
5489   //   OffsetReg=Var, Shift-=Const
5490   OperandARM32::ShiftKind NewShiftKind = OperandARM32::kNoShift;
5491   if (*OffsetReg == nullptr)
5492     return false;
5493   auto *IndexInst = VMetadata->getSingleDefinition(*OffsetReg);
5494   if (IndexInst == nullptr)
5495     return false;
5496   assert(!VMetadata->isMultiDef(*OffsetReg));
5497   if (IndexInst->getSrcSize() < 2)
5498     return false;
5499   auto *ArithInst = llvm::dyn_cast<InstArithmetic>(IndexInst);
5500   if (ArithInst == nullptr)
5501     return false;
5502   auto *Var = llvm::dyn_cast<Variable>(ArithInst->getSrc(0));
5503   if (Var == nullptr)
5504     return false;
5505   auto *Const = llvm::dyn_cast<ConstantInteger32>(ArithInst->getSrc(1));
5506   if (Const == nullptr) {
5507     assert(!llvm::isa<ConstantInteger32>(ArithInst->getSrc(0)));
5508     return false;
5509   }
5510   if (VMetadata->isMultiDef(Var) || Const->getType() != IceType_i32)
5511     return false;
5512 
5513   uint32_t NewShamt = -1;
5514   switch (ArithInst->getOp()) {
5515   default:
5516     return false;
5517   case InstArithmetic::Shl: {
5518     NewShiftKind = OperandARM32::LSL;
5519     NewShamt = Const->getValue();
5520     if (NewShamt > 31)
5521       return false;
5522   } break;
5523   case InstArithmetic::Lshr: {
5524     NewShiftKind = OperandARM32::LSR;
5525     NewShamt = Const->getValue();
5526     if (NewShamt > 31)
5527       return false;
5528   } break;
5529   case InstArithmetic::Ashr: {
5530     NewShiftKind = OperandARM32::ASR;
5531     NewShamt = Const->getValue();
5532     if (NewShamt > 31)
5533       return false;
5534   } break;
5535   case InstArithmetic::Udiv:
5536   case InstArithmetic::Mul: {
5537     const uint32_t UnsignedConst = Const->getValue();
5538     NewShamt = llvm::findFirstSet(UnsignedConst);
5539     if (NewShamt != llvm::findLastSet(UnsignedConst)) {
5540       // First bit set is not the same as the last bit set, so Const is not
5541       // a power of 2.
5542       return false;
5543     }
5544     NewShiftKind = ArithInst->getOp() == InstArithmetic::Udiv
5545                        ? OperandARM32::LSR
5546                        : OperandARM32::LSL;
5547   } break;
5548   }
5549   // Allowed "transitions":
5550   //   kNoShift -> * iff NewShamt < 31
5551   //   LSL -> LSL    iff NewShamt + OffsetRegShamt < 31
5552   //   LSR -> LSR    iff NewShamt + OffsetRegShamt < 31
5553   //   ASR -> ASR    iff NewShamt + OffsetRegShamt < 31
5554   if (*Kind != OperandARM32::kNoShift && *Kind != NewShiftKind) {
5555     return false;
5556   }
5557   const int32_t NewOffsetRegShamt = *OffsetRegShamt + NewShamt;
5558   if (NewOffsetRegShamt > 31)
5559     return false;
5560   *OffsetReg = Var;
5561   *OffsetRegShamt = NewOffsetRegShamt;
5562   *Kind = NewShiftKind;
5563   *Reason = IndexInst;
5564   return true;
5565 }
5566 
matchOffsetBase(const VariablesMetadata * VMetadata,Variable ** Base,int32_t * Offset,const Inst ** Reason)5567 bool matchOffsetBase(const VariablesMetadata *VMetadata, Variable **Base,
5568                      int32_t *Offset, const Inst **Reason) {
5569   // Base is Base=Var+Const || Base is Base=Const+Var ==>
5570   //   set Base=Var, Offset+=Const
5571   // Base is Base=Var-Const ==>
5572   //   set Base=Var, Offset-=Const
5573   if (*Base == nullptr)
5574     return false;
5575   const Inst *BaseInst = VMetadata->getSingleDefinition(*Base);
5576   if (BaseInst == nullptr) {
5577     return false;
5578   }
5579   assert(!VMetadata->isMultiDef(*Base));
5580 
5581   auto *ArithInst = llvm::dyn_cast<const InstArithmetic>(BaseInst);
5582   if (ArithInst == nullptr)
5583     return false;
5584   InstArithmetic::OpKind Kind;
5585   if (!isAddOrSub(ArithInst, &Kind))
5586     return false;
5587   bool IsAdd = Kind == InstArithmetic::Add;
5588   Operand *Src0 = ArithInst->getSrc(0);
5589   Operand *Src1 = ArithInst->getSrc(1);
5590   auto *Var0 = llvm::dyn_cast<Variable>(Src0);
5591   auto *Var1 = llvm::dyn_cast<Variable>(Src1);
5592   auto *Const0 = llvm::dyn_cast<ConstantInteger32>(Src0);
5593   auto *Const1 = llvm::dyn_cast<ConstantInteger32>(Src1);
5594   Variable *NewBase = nullptr;
5595   int32_t NewOffset = *Offset;
5596 
5597   if (Var0 == nullptr && Const0 == nullptr) {
5598     assert(llvm::isa<ConstantRelocatable>(Src0));
5599     return false;
5600   }
5601 
5602   if (Var1 == nullptr && Const1 == nullptr) {
5603     assert(llvm::isa<ConstantRelocatable>(Src1));
5604     return false;
5605   }
5606 
5607   if (Var0 && Var1)
5608     // TODO(jpp): merge base/index splitting into here.
5609     return false;
5610   if (!IsAdd && Var1)
5611     return false;
5612   if (Var0)
5613     NewBase = Var0;
5614   else if (Var1)
5615     NewBase = Var1;
5616   // Compute the updated constant offset.
5617   if (Const0) {
5618     int32_t MoreOffset = IsAdd ? Const0->getValue() : -Const0->getValue();
5619     if (Utils::WouldOverflowAdd(NewOffset, MoreOffset))
5620       return false;
5621     NewOffset += MoreOffset;
5622   }
5623   if (Const1) {
5624     int32_t MoreOffset = IsAdd ? Const1->getValue() : -Const1->getValue();
5625     if (Utils::WouldOverflowAdd(NewOffset, MoreOffset))
5626       return false;
5627     NewOffset += MoreOffset;
5628   }
5629 
5630   // Update the computed address parameters once we are sure optimization
5631   // is valid.
5632   *Base = NewBase;
5633   *Offset = NewOffset;
5634   *Reason = BaseInst;
5635   return true;
5636 }
5637 } // end of anonymous namespace
5638 
formAddressingMode(Type Ty,Cfg * Func,const Inst * LdSt,Operand * Base)5639 OperandARM32Mem *TargetARM32::formAddressingMode(Type Ty, Cfg *Func,
5640                                                  const Inst *LdSt,
5641                                                  Operand *Base) {
5642   assert(Base != nullptr);
5643   int32_t OffsetImm = 0;
5644   Variable *OffsetReg = nullptr;
5645   int32_t OffsetRegShamt = 0;
5646   OperandARM32::ShiftKind ShiftKind = OperandARM32::kNoShift;
5647 
5648   Func->resetCurrentNode();
5649   if (Func->isVerbose(IceV_AddrOpt)) {
5650     OstreamLocker _(Func->getContext());
5651     Ostream &Str = Func->getContext()->getStrDump();
5652     Str << "\nAddress mode formation:\t";
5653     LdSt->dumpDecorated(Func);
5654   }
5655 
5656   if (isVectorType(Ty))
5657     // vector loads and stores do not allow offsets, and only support the
5658     // "[reg]" addressing mode (the other supported modes are write back.)
5659     return nullptr;
5660 
5661   auto *BaseVar = llvm::dyn_cast<Variable>(Base);
5662   if (BaseVar == nullptr)
5663     return nullptr;
5664 
5665   (void)MemTraitsSize;
5666   assert(Ty < MemTraitsSize);
5667   auto *TypeTraits = &MemTraits[Ty];
5668   const bool CanHaveIndex = !NeedSandboxing && TypeTraits->CanHaveIndex;
5669   const bool CanHaveShiftedIndex =
5670       !NeedSandboxing && TypeTraits->CanHaveShiftedIndex;
5671   const bool CanHaveImm = TypeTraits->CanHaveImm;
5672   const int32_t ValidImmMask = TypeTraits->ValidImmMask;
5673   (void)ValidImmMask;
5674   assert(!CanHaveImm || ValidImmMask >= 0);
5675 
5676   const VariablesMetadata *VMetadata = Func->getVMetadata();
5677   const Inst *Reason = nullptr;
5678 
5679   do {
5680     if (Reason != nullptr) {
5681       dumpAddressOpt(Func, BaseVar, OffsetImm, OffsetReg, OffsetRegShamt,
5682                      Reason);
5683       Reason = nullptr;
5684     }
5685 
5686     if (matchAssign(VMetadata, &BaseVar, &OffsetImm, &Reason)) {
5687       continue;
5688     }
5689 
5690     if (CanHaveIndex &&
5691         matchAssign(VMetadata, &OffsetReg, &OffsetImm, &Reason)) {
5692       continue;
5693     }
5694 
5695     if (CanHaveIndex && matchCombinedBaseIndex(VMetadata, &BaseVar, &OffsetReg,
5696                                                OffsetRegShamt, &Reason)) {
5697       continue;
5698     }
5699 
5700     if (CanHaveShiftedIndex) {
5701       if (matchShiftedOffsetReg(VMetadata, &OffsetReg, &ShiftKind,
5702                                 &OffsetRegShamt, &Reason)) {
5703         continue;
5704       }
5705 
5706       if ((OffsetRegShamt == 0) &&
5707           matchShiftedOffsetReg(VMetadata, &BaseVar, &ShiftKind,
5708                                 &OffsetRegShamt, &Reason)) {
5709         std::swap(BaseVar, OffsetReg);
5710         continue;
5711       }
5712     }
5713 
5714     if (matchOffsetBase(VMetadata, &BaseVar, &OffsetImm, &Reason)) {
5715       continue;
5716     }
5717   } while (Reason);
5718 
5719   if (BaseVar == nullptr) {
5720     // [OffsetReg{, LSL Shamt}{, #OffsetImm}] is not legal in ARM, so we have to
5721     // legalize the addressing mode to [BaseReg, OffsetReg{, LSL Shamt}].
5722     // Instead of a zeroed BaseReg, we initialize it with OffsetImm:
5723     //
5724     // [OffsetReg{, LSL Shamt}{, #OffsetImm}] ->
5725     //     mov BaseReg, #OffsetImm
5726     //     use of [BaseReg, OffsetReg{, LSL Shamt}]
5727     //
5728     const Type PointerType = getPointerType();
5729     BaseVar = makeReg(PointerType);
5730     Context.insert<InstAssign>(BaseVar, Ctx->getConstantInt32(OffsetImm));
5731     OffsetImm = 0;
5732   } else if (OffsetImm != 0) {
5733     // ARM Ldr/Str instructions have limited range immediates. The formation
5734     // loop above materialized an Immediate carelessly, so we ensure the
5735     // generated offset is sane.
5736     const int32_t PositiveOffset = OffsetImm > 0 ? OffsetImm : -OffsetImm;
5737     const InstArithmetic::OpKind Op =
5738         OffsetImm > 0 ? InstArithmetic::Add : InstArithmetic::Sub;
5739 
5740     if (!CanHaveImm || !isLegalMemOffset(Ty, OffsetImm) ||
5741         OffsetReg != nullptr) {
5742       if (OffsetReg == nullptr) {
5743         // We formed a [Base, #const] addressing mode which is not encodable in
5744         // ARM. There is little point in forming an address mode now if we don't
5745         // have an offset. Effectively, we would end up with something like
5746         //
5747         // [Base, #const] -> add T, Base, #const
5748         //                   use of [T]
5749         //
5750         // Which is exactly what we already have. So we just bite the bullet
5751         // here and don't form any address mode.
5752         return nullptr;
5753       }
5754       // We formed [Base, Offset {, LSL Amnt}, #const]. Oops. Legalize it to
5755       //
5756       // [Base, Offset, {LSL amount}, #const] ->
5757       //      add T, Base, #const
5758       //      use of [T, Offset {, LSL amount}]
5759       const Type PointerType = getPointerType();
5760       Variable *T = makeReg(PointerType);
5761       Context.insert<InstArithmetic>(Op, T, BaseVar,
5762                                      Ctx->getConstantInt32(PositiveOffset));
5763       BaseVar = T;
5764       OffsetImm = 0;
5765     }
5766   }
5767 
5768   assert(BaseVar != nullptr);
5769   assert(OffsetImm == 0 || OffsetReg == nullptr);
5770   assert(OffsetReg == nullptr || CanHaveIndex);
5771   assert(OffsetImm < 0 ? (ValidImmMask & -OffsetImm) == -OffsetImm
5772                        : (ValidImmMask & OffsetImm) == OffsetImm);
5773 
5774   if (OffsetReg != nullptr) {
5775     Variable *OffsetR = makeReg(getPointerType());
5776     Context.insert<InstAssign>(OffsetR, OffsetReg);
5777     return OperandARM32Mem::create(Func, Ty, BaseVar, OffsetR, ShiftKind,
5778                                    OffsetRegShamt);
5779   }
5780 
5781   return OperandARM32Mem::create(
5782       Func, Ty, BaseVar,
5783       llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(OffsetImm)));
5784 }
5785 
doAddressOptLoad()5786 void TargetARM32::doAddressOptLoad() {
5787   Inst *Instr = iteratorToInst(Context.getCur());
5788   assert(llvm::isa<InstLoad>(Instr));
5789   Variable *Dest = Instr->getDest();
5790   Operand *Addr = Instr->getSrc(0);
5791   if (OperandARM32Mem *Mem =
5792           formAddressingMode(Dest->getType(), Func, Instr, Addr)) {
5793     Instr->setDeleted();
5794     Context.insert<InstLoad>(Dest, Mem);
5795   }
5796 }
5797 
randomlyInsertNop(float Probability,RandomNumberGenerator & RNG)5798 void TargetARM32::randomlyInsertNop(float Probability,
5799                                     RandomNumberGenerator &RNG) {
5800   RandomNumberGeneratorWrapper RNGW(RNG);
5801   if (RNGW.getTrueWithProbability(Probability)) {
5802     _nop();
5803   }
5804 }
5805 
lowerPhi(const InstPhi *)5806 void TargetARM32::lowerPhi(const InstPhi * /*Instr*/) {
5807   Func->setError("Phi found in regular instruction list");
5808 }
5809 
lowerRet(const InstRet * Instr)5810 void TargetARM32::lowerRet(const InstRet *Instr) {
5811   Variable *Reg = nullptr;
5812   if (Instr->hasRetValue()) {
5813     Operand *Src0 = Instr->getRetValue();
5814     Type Ty = Src0->getType();
5815     if (Ty == IceType_i64) {
5816       Src0 = legalizeUndef(Src0);
5817       Variable *R0 = legalizeToReg(loOperand(Src0), RegARM32::Reg_r0);
5818       Variable *R1 = legalizeToReg(hiOperand(Src0), RegARM32::Reg_r1);
5819       Reg = R0;
5820       Context.insert<InstFakeUse>(R1);
5821     } else if (Ty == IceType_f32) {
5822       Variable *S0 = legalizeToReg(Src0, RegARM32::Reg_s0);
5823       Reg = S0;
5824     } else if (Ty == IceType_f64) {
5825       Variable *D0 = legalizeToReg(Src0, RegARM32::Reg_d0);
5826       Reg = D0;
5827     } else if (isVectorType(Src0->getType())) {
5828       Variable *Q0 = legalizeToReg(Src0, RegARM32::Reg_q0);
5829       Reg = Q0;
5830     } else {
5831       Operand *Src0F = legalize(Src0, Legal_Reg | Legal_Flex);
5832       Reg = makeReg(Src0F->getType(), RegARM32::Reg_r0);
5833       _mov(Reg, Src0F, CondARM32::AL);
5834     }
5835   }
5836   // Add a ret instruction even if sandboxing is enabled, because addEpilog
5837   // explicitly looks for a ret instruction as a marker for where to insert the
5838   // frame removal instructions. addEpilog is responsible for restoring the
5839   // "lr" register as needed prior to this ret instruction.
5840   _ret(getPhysicalRegister(RegARM32::Reg_lr), Reg);
5841 
5842   // Add a fake use of sp to make sure sp stays alive for the entire function.
5843   // Otherwise post-call sp adjustments get dead-code eliminated.
5844   // TODO: Are there more places where the fake use should be inserted? E.g.
5845   // "void f(int n){while(1) g(n);}" may not have a ret instruction.
5846   Variable *SP = getPhysicalRegister(RegARM32::Reg_sp);
5847   Context.insert<InstFakeUse>(SP);
5848 }
5849 
lowerShuffleVector(const InstShuffleVector * Instr)5850 void TargetARM32::lowerShuffleVector(const InstShuffleVector *Instr) {
5851   auto *Dest = Instr->getDest();
5852   const Type DestTy = Dest->getType();
5853 
5854   auto *T = makeReg(DestTy);
5855 
5856   switch (DestTy) {
5857   default:
5858     break;
5859     // TODO(jpp): figure out how to properly lower this without scalarization.
5860   }
5861 
5862   // Unoptimized shuffle. Perform a series of inserts and extracts.
5863   Context.insert<InstFakeDef>(T);
5864   auto *Src0 = Instr->getSrc(0);
5865   auto *Src1 = Instr->getSrc(1);
5866   const SizeT NumElements = typeNumElements(DestTy);
5867   const Type ElementType = typeElementType(DestTy);
5868   for (SizeT I = 0; I < Instr->getNumIndexes(); ++I) {
5869     auto *Index = Instr->getIndex(I);
5870     const SizeT Elem = Index->getValue();
5871     auto *ExtElmt = makeReg(ElementType);
5872     if (Elem < NumElements) {
5873       lowerExtractElement(
5874           InstExtractElement::create(Func, ExtElmt, Src0, Index));
5875     } else {
5876       lowerExtractElement(InstExtractElement::create(
5877           Func, ExtElmt, Src1,
5878           Ctx->getConstantInt32(Index->getValue() - NumElements)));
5879     }
5880     auto *NewT = makeReg(DestTy);
5881     lowerInsertElement(InstInsertElement::create(Func, NewT, T, ExtElmt,
5882                                                  Ctx->getConstantInt32(I)));
5883     T = NewT;
5884   }
5885   _mov(Dest, T);
5886 }
5887 
lowerSelect(const InstSelect * Instr)5888 void TargetARM32::lowerSelect(const InstSelect *Instr) {
5889   Variable *Dest = Instr->getDest();
5890   Type DestTy = Dest->getType();
5891   Operand *SrcT = Instr->getTrueOperand();
5892   Operand *SrcF = Instr->getFalseOperand();
5893   Operand *Condition = Instr->getCondition();
5894 
5895   if (!isVectorType(DestTy)) {
5896     lowerInt1ForSelect(Dest, Condition, legalizeUndef(SrcT),
5897                        legalizeUndef(SrcF));
5898     return;
5899   }
5900 
5901   Type TType = DestTy;
5902   switch (DestTy) {
5903   default:
5904     llvm::report_fatal_error("Unexpected type for vector select.");
5905   case IceType_v4i1:
5906     TType = IceType_v4i32;
5907     break;
5908   case IceType_v8i1:
5909     TType = IceType_v8i16;
5910     break;
5911   case IceType_v16i1:
5912     TType = IceType_v16i8;
5913     break;
5914   case IceType_v4f32:
5915     TType = IceType_v4i32;
5916     break;
5917   case IceType_v4i32:
5918   case IceType_v8i16:
5919   case IceType_v16i8:
5920     break;
5921   }
5922   auto *T = makeReg(TType);
5923   lowerCast(InstCast::create(Func, InstCast::Sext, T, Condition));
5924   auto *SrcTR = legalizeToReg(SrcT);
5925   auto *SrcFR = legalizeToReg(SrcF);
5926   _vbsl(T, SrcTR, SrcFR)->setDestRedefined();
5927   _mov(Dest, T);
5928 }
5929 
lowerStore(const InstStore * Instr)5930 void TargetARM32::lowerStore(const InstStore *Instr) {
5931   Operand *Value = Instr->getData();
5932   Operand *Addr = Instr->getAddr();
5933   OperandARM32Mem *NewAddr = formMemoryOperand(Addr, Value->getType());
5934   Type Ty = NewAddr->getType();
5935 
5936   if (Ty == IceType_i64) {
5937     Value = legalizeUndef(Value);
5938     Variable *ValueHi = legalizeToReg(hiOperand(Value));
5939     Variable *ValueLo = legalizeToReg(loOperand(Value));
5940     _str(ValueHi, llvm::cast<OperandARM32Mem>(hiOperand(NewAddr)));
5941     _str(ValueLo, llvm::cast<OperandARM32Mem>(loOperand(NewAddr)));
5942   } else {
5943     Variable *ValueR = legalizeToReg(Value);
5944     _str(ValueR, NewAddr);
5945   }
5946 }
5947 
doAddressOptStore()5948 void TargetARM32::doAddressOptStore() {
5949   Inst *Instr = iteratorToInst(Context.getCur());
5950   assert(llvm::isa<InstStore>(Instr));
5951   Operand *Src = Instr->getSrc(0);
5952   Operand *Addr = Instr->getSrc(1);
5953   if (OperandARM32Mem *Mem =
5954           formAddressingMode(Src->getType(), Func, Instr, Addr)) {
5955     Instr->setDeleted();
5956     Context.insert<InstStore>(Src, Mem);
5957   }
5958 }
5959 
lowerSwitch(const InstSwitch * Instr)5960 void TargetARM32::lowerSwitch(const InstSwitch *Instr) {
5961   // This implements the most naive possible lowering.
5962   // cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default
5963   Operand *Src0 = Instr->getComparison();
5964   SizeT NumCases = Instr->getNumCases();
5965   if (Src0->getType() == IceType_i64) {
5966     Src0 = legalizeUndef(Src0);
5967     Variable *Src0Lo = legalizeToReg(loOperand(Src0));
5968     Variable *Src0Hi = legalizeToReg(hiOperand(Src0));
5969     for (SizeT I = 0; I < NumCases; ++I) {
5970       Operand *ValueLo = Ctx->getConstantInt32(Instr->getValue(I));
5971       Operand *ValueHi = Ctx->getConstantInt32(Instr->getValue(I) >> 32);
5972       ValueLo = legalize(ValueLo, Legal_Reg | Legal_Flex);
5973       ValueHi = legalize(ValueHi, Legal_Reg | Legal_Flex);
5974       _cmp(Src0Lo, ValueLo);
5975       _cmp(Src0Hi, ValueHi, CondARM32::EQ);
5976       _br(Instr->getLabel(I), CondARM32::EQ);
5977     }
5978     _br(Instr->getLabelDefault());
5979     return;
5980   }
5981 
5982   Variable *Src0Var = legalizeToReg(Src0);
5983   // If Src0 is not an i32, we left shift it -- see the icmp lowering for the
5984   // reason.
5985   assert(Src0Var->mustHaveReg());
5986   const size_t ShiftAmt = 32 - getScalarIntBitWidth(Src0->getType());
5987   assert(ShiftAmt < 32);
5988   if (ShiftAmt > 0) {
5989     Operand *ShAmtImm = shAmtImm(ShiftAmt);
5990     Variable *T = makeReg(IceType_i32);
5991     _lsl(T, Src0Var, ShAmtImm);
5992     Src0Var = T;
5993   }
5994 
5995   for (SizeT I = 0; I < NumCases; ++I) {
5996     Operand *Value = Ctx->getConstantInt32(Instr->getValue(I) << ShiftAmt);
5997     Value = legalize(Value, Legal_Reg | Legal_Flex);
5998     _cmp(Src0Var, Value);
5999     _br(Instr->getLabel(I), CondARM32::EQ);
6000   }
6001   _br(Instr->getLabelDefault());
6002 }
6003 
lowerBreakpoint(const InstBreakpoint * Instr)6004 void TargetARM32::lowerBreakpoint(const InstBreakpoint *Instr) {
6005   UnimplementedLoweringError(this, Instr);
6006 }
6007 
lowerUnreachable(const InstUnreachable *)6008 void TargetARM32::lowerUnreachable(const InstUnreachable * /*Instr*/) {
6009   _trap();
6010 }
6011 
6012 namespace {
6013 // Returns whether Opnd needs the GOT address. Currently, ConstantRelocatables,
6014 // and fp constants will need access to the GOT address.
operandNeedsGot(const Operand * Opnd)6015 bool operandNeedsGot(const Operand *Opnd) {
6016   if (llvm::isa<ConstantRelocatable>(Opnd)) {
6017     return true;
6018   }
6019 
6020   if (llvm::isa<ConstantFloat>(Opnd)) {
6021     uint32_t _;
6022     return !OperandARM32FlexFpImm::canHoldImm(Opnd, &_);
6023   }
6024 
6025   const auto *F64 = llvm::dyn_cast<ConstantDouble>(Opnd);
6026   if (F64 != nullptr) {
6027     uint32_t _;
6028     return !OperandARM32FlexFpImm::canHoldImm(Opnd, &_) &&
6029            !isFloatingPointZero(F64);
6030   }
6031 
6032   return false;
6033 }
6034 
6035 // Returns whether Phi needs the GOT address (which it does if any of its
6036 // operands needs the GOT address.)
phiNeedsGot(const InstPhi * Phi)6037 bool phiNeedsGot(const InstPhi *Phi) {
6038   if (Phi->isDeleted()) {
6039     return false;
6040   }
6041 
6042   for (SizeT I = 0; I < Phi->getSrcSize(); ++I) {
6043     if (operandNeedsGot(Phi->getSrc(I))) {
6044       return true;
6045     }
6046   }
6047 
6048   return false;
6049 }
6050 
6051 // Returns whether **any** phi in Node needs the GOT address.
anyPhiInNodeNeedsGot(CfgNode * Node)6052 bool anyPhiInNodeNeedsGot(CfgNode *Node) {
6053   for (auto &Inst : Node->getPhis()) {
6054     if (phiNeedsGot(llvm::cast<InstPhi>(&Inst))) {
6055       return true;
6056     }
6057   }
6058   return false;
6059 }
6060 
6061 } // end of anonymous namespace
6062 
prelowerPhis()6063 void TargetARM32::prelowerPhis() {
6064   CfgNode *Node = Context.getNode();
6065 
6066   if (SandboxingType == ST_Nonsfi) {
6067     assert(GotPtr != nullptr);
6068     if (anyPhiInNodeNeedsGot(Node)) {
6069       // If any phi instruction needs the GOT address, we place a
6070       //   fake-use GotPtr
6071       // in Node to prevent the GotPtr's initialization from being dead code
6072       // eliminated.
6073       Node->getInsts().push_front(InstFakeUse::create(Func, GotPtr));
6074     }
6075   }
6076 
6077   PhiLowering::prelowerPhis32Bit(this, Node, Func);
6078 }
6079 
makeVectorOfZeros(Type Ty,RegNumT RegNum)6080 Variable *TargetARM32::makeVectorOfZeros(Type Ty, RegNumT RegNum) {
6081   Variable *Reg = makeReg(Ty, RegNum);
6082   Context.insert<InstFakeDef>(Reg);
6083   assert(isVectorType(Ty));
6084   _veor(Reg, Reg, Reg);
6085   return Reg;
6086 }
6087 
6088 // Helper for legalize() to emit the right code to lower an operand to a
6089 // register of the appropriate type.
copyToReg(Operand * Src,RegNumT RegNum)6090 Variable *TargetARM32::copyToReg(Operand *Src, RegNumT RegNum) {
6091   Type Ty = Src->getType();
6092   Variable *Reg = makeReg(Ty, RegNum);
6093   if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Src)) {
6094     _ldr(Reg, Mem);
6095   } else {
6096     _mov(Reg, Src);
6097   }
6098   return Reg;
6099 }
6100 
6101 // TODO(jpp): remove unneeded else clauses in legalize.
legalize(Operand * From,LegalMask Allowed,RegNumT RegNum)6102 Operand *TargetARM32::legalize(Operand *From, LegalMask Allowed,
6103                                RegNumT RegNum) {
6104   Type Ty = From->getType();
6105   // Assert that a physical register is allowed. To date, all calls to
6106   // legalize() allow a physical register. Legal_Flex converts registers to the
6107   // right type OperandARM32FlexReg as needed.
6108   assert(Allowed & Legal_Reg);
6109 
6110   // Copied ipsis literis from TargetX86Base<Machine>.
6111   if (RegNum.hasNoValue()) {
6112     if (Variable *Subst = getContext().availabilityGet(From)) {
6113       // At this point we know there is a potential substitution available.
6114       if (!Subst->isRematerializable() && Subst->mustHaveReg() &&
6115           !Subst->hasReg()) {
6116         // At this point we know the substitution will have a register.
6117         if (From->getType() == Subst->getType()) {
6118           // At this point we know the substitution's register is compatible.
6119           return Subst;
6120         }
6121       }
6122     }
6123   }
6124 
6125   // Go through the various types of operands: OperandARM32Mem,
6126   // OperandARM32Flex, Constant, and Variable. Given the above assertion, if
6127   // type of operand is not legal (e.g., OperandARM32Mem and !Legal_Mem), we
6128   // can always copy to a register.
6129   if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(From)) {
6130     // Before doing anything with a Mem operand, we need to ensure that the
6131     // Base and Index components are in physical registers.
6132     Variable *Base = Mem->getBase();
6133     Variable *Index = Mem->getIndex();
6134     ConstantInteger32 *Offset = Mem->getOffset();
6135     assert(Index == nullptr || Offset == nullptr);
6136     Variable *RegBase = nullptr;
6137     Variable *RegIndex = nullptr;
6138     assert(Base);
6139     RegBase = llvm::cast<Variable>(
6140         legalize(Base, Legal_Reg | Legal_Rematerializable));
6141     assert(Ty < MemTraitsSize);
6142     if (Index) {
6143       assert(Offset == nullptr);
6144       assert(MemTraits[Ty].CanHaveIndex);
6145       RegIndex = legalizeToReg(Index);
6146     }
6147     if (Offset && Offset->getValue() != 0) {
6148       assert(Index == nullptr);
6149       static constexpr bool ZeroExt = false;
6150       assert(MemTraits[Ty].CanHaveImm);
6151       if (!OperandARM32Mem::canHoldOffset(Ty, ZeroExt, Offset->getValue())) {
6152         llvm::report_fatal_error("Invalid memory offset.");
6153       }
6154     }
6155 
6156     // Create a new operand if there was a change.
6157     if (Base != RegBase || Index != RegIndex) {
6158       // There is only a reg +/- reg or reg + imm form.
6159       // Figure out which to re-create.
6160       if (RegIndex) {
6161         Mem = OperandARM32Mem::create(Func, Ty, RegBase, RegIndex,
6162                                       Mem->getShiftOp(), Mem->getShiftAmt(),
6163                                       Mem->getAddrMode());
6164       } else {
6165         Mem = OperandARM32Mem::create(Func, Ty, RegBase, Offset,
6166                                       Mem->getAddrMode());
6167       }
6168     }
6169     if (Allowed & Legal_Mem) {
6170       From = Mem;
6171     } else {
6172       Variable *Reg = makeReg(Ty, RegNum);
6173       _ldr(Reg, Mem);
6174       From = Reg;
6175     }
6176     return From;
6177   }
6178 
6179   if (auto *Flex = llvm::dyn_cast<OperandARM32Flex>(From)) {
6180     if (!(Allowed & Legal_Flex)) {
6181       if (auto *FlexReg = llvm::dyn_cast<OperandARM32FlexReg>(Flex)) {
6182         if (FlexReg->getShiftOp() == OperandARM32::kNoShift) {
6183           From = FlexReg->getReg();
6184           // Fall through and let From be checked as a Variable below, where it
6185           // may or may not need a register.
6186         } else {
6187           return copyToReg(Flex, RegNum);
6188         }
6189       } else {
6190         return copyToReg(Flex, RegNum);
6191       }
6192     } else {
6193       return From;
6194     }
6195   }
6196 
6197   if (llvm::isa<Constant>(From)) {
6198     if (llvm::isa<ConstantUndef>(From)) {
6199       From = legalizeUndef(From, RegNum);
6200       if (isVectorType(Ty))
6201         return From;
6202     }
6203     // There should be no constants of vector type (other than undef).
6204     assert(!isVectorType(Ty));
6205     if (auto *C32 = llvm::dyn_cast<ConstantInteger32>(From)) {
6206       uint32_t RotateAmt;
6207       uint32_t Immed_8;
6208       uint32_t Value = static_cast<uint32_t>(C32->getValue());
6209       if (OperandARM32FlexImm::canHoldImm(Value, &RotateAmt, &Immed_8)) {
6210         // The immediate can be encoded as a Flex immediate. We may return the
6211         // Flex operand if the caller has Allow'ed it.
6212         auto *OpF = OperandARM32FlexImm::create(Func, Ty, Immed_8, RotateAmt);
6213         const bool CanBeFlex = Allowed & Legal_Flex;
6214         if (CanBeFlex)
6215           return OpF;
6216         return copyToReg(OpF, RegNum);
6217       } else if (OperandARM32FlexImm::canHoldImm(~Value, &RotateAmt,
6218                                                  &Immed_8)) {
6219         // Even though the immediate can't be encoded as a Flex operand, its
6220         // inverted bit pattern can, thus we use ARM's mvn to load the 32-bit
6221         // constant with a single instruction.
6222         auto *InvOpF =
6223             OperandARM32FlexImm::create(Func, Ty, Immed_8, RotateAmt);
6224         Variable *Reg = makeReg(Ty, RegNum);
6225         _mvn(Reg, InvOpF);
6226         return Reg;
6227       } else {
6228         // Do a movw/movt to a register.
6229         Variable *Reg = makeReg(Ty, RegNum);
6230         uint32_t UpperBits = (Value >> 16) & 0xFFFF;
6231         _movw(Reg,
6232               UpperBits != 0 ? Ctx->getConstantInt32(Value & 0xFFFF) : C32);
6233         if (UpperBits != 0) {
6234           _movt(Reg, Ctx->getConstantInt32(UpperBits));
6235         }
6236         return Reg;
6237       }
6238     } else if (auto *C = llvm::dyn_cast<ConstantRelocatable>(From)) {
6239       Variable *Reg = makeReg(Ty, RegNum);
6240       if (SandboxingType != ST_Nonsfi) {
6241         _movw(Reg, C);
6242         _movt(Reg, C);
6243       } else {
6244         auto *GotAddr = legalizeToReg(GotPtr);
6245         GlobalString CGotoffName = createGotoffRelocation(C);
6246         loadNamedConstantRelocatablePIC(
6247             CGotoffName, Reg, [this, Reg](Variable *PC) {
6248               _ldr(Reg, OperandARM32Mem::create(Func, IceType_i32, PC, Reg));
6249             });
6250         _add(Reg, GotAddr, Reg);
6251       }
6252       return Reg;
6253     } else {
6254       assert(isScalarFloatingType(Ty));
6255       uint32_t ModifiedImm;
6256       if (OperandARM32FlexFpImm::canHoldImm(From, &ModifiedImm)) {
6257         Variable *T = makeReg(Ty, RegNum);
6258         _mov(T,
6259              OperandARM32FlexFpImm::create(Func, From->getType(), ModifiedImm));
6260         return T;
6261       }
6262 
6263       if (Ty == IceType_f64 && isFloatingPointZero(From)) {
6264         // Use T = T ^ T to load a 64-bit fp zero. This does not work for f32
6265         // because ARM does not have a veor instruction with S registers.
6266         Variable *T = makeReg(IceType_f64, RegNum);
6267         Context.insert<InstFakeDef>(T);
6268         _veor(T, T, T);
6269         return T;
6270       }
6271 
6272       // Load floats/doubles from literal pool.
6273       auto *CFrom = llvm::cast<Constant>(From);
6274       assert(CFrom->getShouldBePooled());
6275       Constant *Offset = Ctx->getConstantSym(0, CFrom->getLabelName());
6276       Variable *BaseReg = nullptr;
6277       if (SandboxingType == ST_Nonsfi) {
6278         // vldr does not support the [base, index] addressing mode, so we need
6279         // to legalize Offset to a register. Otherwise, we could simply
6280         //   vldr dest, [got, reg(Offset)]
6281         BaseReg = legalizeToReg(Offset);
6282       } else {
6283         BaseReg = makeReg(getPointerType());
6284         _movw(BaseReg, Offset);
6285         _movt(BaseReg, Offset);
6286       }
6287       From = formMemoryOperand(BaseReg, Ty);
6288       return copyToReg(From, RegNum);
6289     }
6290   }
6291 
6292   if (auto *Var = llvm::dyn_cast<Variable>(From)) {
6293     if (Var->isRematerializable()) {
6294       if (Allowed & Legal_Rematerializable) {
6295         return From;
6296       }
6297 
6298       Variable *T = makeReg(Var->getType(), RegNum);
6299       _mov(T, Var);
6300       return T;
6301     }
6302     // Check if the variable is guaranteed a physical register. This can happen
6303     // either when the variable is pre-colored or when it is assigned infinite
6304     // weight.
6305     bool MustHaveRegister = (Var->hasReg() || Var->mustHaveReg());
6306     // We need a new physical register for the operand if:
6307     //   Mem is not allowed and Var isn't guaranteed a physical
6308     //   register, or
6309     //   RegNum is required and Var->getRegNum() doesn't match.
6310     if ((!(Allowed & Legal_Mem) && !MustHaveRegister) ||
6311         (RegNum.hasValue() && (RegNum != Var->getRegNum()))) {
6312       From = copyToReg(From, RegNum);
6313     }
6314     return From;
6315   }
6316   llvm::report_fatal_error("Unhandled operand kind in legalize()");
6317 
6318   return From;
6319 }
6320 
6321 /// Provide a trivial wrapper to legalize() for this common usage.
legalizeToReg(Operand * From,RegNumT RegNum)6322 Variable *TargetARM32::legalizeToReg(Operand *From, RegNumT RegNum) {
6323   return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum));
6324 }
6325 
6326 /// Legalize undef values to concrete values.
legalizeUndef(Operand * From,RegNumT RegNum)6327 Operand *TargetARM32::legalizeUndef(Operand *From, RegNumT RegNum) {
6328   Type Ty = From->getType();
6329   if (llvm::isa<ConstantUndef>(From)) {
6330     // Lower undefs to zero. Another option is to lower undefs to an
6331     // uninitialized register; however, using an uninitialized register results
6332     // in less predictable code.
6333     //
6334     // If in the future the implementation is changed to lower undef values to
6335     // uninitialized registers, a FakeDef will be needed:
6336     // Context.insert(InstFakeDef::create(Func, Reg)); This is in order to
6337     // ensure that the live range of Reg is not overestimated. If the constant
6338     // being lowered is a 64 bit value, then the result should be split and the
6339     // lo and hi components will need to go in uninitialized registers.
6340     if (isVectorType(Ty))
6341       return makeVectorOfZeros(Ty, RegNum);
6342     return Ctx->getConstantZero(Ty);
6343   }
6344   return From;
6345 }
6346 
formMemoryOperand(Operand * Operand,Type Ty)6347 OperandARM32Mem *TargetARM32::formMemoryOperand(Operand *Operand, Type Ty) {
6348   auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Operand);
6349   // It may be the case that address mode optimization already creates an
6350   // OperandARM32Mem, so in that case it wouldn't need another level of
6351   // transformation.
6352   if (Mem) {
6353     return llvm::cast<OperandARM32Mem>(legalize(Mem));
6354   }
6355   // If we didn't do address mode optimization, then we only have a
6356   // base/offset to work with. ARM always requires a base register, so
6357   // just use that to hold the operand.
6358   auto *Base = llvm::cast<Variable>(
6359       legalize(Operand, Legal_Reg | Legal_Rematerializable));
6360   return OperandARM32Mem::create(
6361       Func, Ty, Base,
6362       llvm::cast<ConstantInteger32>(Ctx->getConstantZero(IceType_i32)));
6363 }
6364 
makeI64RegPair()6365 Variable64On32 *TargetARM32::makeI64RegPair() {
6366   Variable64On32 *Reg =
6367       llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
6368   Reg->setMustHaveReg();
6369   Reg->initHiLo(Func);
6370   Reg->getLo()->setMustNotHaveReg();
6371   Reg->getHi()->setMustNotHaveReg();
6372   return Reg;
6373 }
6374 
makeReg(Type Type,RegNumT RegNum)6375 Variable *TargetARM32::makeReg(Type Type, RegNumT RegNum) {
6376   // There aren't any 64-bit integer registers for ARM32.
6377   assert(Type != IceType_i64);
6378   assert(AllowTemporaryWithNoReg || RegNum.hasValue());
6379   Variable *Reg = Func->makeVariable(Type);
6380   if (RegNum.hasValue())
6381     Reg->setRegNum(RegNum);
6382   else
6383     Reg->setMustHaveReg();
6384   return Reg;
6385 }
6386 
alignRegisterPow2(Variable * Reg,uint32_t Align,RegNumT TmpRegNum)6387 void TargetARM32::alignRegisterPow2(Variable *Reg, uint32_t Align,
6388                                     RegNumT TmpRegNum) {
6389   assert(llvm::isPowerOf2_32(Align));
6390   uint32_t RotateAmt;
6391   uint32_t Immed_8;
6392   Operand *Mask;
6393   // Use AND or BIC to mask off the bits, depending on which immediate fits (if
6394   // it fits at all). Assume Align is usually small, in which case BIC works
6395   // better. Thus, this rounds down to the alignment.
6396   if (OperandARM32FlexImm::canHoldImm(Align - 1, &RotateAmt, &Immed_8)) {
6397     Mask = legalize(Ctx->getConstantInt32(Align - 1), Legal_Reg | Legal_Flex,
6398                     TmpRegNum);
6399     _bic(Reg, Reg, Mask);
6400   } else {
6401     Mask = legalize(Ctx->getConstantInt32(-Align), Legal_Reg | Legal_Flex,
6402                     TmpRegNum);
6403     _and(Reg, Reg, Mask);
6404   }
6405 }
6406 
postLower()6407 void TargetARM32::postLower() {
6408   if (Func->getOptLevel() == Opt_m1)
6409     return;
6410   markRedefinitions();
6411   Context.availabilityUpdate();
6412 }
6413 
makeRandomRegisterPermutation(llvm::SmallVectorImpl<RegNumT> & Permutation,const SmallBitVector & ExcludeRegisters,uint64_t Salt) const6414 void TargetARM32::makeRandomRegisterPermutation(
6415     llvm::SmallVectorImpl<RegNumT> &Permutation,
6416     const SmallBitVector &ExcludeRegisters, uint64_t Salt) const {
6417   (void)Permutation;
6418   (void)ExcludeRegisters;
6419   (void)Salt;
6420   UnimplementedError(getFlags());
6421 }
6422 
emit(const ConstantInteger32 * C) const6423 void TargetARM32::emit(const ConstantInteger32 *C) const {
6424   if (!BuildDefs::dump())
6425     return;
6426   Ostream &Str = Ctx->getStrEmit();
6427   Str << "#" << C->getValue();
6428 }
6429 
emit(const ConstantInteger64 *) const6430 void TargetARM32::emit(const ConstantInteger64 *) const {
6431   llvm::report_fatal_error("Not expecting to emit 64-bit integers");
6432 }
6433 
emit(const ConstantFloat * C) const6434 void TargetARM32::emit(const ConstantFloat *C) const {
6435   (void)C;
6436   UnimplementedError(getFlags());
6437 }
6438 
emit(const ConstantDouble * C) const6439 void TargetARM32::emit(const ConstantDouble *C) const {
6440   (void)C;
6441   UnimplementedError(getFlags());
6442 }
6443 
emit(const ConstantUndef *) const6444 void TargetARM32::emit(const ConstantUndef *) const {
6445   llvm::report_fatal_error("undef value encountered by emitter.");
6446 }
6447 
emit(const ConstantRelocatable * C) const6448 void TargetARM32::emit(const ConstantRelocatable *C) const {
6449   if (!BuildDefs::dump())
6450     return;
6451   Ostream &Str = Ctx->getStrEmit();
6452   Str << "#";
6453   emitWithoutPrefix(C);
6454 }
6455 
lowerInt1ForSelect(Variable * Dest,Operand * Boolean,Operand * TrueValue,Operand * FalseValue)6456 void TargetARM32::lowerInt1ForSelect(Variable *Dest, Operand *Boolean,
6457                                      Operand *TrueValue, Operand *FalseValue) {
6458   Operand *_1 = legalize(Ctx->getConstantInt1(1), Legal_Reg | Legal_Flex);
6459 
6460   assert(Boolean->getType() == IceType_i1);
6461 
6462   bool NeedsAnd1 = false;
6463   if (TrueValue->getType() == IceType_i1) {
6464     assert(FalseValue->getType() == IceType_i1);
6465 
6466     Variable *TrueValueV = Func->makeVariable(IceType_i1);
6467     SafeBoolChain Src0Safe = lowerInt1(TrueValueV, TrueValue);
6468     TrueValue = TrueValueV;
6469 
6470     Variable *FalseValueV = Func->makeVariable(IceType_i1);
6471     SafeBoolChain Src1Safe = lowerInt1(FalseValueV, FalseValue);
6472     FalseValue = FalseValueV;
6473 
6474     NeedsAnd1 = Src0Safe == SBC_No || Src1Safe == SBC_No;
6475   }
6476 
6477   Variable *DestLo = (Dest->getType() == IceType_i64)
6478                          ? llvm::cast<Variable>(loOperand(Dest))
6479                          : Dest;
6480   Variable *DestHi = (Dest->getType() == IceType_i64)
6481                          ? llvm::cast<Variable>(hiOperand(Dest))
6482                          : nullptr;
6483   Operand *FalseValueLo = (FalseValue->getType() == IceType_i64)
6484                               ? loOperand(FalseValue)
6485                               : FalseValue;
6486   Operand *FalseValueHi =
6487       (FalseValue->getType() == IceType_i64) ? hiOperand(FalseValue) : nullptr;
6488 
6489   Operand *TrueValueLo =
6490       (TrueValue->getType() == IceType_i64) ? loOperand(TrueValue) : TrueValue;
6491   Operand *TrueValueHi =
6492       (TrueValue->getType() == IceType_i64) ? hiOperand(TrueValue) : nullptr;
6493 
6494   Variable *T_Lo = makeReg(DestLo->getType());
6495   Variable *T_Hi = (DestHi == nullptr) ? nullptr : makeReg(DestHi->getType());
6496 
6497   _mov(T_Lo, legalize(FalseValueLo, Legal_Reg | Legal_Flex));
6498   if (DestHi) {
6499     _mov(T_Hi, legalize(FalseValueHi, Legal_Reg | Legal_Flex));
6500   }
6501 
6502   CondWhenTrue Cond(CondARM32::kNone);
6503   // FlagsWereSet is used to determine wether Boolean was folded or not. If not,
6504   // add an explicit _tst instruction below.
6505   bool FlagsWereSet = false;
6506   if (const Inst *Producer = Computations.getProducerOf(Boolean)) {
6507     switch (Producer->getKind()) {
6508     default:
6509       llvm::report_fatal_error("Unexpected producer.");
6510     case Inst::Icmp: {
6511       Cond = lowerIcmpCond(llvm::cast<InstIcmp>(Producer));
6512       FlagsWereSet = true;
6513     } break;
6514     case Inst::Fcmp: {
6515       Cond = lowerFcmpCond(llvm::cast<InstFcmp>(Producer));
6516       FlagsWereSet = true;
6517     } break;
6518     case Inst::Cast: {
6519       const auto *CastProducer = llvm::cast<InstCast>(Producer);
6520       assert(CastProducer->getCastKind() == InstCast::Trunc);
6521       Boolean = CastProducer->getSrc(0);
6522       // No flags were set, so a _tst(Src, 1) will be emitted below. Don't
6523       // bother legalizing Src to a Reg because it will be legalized before
6524       // emitting the tst instruction.
6525       FlagsWereSet = false;
6526     } break;
6527     case Inst::Arithmetic: {
6528       // This is a special case: we eagerly assumed Producer could be folded,
6529       // but in reality, it can't. No reason to panic: we just lower it using
6530       // the regular lowerArithmetic helper.
6531       const auto *ArithProducer = llvm::cast<InstArithmetic>(Producer);
6532       lowerArithmetic(ArithProducer);
6533       Boolean = ArithProducer->getDest();
6534       // No flags were set, so a _tst(Dest, 1) will be emitted below. Don't
6535       // bother legalizing Dest to a Reg because it will be legalized before
6536       // emitting  the tst instruction.
6537       FlagsWereSet = false;
6538     } break;
6539     }
6540   }
6541 
6542   if (!FlagsWereSet) {
6543     // No flags have been set, so emit a tst Boolean, 1.
6544     Variable *Src = legalizeToReg(Boolean);
6545     _tst(Src, _1);
6546     Cond = CondWhenTrue(CondARM32::NE); // i.e., CondARM32::NotZero.
6547   }
6548 
6549   if (Cond.WhenTrue0 == CondARM32::kNone) {
6550     assert(Cond.WhenTrue1 == CondARM32::kNone);
6551   } else {
6552     _mov_redefined(T_Lo, legalize(TrueValueLo, Legal_Reg | Legal_Flex),
6553                    Cond.WhenTrue0);
6554     if (DestHi) {
6555       _mov_redefined(T_Hi, legalize(TrueValueHi, Legal_Reg | Legal_Flex),
6556                      Cond.WhenTrue0);
6557     }
6558   }
6559 
6560   if (Cond.WhenTrue1 != CondARM32::kNone) {
6561     _mov_redefined(T_Lo, legalize(TrueValueLo, Legal_Reg | Legal_Flex),
6562                    Cond.WhenTrue1);
6563     if (DestHi) {
6564       _mov_redefined(T_Hi, legalize(TrueValueHi, Legal_Reg | Legal_Flex),
6565                      Cond.WhenTrue1);
6566     }
6567   }
6568 
6569   if (NeedsAnd1) {
6570     // We lowered something that is unsafe (i.e., can't provably be zero or
6571     // one). Truncate the result.
6572     _and(T_Lo, T_Lo, _1);
6573   }
6574 
6575   _mov(DestLo, T_Lo);
6576   if (DestHi) {
6577     _mov(DestHi, T_Hi);
6578   }
6579 }
6580 
lowerInt1(Variable * Dest,Operand * Boolean)6581 TargetARM32::SafeBoolChain TargetARM32::lowerInt1(Variable *Dest,
6582                                                   Operand *Boolean) {
6583   assert(Boolean->getType() == IceType_i1);
6584   Variable *T = makeReg(IceType_i1);
6585   Operand *_0 =
6586       legalize(Ctx->getConstantZero(IceType_i1), Legal_Reg | Legal_Flex);
6587   Operand *_1 = legalize(Ctx->getConstantInt1(1), Legal_Reg | Legal_Flex);
6588 
6589   SafeBoolChain Safe = SBC_Yes;
6590   if (const Inst *Producer = Computations.getProducerOf(Boolean)) {
6591     switch (Producer->getKind()) {
6592     default:
6593       llvm::report_fatal_error("Unexpected producer.");
6594     case Inst::Icmp: {
6595       _mov(T, _0);
6596       CondWhenTrue Cond = lowerIcmpCond(llvm::cast<InstIcmp>(Producer));
6597       assert(Cond.WhenTrue0 != CondARM32::AL);
6598       assert(Cond.WhenTrue0 != CondARM32::kNone);
6599       assert(Cond.WhenTrue1 == CondARM32::kNone);
6600       _mov_redefined(T, _1, Cond.WhenTrue0);
6601     } break;
6602     case Inst::Fcmp: {
6603       _mov(T, _0);
6604       Inst *MovZero = Context.getLastInserted();
6605       CondWhenTrue Cond = lowerFcmpCond(llvm::cast<InstFcmp>(Producer));
6606       if (Cond.WhenTrue0 == CondARM32::AL) {
6607         assert(Cond.WhenTrue1 == CondARM32::kNone);
6608         MovZero->setDeleted();
6609         _mov(T, _1);
6610       } else if (Cond.WhenTrue0 != CondARM32::kNone) {
6611         _mov_redefined(T, _1, Cond.WhenTrue0);
6612       }
6613       if (Cond.WhenTrue1 != CondARM32::kNone) {
6614         assert(Cond.WhenTrue0 != CondARM32::kNone);
6615         assert(Cond.WhenTrue0 != CondARM32::AL);
6616         _mov_redefined(T, _1, Cond.WhenTrue1);
6617       }
6618     } break;
6619     case Inst::Cast: {
6620       const auto *CastProducer = llvm::cast<InstCast>(Producer);
6621       assert(CastProducer->getCastKind() == InstCast::Trunc);
6622       Operand *Src = CastProducer->getSrc(0);
6623       if (Src->getType() == IceType_i64)
6624         Src = loOperand(Src);
6625       _mov(T, legalize(Src, Legal_Reg | Legal_Flex));
6626       Safe = SBC_No;
6627     } break;
6628     case Inst::Arithmetic: {
6629       const auto *ArithProducer = llvm::cast<InstArithmetic>(Producer);
6630       Safe = lowerInt1Arithmetic(ArithProducer);
6631       _mov(T, ArithProducer->getDest());
6632     } break;
6633     }
6634   } else {
6635     _mov(T, legalize(Boolean, Legal_Reg | Legal_Flex));
6636   }
6637 
6638   _mov(Dest, T);
6639   return Safe;
6640 }
6641 
6642 namespace {
6643 namespace BoolFolding {
shouldTrackProducer(const Inst & Instr)6644 bool shouldTrackProducer(const Inst &Instr) {
6645   switch (Instr.getKind()) {
6646   default:
6647     return false;
6648   case Inst::Icmp:
6649   case Inst::Fcmp:
6650     return true;
6651   case Inst::Cast: {
6652     switch (llvm::cast<InstCast>(&Instr)->getCastKind()) {
6653     default:
6654       return false;
6655     case InstCast::Trunc:
6656       return true;
6657     }
6658   }
6659   case Inst::Arithmetic: {
6660     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6661     default:
6662       return false;
6663     case InstArithmetic::And:
6664     case InstArithmetic::Or:
6665       return true;
6666     }
6667   }
6668   }
6669 }
6670 
isValidConsumer(const Inst & Instr)6671 bool isValidConsumer(const Inst &Instr) {
6672   switch (Instr.getKind()) {
6673   default:
6674     return false;
6675   case Inst::Br:
6676     return true;
6677   case Inst::Select:
6678     return !isVectorType(Instr.getDest()->getType());
6679   case Inst::Cast: {
6680     switch (llvm::cast<InstCast>(&Instr)->getCastKind()) {
6681     default:
6682       return false;
6683     case InstCast::Sext:
6684       return !isVectorType(Instr.getDest()->getType());
6685     case InstCast::Zext:
6686       return !isVectorType(Instr.getDest()->getType());
6687     }
6688   }
6689   case Inst::Arithmetic: {
6690     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6691     default:
6692       return false;
6693     case InstArithmetic::And:
6694       return !isVectorType(Instr.getDest()->getType());
6695     case InstArithmetic::Or:
6696       return !isVectorType(Instr.getDest()->getType());
6697     }
6698   }
6699   }
6700 }
6701 } // end of namespace BoolFolding
6702 
6703 namespace FpFolding {
shouldTrackProducer(const Inst & Instr)6704 bool shouldTrackProducer(const Inst &Instr) {
6705   switch (Instr.getKind()) {
6706   default:
6707     return false;
6708   case Inst::Arithmetic: {
6709     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6710     default:
6711       return false;
6712     case InstArithmetic::Fmul:
6713       return true;
6714     }
6715   }
6716   }
6717 }
6718 
isValidConsumer(const Inst & Instr)6719 bool isValidConsumer(const Inst &Instr) {
6720   switch (Instr.getKind()) {
6721   default:
6722     return false;
6723   case Inst::Arithmetic: {
6724     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6725     default:
6726       return false;
6727     case InstArithmetic::Fadd:
6728     case InstArithmetic::Fsub:
6729       return true;
6730     }
6731   }
6732   }
6733 }
6734 } // end of namespace FpFolding
6735 
6736 namespace IntFolding {
shouldTrackProducer(const Inst & Instr)6737 bool shouldTrackProducer(const Inst &Instr) {
6738   switch (Instr.getKind()) {
6739   default:
6740     return false;
6741   case Inst::Arithmetic: {
6742     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6743     default:
6744       return false;
6745     case InstArithmetic::Mul:
6746       return true;
6747     }
6748   }
6749   }
6750 }
6751 
isValidConsumer(const Inst & Instr)6752 bool isValidConsumer(const Inst &Instr) {
6753   switch (Instr.getKind()) {
6754   default:
6755     return false;
6756   case Inst::Arithmetic: {
6757     switch (llvm::cast<InstArithmetic>(&Instr)->getOp()) {
6758     default:
6759       return false;
6760     case InstArithmetic::Add:
6761     case InstArithmetic::Sub:
6762       return true;
6763     }
6764   }
6765   }
6766 }
6767 } // end of namespace FpFolding
6768 } // end of anonymous namespace
6769 
recordProducers(CfgNode * Node)6770 void TargetARM32::ComputationTracker::recordProducers(CfgNode *Node) {
6771   for (Inst &Instr : Node->getInsts()) {
6772     // Check whether Instr is a valid producer.
6773     Variable *Dest = Instr.getDest();
6774     if (!Instr.isDeleted() // only consider non-deleted instructions; and
6775         && Dest            // only instructions with an actual dest var; and
6776         && Dest->getType() == IceType_i1 // only bool-type dest vars; and
6777         && BoolFolding::shouldTrackProducer(Instr)) { // white-listed instr.
6778       KnownComputations.emplace(Dest->getIndex(),
6779                                 ComputationEntry(&Instr, IceType_i1));
6780     }
6781     if (!Instr.isDeleted() // only consider non-deleted instructions; and
6782         && Dest            // only instructions with an actual dest var; and
6783         && isScalarFloatingType(Dest->getType()) // fp-type only dest vars; and
6784         && FpFolding::shouldTrackProducer(Instr)) { // white-listed instr.
6785       KnownComputations.emplace(Dest->getIndex(),
6786                                 ComputationEntry(&Instr, Dest->getType()));
6787     }
6788     if (!Instr.isDeleted() // only consider non-deleted instructions; and
6789         && Dest            // only instructions with an actual dest var; and
6790         && Dest->getType() == IceType_i32            // i32 only dest vars; and
6791         && IntFolding::shouldTrackProducer(Instr)) { // white-listed instr.
6792       KnownComputations.emplace(Dest->getIndex(),
6793                                 ComputationEntry(&Instr, IceType_i32));
6794     }
6795     // Check each src variable against the map.
6796     FOREACH_VAR_IN_INST(Var, Instr) {
6797       SizeT VarNum = Var->getIndex();
6798       auto ComputationIter = KnownComputations.find(VarNum);
6799       if (ComputationIter == KnownComputations.end()) {
6800         continue;
6801       }
6802 
6803       ++ComputationIter->second.NumUses;
6804       switch (ComputationIter->second.ComputationType) {
6805       default:
6806         KnownComputations.erase(VarNum);
6807         continue;
6808       case IceType_i1:
6809         if (!BoolFolding::isValidConsumer(Instr)) {
6810           KnownComputations.erase(VarNum);
6811           continue;
6812         }
6813         break;
6814       case IceType_i32:
6815         if (IndexOfVarInInst(Var) != 1 || !IntFolding::isValidConsumer(Instr)) {
6816           KnownComputations.erase(VarNum);
6817           continue;
6818         }
6819         break;
6820       case IceType_f32:
6821       case IceType_f64:
6822         if (IndexOfVarInInst(Var) != 1 || !FpFolding::isValidConsumer(Instr)) {
6823           KnownComputations.erase(VarNum);
6824           continue;
6825         }
6826         break;
6827       }
6828 
6829       if (Instr.isLastUse(Var)) {
6830         ComputationIter->second.IsLiveOut = false;
6831       }
6832     }
6833   }
6834 
6835   for (auto Iter = KnownComputations.begin(), End = KnownComputations.end();
6836        Iter != End;) {
6837     // Disable the folding if its dest may be live beyond this block.
6838     if (Iter->second.IsLiveOut || Iter->second.NumUses > 1) {
6839       Iter = KnownComputations.erase(Iter);
6840       continue;
6841     }
6842 
6843     // Mark as "dead" rather than outright deleting. This is so that other
6844     // peephole style optimizations during or before lowering have access to
6845     // this instruction in undeleted form. See for example
6846     // tryOptimizedCmpxchgCmpBr().
6847     Iter->second.Instr->setDead();
6848     ++Iter;
6849   }
6850 }
6851 
Sandboxer(TargetARM32 * Target,InstBundleLock::Option BundleOption)6852 TargetARM32::Sandboxer::Sandboxer(TargetARM32 *Target,
6853                                   InstBundleLock::Option BundleOption)
6854     : Target(Target), BundleOption(BundleOption) {}
6855 
~Sandboxer()6856 TargetARM32::Sandboxer::~Sandboxer() {}
6857 
6858 namespace {
indirectBranchBicMask(Cfg * Func)6859 OperandARM32FlexImm *indirectBranchBicMask(Cfg *Func) {
6860   constexpr uint32_t Imm8 = 0xFC; // 0xC000000F
6861   constexpr uint32_t RotateAmt = 2;
6862   return OperandARM32FlexImm::create(Func, IceType_i32, Imm8, RotateAmt);
6863 }
6864 
memOpBicMask(Cfg * Func)6865 OperandARM32FlexImm *memOpBicMask(Cfg *Func) {
6866   constexpr uint32_t Imm8 = 0x0C; // 0xC0000000
6867   constexpr uint32_t RotateAmt = 2;
6868   return OperandARM32FlexImm::create(Func, IceType_i32, Imm8, RotateAmt);
6869 }
6870 
baseNeedsBic(Variable * Base)6871 static bool baseNeedsBic(Variable *Base) {
6872   return Base->getRegNum() != RegARM32::Reg_r9 &&
6873          Base->getRegNum() != RegARM32::Reg_sp;
6874 }
6875 } // end of anonymous namespace
6876 
createAutoBundle()6877 void TargetARM32::Sandboxer::createAutoBundle() {
6878   Bundler = makeUnique<AutoBundle>(Target, BundleOption);
6879 }
6880 
add_sp(Operand * AddAmount)6881 void TargetARM32::Sandboxer::add_sp(Operand *AddAmount) {
6882   Variable *SP = Target->getPhysicalRegister(RegARM32::Reg_sp);
6883   if (!Target->NeedSandboxing) {
6884     Target->_add(SP, SP, AddAmount);
6885     return;
6886   }
6887   createAutoBundle();
6888   Target->_add(SP, SP, AddAmount);
6889   Target->_bic(SP, SP, memOpBicMask(Target->Func));
6890 }
6891 
align_sp(size_t Alignment)6892 void TargetARM32::Sandboxer::align_sp(size_t Alignment) {
6893   Variable *SP = Target->getPhysicalRegister(RegARM32::Reg_sp);
6894   if (!Target->NeedSandboxing) {
6895     Target->alignRegisterPow2(SP, Alignment);
6896     return;
6897   }
6898   createAutoBundle();
6899   Target->alignRegisterPow2(SP, Alignment);
6900   Target->_bic(SP, SP, memOpBicMask(Target->Func));
6901 }
6902 
bl(Variable * ReturnReg,Operand * CallTarget)6903 InstARM32Call *TargetARM32::Sandboxer::bl(Variable *ReturnReg,
6904                                           Operand *CallTarget) {
6905   if (Target->NeedSandboxing) {
6906     createAutoBundle();
6907     if (auto *CallTargetR = llvm::dyn_cast<Variable>(CallTarget)) {
6908       Target->_bic(CallTargetR, CallTargetR,
6909                    indirectBranchBicMask(Target->Func));
6910     }
6911   }
6912   return Target->Context.insert<InstARM32Call>(ReturnReg, CallTarget);
6913 }
6914 
ldr(Variable * Dest,OperandARM32Mem * Mem,CondARM32::Cond Pred)6915 void TargetARM32::Sandboxer::ldr(Variable *Dest, OperandARM32Mem *Mem,
6916                                  CondARM32::Cond Pred) {
6917   Variable *MemBase = Mem->getBase();
6918   if (Target->NeedSandboxing && baseNeedsBic(MemBase)) {
6919     createAutoBundle();
6920     assert(!Mem->isRegReg());
6921     Target->_bic(MemBase, MemBase, memOpBicMask(Target->Func), Pred);
6922   }
6923   Target->_ldr(Dest, Mem, Pred);
6924 }
6925 
ldrex(Variable * Dest,OperandARM32Mem * Mem,CondARM32::Cond Pred)6926 void TargetARM32::Sandboxer::ldrex(Variable *Dest, OperandARM32Mem *Mem,
6927                                    CondARM32::Cond Pred) {
6928   Variable *MemBase = Mem->getBase();
6929   if (Target->NeedSandboxing && baseNeedsBic(MemBase)) {
6930     createAutoBundle();
6931     assert(!Mem->isRegReg());
6932     Target->_bic(MemBase, MemBase, memOpBicMask(Target->Func), Pred);
6933   }
6934   Target->_ldrex(Dest, Mem, Pred);
6935 }
6936 
reset_sp(Variable * Src)6937 void TargetARM32::Sandboxer::reset_sp(Variable *Src) {
6938   Variable *SP = Target->getPhysicalRegister(RegARM32::Reg_sp);
6939   if (!Target->NeedSandboxing) {
6940     Target->_mov_redefined(SP, Src);
6941     return;
6942   }
6943   createAutoBundle();
6944   Target->_mov_redefined(SP, Src);
6945   Target->_bic(SP, SP, memOpBicMask(Target->Func));
6946 }
6947 
ret(Variable * RetAddr,Variable * RetValue)6948 void TargetARM32::Sandboxer::ret(Variable *RetAddr, Variable *RetValue) {
6949   if (Target->NeedSandboxing) {
6950     createAutoBundle();
6951     Target->_bic(RetAddr, RetAddr, indirectBranchBicMask(Target->Func));
6952   }
6953   Target->_ret(RetAddr, RetValue);
6954 }
6955 
str(Variable * Src,OperandARM32Mem * Mem,CondARM32::Cond Pred)6956 void TargetARM32::Sandboxer::str(Variable *Src, OperandARM32Mem *Mem,
6957                                  CondARM32::Cond Pred) {
6958   Variable *MemBase = Mem->getBase();
6959   if (Target->NeedSandboxing && baseNeedsBic(MemBase)) {
6960     createAutoBundle();
6961     assert(!Mem->isRegReg());
6962     Target->_bic(MemBase, MemBase, memOpBicMask(Target->Func), Pred);
6963   }
6964   Target->_str(Src, Mem, Pred);
6965 }
6966 
strex(Variable * Dest,Variable * Src,OperandARM32Mem * Mem,CondARM32::Cond Pred)6967 void TargetARM32::Sandboxer::strex(Variable *Dest, Variable *Src,
6968                                    OperandARM32Mem *Mem, CondARM32::Cond Pred) {
6969   Variable *MemBase = Mem->getBase();
6970   if (Target->NeedSandboxing && baseNeedsBic(MemBase)) {
6971     createAutoBundle();
6972     assert(!Mem->isRegReg());
6973     Target->_bic(MemBase, MemBase, memOpBicMask(Target->Func), Pred);
6974   }
6975   Target->_strex(Dest, Src, Mem, Pred);
6976 }
6977 
sub_sp(Operand * SubAmount)6978 void TargetARM32::Sandboxer::sub_sp(Operand *SubAmount) {
6979   Variable *SP = Target->getPhysicalRegister(RegARM32::Reg_sp);
6980   if (!Target->NeedSandboxing) {
6981     Target->_sub(SP, SP, SubAmount);
6982     return;
6983   }
6984   createAutoBundle();
6985   Target->_sub(SP, SP, SubAmount);
6986   Target->_bic(SP, SP, memOpBicMask(Target->Func));
6987 }
6988 
TargetDataARM32(GlobalContext * Ctx)6989 TargetDataARM32::TargetDataARM32(GlobalContext *Ctx)
6990     : TargetDataLowering(Ctx) {}
6991 
lowerGlobals(const VariableDeclarationList & Vars,const std::string & SectionSuffix)6992 void TargetDataARM32::lowerGlobals(const VariableDeclarationList &Vars,
6993                                    const std::string &SectionSuffix) {
6994   const bool IsPIC = getFlags().getUseNonsfi();
6995   switch (getFlags().getOutFileType()) {
6996   case FT_Elf: {
6997     ELFObjectWriter *Writer = Ctx->getObjectWriter();
6998     Writer->writeDataSection(Vars, llvm::ELF::R_ARM_ABS32, SectionSuffix,
6999                              IsPIC);
7000   } break;
7001   case FT_Asm:
7002   case FT_Iasm: {
7003     OstreamLocker _(Ctx);
7004     for (const VariableDeclaration *Var : Vars) {
7005       if (getFlags().matchTranslateOnly(Var->getName(), 0)) {
7006         emitGlobal(*Var, SectionSuffix);
7007       }
7008     }
7009   } break;
7010   }
7011 }
7012 
7013 namespace {
7014 template <typename T> struct ConstantPoolEmitterTraits;
7015 
7016 static_assert(sizeof(uint64_t) == 8,
7017               "uint64_t is supposed to be 8 bytes wide.");
7018 
7019 // TODO(jpp): implement the following when implementing constant randomization:
7020 //  * template <> struct ConstantPoolEmitterTraits<uint8_t>
7021 //  * template <> struct ConstantPoolEmitterTraits<uint16_t>
7022 //  * template <> struct ConstantPoolEmitterTraits<uint32_t>
7023 template <> struct ConstantPoolEmitterTraits<float> {
7024   using ConstantType = ConstantFloat;
7025   static constexpr Type IceType = IceType_f32;
7026   // AsmTag and TypeName can't be constexpr because llvm::StringRef is unhappy
7027   // about them being constexpr.
7028   static const char AsmTag[];
7029   static const char TypeName[];
bitcastToUint64Ice::ARM32::__anonc54490811e11::ConstantPoolEmitterTraits7030   static uint64_t bitcastToUint64(float Value) {
7031     static_assert(sizeof(Value) == sizeof(uint32_t),
7032                   "Float should be 4 bytes.");
7033     const uint32_t IntValue = Utils::bitCopy<uint32_t>(Value);
7034     return static_cast<uint64_t>(IntValue);
7035   }
7036 };
7037 const char ConstantPoolEmitterTraits<float>::AsmTag[] = ".long";
7038 const char ConstantPoolEmitterTraits<float>::TypeName[] = "f32";
7039 
7040 template <> struct ConstantPoolEmitterTraits<double> {
7041   using ConstantType = ConstantDouble;
7042   static constexpr Type IceType = IceType_f64;
7043   static const char AsmTag[];
7044   static const char TypeName[];
bitcastToUint64Ice::ARM32::__anonc54490811e11::ConstantPoolEmitterTraits7045   static uint64_t bitcastToUint64(double Value) {
7046     static_assert(sizeof(double) == sizeof(uint64_t),
7047                   "Double should be 8 bytes.");
7048     return Utils::bitCopy<uint64_t>(Value);
7049   }
7050 };
7051 const char ConstantPoolEmitterTraits<double>::AsmTag[] = ".quad";
7052 const char ConstantPoolEmitterTraits<double>::TypeName[] = "f64";
7053 
7054 template <typename T>
emitConstant(Ostream & Str,const typename ConstantPoolEmitterTraits<T>::ConstantType * Const)7055 void emitConstant(
7056     Ostream &Str,
7057     const typename ConstantPoolEmitterTraits<T>::ConstantType *Const) {
7058   using Traits = ConstantPoolEmitterTraits<T>;
7059   Str << Const->getLabelName();
7060   Str << ":\n\t" << Traits::AsmTag << "\t0x";
7061   T Value = Const->getValue();
7062   Str.write_hex(Traits::bitcastToUint64(Value));
7063   Str << "\t/* " << Traits::TypeName << " " << Value << " */\n";
7064 }
7065 
emitConstantPool(GlobalContext * Ctx)7066 template <typename T> void emitConstantPool(GlobalContext *Ctx) {
7067   if (!BuildDefs::dump()) {
7068     return;
7069   }
7070 
7071   using Traits = ConstantPoolEmitterTraits<T>;
7072   static constexpr size_t MinimumAlignment = 4;
7073   SizeT Align = std::max(MinimumAlignment, typeAlignInBytes(Traits::IceType));
7074   assert((Align % 4) == 0 && "Constants should be aligned");
7075   Ostream &Str = Ctx->getStrEmit();
7076   ConstantList Pool = Ctx->getConstantPool(Traits::IceType);
7077 
7078   Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",%progbits," << Align
7079       << "\n"
7080       << "\t.align\t" << Align << "\n";
7081 
7082   if (getFlags().getReorderPooledConstants()) {
7083     // TODO(jpp): add constant pooling.
7084     UnimplementedError(getFlags());
7085   }
7086 
7087   for (Constant *C : Pool) {
7088     if (!C->getShouldBePooled()) {
7089       continue;
7090     }
7091 
7092     emitConstant<T>(Str, llvm::dyn_cast<typename Traits::ConstantType>(C));
7093   }
7094 }
7095 } // end of anonymous namespace
7096 
lowerConstants()7097 void TargetDataARM32::lowerConstants() {
7098   if (getFlags().getDisableTranslation())
7099     return;
7100   switch (getFlags().getOutFileType()) {
7101   case FT_Elf: {
7102     ELFObjectWriter *Writer = Ctx->getObjectWriter();
7103     Writer->writeConstantPool<ConstantFloat>(IceType_f32);
7104     Writer->writeConstantPool<ConstantDouble>(IceType_f64);
7105   } break;
7106   case FT_Asm:
7107   case FT_Iasm: {
7108     OstreamLocker _(Ctx);
7109     emitConstantPool<float>(Ctx);
7110     emitConstantPool<double>(Ctx);
7111     break;
7112   }
7113   }
7114 }
7115 
lowerJumpTables()7116 void TargetDataARM32::lowerJumpTables() {
7117   if (getFlags().getDisableTranslation())
7118     return;
7119   switch (getFlags().getOutFileType()) {
7120   case FT_Elf:
7121     if (!Ctx->getJumpTables().empty()) {
7122       llvm::report_fatal_error("ARM32 does not support jump tables yet.");
7123     }
7124     break;
7125   case FT_Asm:
7126     // Already emitted from Cfg
7127     break;
7128   case FT_Iasm: {
7129     // TODO(kschimpf): Fill this in when we get more information.
7130     break;
7131   }
7132   }
7133 }
7134 
TargetHeaderARM32(GlobalContext * Ctx)7135 TargetHeaderARM32::TargetHeaderARM32(GlobalContext *Ctx)
7136     : TargetHeaderLowering(Ctx), CPUFeatures(getFlags()) {}
7137 
lower()7138 void TargetHeaderARM32::lower() {
7139   OstreamLocker _(Ctx);
7140   Ostream &Str = Ctx->getStrEmit();
7141   Str << ".syntax unified\n";
7142   // Emit build attributes in format: .eabi_attribute TAG, VALUE. See Sec. 2 of
7143   // "Addenda to, and Errata in the ABI for the ARM architecture"
7144   // http://infocenter.arm.com
7145   //                  /help/topic/com.arm.doc.ihi0045d/IHI0045D_ABI_addenda.pdf
7146   //
7147   // Tag_conformance should be be emitted first in a file-scope sub-subsection
7148   // of the first public subsection of the attributes.
7149   Str << ".eabi_attribute 67, \"2.09\"      @ Tag_conformance\n";
7150   // Chromebooks are at least A15, but do A9 for higher compat. For some
7151   // reason, the LLVM ARM asm parser has the .cpu directive override the mattr
7152   // specified on the commandline. So to test hwdiv, we need to set the .cpu
7153   // directive higher (can't just rely on --mattr=...).
7154   if (CPUFeatures.hasFeature(TargetARM32Features::HWDivArm)) {
7155     Str << ".cpu    cortex-a15\n";
7156   } else {
7157     Str << ".cpu    cortex-a9\n";
7158   }
7159   Str << ".eabi_attribute 6, 10   @ Tag_CPU_arch: ARMv7\n"
7160       << ".eabi_attribute 7, 65   @ Tag_CPU_arch_profile: App profile\n";
7161   Str << ".eabi_attribute 8, 1    @ Tag_ARM_ISA_use: Yes\n"
7162       << ".eabi_attribute 9, 2    @ Tag_THUMB_ISA_use: Thumb-2\n";
7163   Str << ".fpu    neon\n"
7164       << ".eabi_attribute 17, 1   @ Tag_ABI_PCS_GOT_use: permit directly\n"
7165       << ".eabi_attribute 20, 1   @ Tag_ABI_FP_denormal\n"
7166       << ".eabi_attribute 21, 1   @ Tag_ABI_FP_exceptions\n"
7167       << ".eabi_attribute 23, 3   @ Tag_ABI_FP_number_model: IEEE 754\n"
7168       << ".eabi_attribute 34, 1   @ Tag_CPU_unaligned_access\n"
7169       << ".eabi_attribute 24, 1   @ Tag_ABI_align_needed: 8-byte\n"
7170       << ".eabi_attribute 25, 1   @ Tag_ABI_align_preserved: 8-byte\n"
7171       << ".eabi_attribute 28, 1   @ Tag_ABI_VFP_args\n"
7172       << ".eabi_attribute 36, 1   @ Tag_FP_HP_extension\n"
7173       << ".eabi_attribute 38, 1   @ Tag_ABI_FP_16bit_format\n"
7174       << ".eabi_attribute 42, 1   @ Tag_MPextension_use\n"
7175       << ".eabi_attribute 68, 1   @ Tag_Virtualization_use\n";
7176   if (CPUFeatures.hasFeature(TargetARM32Features::HWDivArm)) {
7177     Str << ".eabi_attribute 44, 2   @ Tag_DIV_use\n";
7178   }
7179   // Technically R9 is used for TLS with Sandboxing, and we reserve it.
7180   // However, for compatibility with current NaCl LLVM, don't claim that.
7181   Str << ".eabi_attribute 14, 3   @ Tag_ABI_PCS_R9_use: Not used\n";
7182 }
7183 
7184 SmallBitVector TargetARM32::TypeToRegisterSet[RegARM32::RCARM32_NUM];
7185 SmallBitVector TargetARM32::TypeToRegisterSetUnfiltered[RegARM32::RCARM32_NUM];
7186 SmallBitVector TargetARM32::RegisterAliases[RegARM32::Reg_NUM];
7187 
7188 } // end of namespace ARM32
7189 } // end of namespace Ice
7190