1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/bignum.h"
6 #include "src/utils.h"
7
8 namespace v8 {
9 namespace internal {
10
Bignum()11 Bignum::Bignum()
12 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
13 for (int i = 0; i < kBigitCapacity; ++i) {
14 bigits_[i] = 0;
15 }
16 }
17
18
19 template<typename S>
BitSize(S value)20 static int BitSize(S value) {
21 return 8 * sizeof(value);
22 }
23
24
25 // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)26 void Bignum::AssignUInt16(uint16_t value) {
27 DCHECK(kBigitSize >= BitSize(value));
28 Zero();
29 if (value == 0) return;
30
31 EnsureCapacity(1);
32 bigits_[0] = value;
33 used_digits_ = 1;
34 }
35
36
AssignUInt64(uint64_t value)37 void Bignum::AssignUInt64(uint64_t value) {
38 const int kUInt64Size = 64;
39
40 Zero();
41 if (value == 0) return;
42
43 int needed_bigits = kUInt64Size / kBigitSize + 1;
44 EnsureCapacity(needed_bigits);
45 for (int i = 0; i < needed_bigits; ++i) {
46 bigits_[i] = static_cast<Chunk>(value & kBigitMask);
47 value = value >> kBigitSize;
48 }
49 used_digits_ = needed_bigits;
50 Clamp();
51 }
52
53
AssignBignum(const Bignum & other)54 void Bignum::AssignBignum(const Bignum& other) {
55 exponent_ = other.exponent_;
56 for (int i = 0; i < other.used_digits_; ++i) {
57 bigits_[i] = other.bigits_[i];
58 }
59 // Clear the excess digits (if there were any).
60 for (int i = other.used_digits_; i < used_digits_; ++i) {
61 bigits_[i] = 0;
62 }
63 used_digits_ = other.used_digits_;
64 }
65
66
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)67 static uint64_t ReadUInt64(Vector<const char> buffer,
68 int from,
69 int digits_to_read) {
70 uint64_t result = 0;
71 int to = from + digits_to_read;
72
73 for (int i = from; i < to; ++i) {
74 int digit = buffer[i] - '0';
75 DCHECK(0 <= digit && digit <= 9);
76 result = result * 10 + digit;
77 }
78 return result;
79 }
80
81
AssignDecimalString(Vector<const char> value)82 void Bignum::AssignDecimalString(Vector<const char> value) {
83 // 2^64 = 18446744073709551616 > 10^19
84 const int kMaxUint64DecimalDigits = 19;
85 Zero();
86 int length = value.length();
87 int pos = 0;
88 // Let's just say that each digit needs 4 bits.
89 while (length >= kMaxUint64DecimalDigits) {
90 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
91 pos += kMaxUint64DecimalDigits;
92 length -= kMaxUint64DecimalDigits;
93 MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
94 AddUInt64(digits);
95 }
96 uint64_t digits = ReadUInt64(value, pos, length);
97 MultiplyByPowerOfTen(length);
98 AddUInt64(digits);
99 Clamp();
100 }
101
102
HexCharValue(char c)103 static int HexCharValue(char c) {
104 if ('0' <= c && c <= '9') return c - '0';
105 if ('a' <= c && c <= 'f') return 10 + c - 'a';
106 if ('A' <= c && c <= 'F') return 10 + c - 'A';
107 UNREACHABLE();
108 return 0; // To make compiler happy.
109 }
110
111
AssignHexString(Vector<const char> value)112 void Bignum::AssignHexString(Vector<const char> value) {
113 Zero();
114 int length = value.length();
115
116 int needed_bigits = length * 4 / kBigitSize + 1;
117 EnsureCapacity(needed_bigits);
118 int string_index = length - 1;
119 for (int i = 0; i < needed_bigits - 1; ++i) {
120 // These bigits are guaranteed to be "full".
121 Chunk current_bigit = 0;
122 for (int j = 0; j < kBigitSize / 4; j++) {
123 current_bigit += HexCharValue(value[string_index--]) << (j * 4);
124 }
125 bigits_[i] = current_bigit;
126 }
127 used_digits_ = needed_bigits - 1;
128
129 Chunk most_significant_bigit = 0; // Could be = 0;
130 for (int j = 0; j <= string_index; ++j) {
131 most_significant_bigit <<= 4;
132 most_significant_bigit += HexCharValue(value[j]);
133 }
134 if (most_significant_bigit != 0) {
135 bigits_[used_digits_] = most_significant_bigit;
136 used_digits_++;
137 }
138 Clamp();
139 }
140
141
AddUInt64(uint64_t operand)142 void Bignum::AddUInt64(uint64_t operand) {
143 if (operand == 0) return;
144 Bignum other;
145 other.AssignUInt64(operand);
146 AddBignum(other);
147 }
148
149
AddBignum(const Bignum & other)150 void Bignum::AddBignum(const Bignum& other) {
151 DCHECK(IsClamped());
152 DCHECK(other.IsClamped());
153
154 // If this has a greater exponent than other append zero-bigits to this.
155 // After this call exponent_ <= other.exponent_.
156 Align(other);
157
158 // There are two possibilities:
159 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
160 // bbbbb 00000000
161 // ----------------
162 // ccccccccccc 0000
163 // or
164 // aaaaaaaaaa 0000
165 // bbbbbbbbb 0000000
166 // -----------------
167 // cccccccccccc 0000
168 // In both cases we might need a carry bigit.
169
170 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
171 Chunk carry = 0;
172 int bigit_pos = other.exponent_ - exponent_;
173 DCHECK(bigit_pos >= 0);
174 for (int i = 0; i < other.used_digits_; ++i) {
175 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
176 bigits_[bigit_pos] = sum & kBigitMask;
177 carry = sum >> kBigitSize;
178 bigit_pos++;
179 }
180
181 while (carry != 0) {
182 Chunk sum = bigits_[bigit_pos] + carry;
183 bigits_[bigit_pos] = sum & kBigitMask;
184 carry = sum >> kBigitSize;
185 bigit_pos++;
186 }
187 used_digits_ = Max(bigit_pos, used_digits_);
188 DCHECK(IsClamped());
189 }
190
191
SubtractBignum(const Bignum & other)192 void Bignum::SubtractBignum(const Bignum& other) {
193 DCHECK(IsClamped());
194 DCHECK(other.IsClamped());
195 // We require this to be bigger than other.
196 DCHECK(LessEqual(other, *this));
197
198 Align(other);
199
200 int offset = other.exponent_ - exponent_;
201 Chunk borrow = 0;
202 int i;
203 for (i = 0; i < other.used_digits_; ++i) {
204 DCHECK((borrow == 0) || (borrow == 1));
205 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
206 bigits_[i + offset] = difference & kBigitMask;
207 borrow = difference >> (kChunkSize - 1);
208 }
209 while (borrow != 0) {
210 Chunk difference = bigits_[i + offset] - borrow;
211 bigits_[i + offset] = difference & kBigitMask;
212 borrow = difference >> (kChunkSize - 1);
213 ++i;
214 }
215 Clamp();
216 }
217
218
ShiftLeft(int shift_amount)219 void Bignum::ShiftLeft(int shift_amount) {
220 if (used_digits_ == 0) return;
221 exponent_ += shift_amount / kBigitSize;
222 int local_shift = shift_amount % kBigitSize;
223 EnsureCapacity(used_digits_ + 1);
224 BigitsShiftLeft(local_shift);
225 }
226
227
MultiplyByUInt32(uint32_t factor)228 void Bignum::MultiplyByUInt32(uint32_t factor) {
229 if (factor == 1) return;
230 if (factor == 0) {
231 Zero();
232 return;
233 }
234 if (used_digits_ == 0) return;
235
236 // The product of a bigit with the factor is of size kBigitSize + 32.
237 // Assert that this number + 1 (for the carry) fits into double chunk.
238 DCHECK(kDoubleChunkSize >= kBigitSize + 32 + 1);
239 DoubleChunk carry = 0;
240 for (int i = 0; i < used_digits_; ++i) {
241 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
242 bigits_[i] = static_cast<Chunk>(product & kBigitMask);
243 carry = (product >> kBigitSize);
244 }
245 while (carry != 0) {
246 EnsureCapacity(used_digits_ + 1);
247 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
248 used_digits_++;
249 carry >>= kBigitSize;
250 }
251 }
252
253
MultiplyByUInt64(uint64_t factor)254 void Bignum::MultiplyByUInt64(uint64_t factor) {
255 if (factor == 1) return;
256 if (factor == 0) {
257 Zero();
258 return;
259 }
260 DCHECK(kBigitSize < 32);
261 uint64_t carry = 0;
262 uint64_t low = factor & 0xFFFFFFFF;
263 uint64_t high = factor >> 32;
264 for (int i = 0; i < used_digits_; ++i) {
265 uint64_t product_low = low * bigits_[i];
266 uint64_t product_high = high * bigits_[i];
267 uint64_t tmp = (carry & kBigitMask) + product_low;
268 bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
269 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
270 (product_high << (32 - kBigitSize));
271 }
272 while (carry != 0) {
273 EnsureCapacity(used_digits_ + 1);
274 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
275 used_digits_++;
276 carry >>= kBigitSize;
277 }
278 }
279
280
MultiplyByPowerOfTen(int exponent)281 void Bignum::MultiplyByPowerOfTen(int exponent) {
282 const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
283 const uint16_t kFive1 = 5;
284 const uint16_t kFive2 = kFive1 * 5;
285 const uint16_t kFive3 = kFive2 * 5;
286 const uint16_t kFive4 = kFive3 * 5;
287 const uint16_t kFive5 = kFive4 * 5;
288 const uint16_t kFive6 = kFive5 * 5;
289 const uint32_t kFive7 = kFive6 * 5;
290 const uint32_t kFive8 = kFive7 * 5;
291 const uint32_t kFive9 = kFive8 * 5;
292 const uint32_t kFive10 = kFive9 * 5;
293 const uint32_t kFive11 = kFive10 * 5;
294 const uint32_t kFive12 = kFive11 * 5;
295 const uint32_t kFive13 = kFive12 * 5;
296 const uint32_t kFive1_to_12[] =
297 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
298 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
299
300 DCHECK(exponent >= 0);
301 if (exponent == 0) return;
302 if (used_digits_ == 0) return;
303
304 // We shift by exponent at the end just before returning.
305 int remaining_exponent = exponent;
306 while (remaining_exponent >= 27) {
307 MultiplyByUInt64(kFive27);
308 remaining_exponent -= 27;
309 }
310 while (remaining_exponent >= 13) {
311 MultiplyByUInt32(kFive13);
312 remaining_exponent -= 13;
313 }
314 if (remaining_exponent > 0) {
315 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
316 }
317 ShiftLeft(exponent);
318 }
319
320
Square()321 void Bignum::Square() {
322 DCHECK(IsClamped());
323 int product_length = 2 * used_digits_;
324 EnsureCapacity(product_length);
325
326 // Comba multiplication: compute each column separately.
327 // Example: r = a2a1a0 * b2b1b0.
328 // r = 1 * a0b0 +
329 // 10 * (a1b0 + a0b1) +
330 // 100 * (a2b0 + a1b1 + a0b2) +
331 // 1000 * (a2b1 + a1b2) +
332 // 10000 * a2b2
333 //
334 // In the worst case we have to accumulate nb-digits products of digit*digit.
335 //
336 // Assert that the additional number of bits in a DoubleChunk are enough to
337 // sum up used_digits of Bigit*Bigit.
338 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
339 UNIMPLEMENTED();
340 }
341 DoubleChunk accumulator = 0;
342 // First shift the digits so we don't overwrite them.
343 int copy_offset = used_digits_;
344 for (int i = 0; i < used_digits_; ++i) {
345 bigits_[copy_offset + i] = bigits_[i];
346 }
347 // We have two loops to avoid some 'if's in the loop.
348 for (int i = 0; i < used_digits_; ++i) {
349 // Process temporary digit i with power i.
350 // The sum of the two indices must be equal to i.
351 int bigit_index1 = i;
352 int bigit_index2 = 0;
353 // Sum all of the sub-products.
354 while (bigit_index1 >= 0) {
355 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
356 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
357 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
358 bigit_index1--;
359 bigit_index2++;
360 }
361 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
362 accumulator >>= kBigitSize;
363 }
364 for (int i = used_digits_; i < product_length; ++i) {
365 int bigit_index1 = used_digits_ - 1;
366 int bigit_index2 = i - bigit_index1;
367 // Invariant: sum of both indices is again equal to i.
368 // Inner loop runs 0 times on last iteration, emptying accumulator.
369 while (bigit_index2 < used_digits_) {
370 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
371 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
372 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
373 bigit_index1--;
374 bigit_index2++;
375 }
376 // The overwritten bigits_[i] will never be read in further loop iterations,
377 // because bigit_index1 and bigit_index2 are always greater
378 // than i - used_digits_.
379 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
380 accumulator >>= kBigitSize;
381 }
382 // Since the result was guaranteed to lie inside the number the
383 // accumulator must be 0 now.
384 DCHECK(accumulator == 0);
385
386 // Don't forget to update the used_digits and the exponent.
387 used_digits_ = product_length;
388 exponent_ *= 2;
389 Clamp();
390 }
391
392
AssignPowerUInt16(uint16_t base,int power_exponent)393 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
394 DCHECK(base != 0);
395 DCHECK(power_exponent >= 0);
396 if (power_exponent == 0) {
397 AssignUInt16(1);
398 return;
399 }
400 Zero();
401 int shifts = 0;
402 // We expect base to be in range 2-32, and most often to be 10.
403 // It does not make much sense to implement different algorithms for counting
404 // the bits.
405 while ((base & 1) == 0) {
406 base >>= 1;
407 shifts++;
408 }
409 int bit_size = 0;
410 int tmp_base = base;
411 while (tmp_base != 0) {
412 tmp_base >>= 1;
413 bit_size++;
414 }
415 int final_size = bit_size * power_exponent;
416 // 1 extra bigit for the shifting, and one for rounded final_size.
417 EnsureCapacity(final_size / kBigitSize + 2);
418
419 // Left to Right exponentiation.
420 int mask = 1;
421 while (power_exponent >= mask) mask <<= 1;
422
423 // The mask is now pointing to the bit above the most significant 1-bit of
424 // power_exponent.
425 // Get rid of first 1-bit;
426 mask >>= 2;
427 uint64_t this_value = base;
428
429 bool delayed_multipliciation = false;
430 const uint64_t max_32bits = 0xFFFFFFFF;
431 while (mask != 0 && this_value <= max_32bits) {
432 this_value = this_value * this_value;
433 // Verify that there is enough space in this_value to perform the
434 // multiplication. The first bit_size bits must be 0.
435 if ((power_exponent & mask) != 0) {
436 uint64_t base_bits_mask =
437 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
438 bool high_bits_zero = (this_value & base_bits_mask) == 0;
439 if (high_bits_zero) {
440 this_value *= base;
441 } else {
442 delayed_multipliciation = true;
443 }
444 }
445 mask >>= 1;
446 }
447 AssignUInt64(this_value);
448 if (delayed_multipliciation) {
449 MultiplyByUInt32(base);
450 }
451
452 // Now do the same thing as a bignum.
453 while (mask != 0) {
454 Square();
455 if ((power_exponent & mask) != 0) {
456 MultiplyByUInt32(base);
457 }
458 mask >>= 1;
459 }
460
461 // And finally add the saved shifts.
462 ShiftLeft(shifts * power_exponent);
463 }
464
465
466 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)467 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
468 DCHECK(IsClamped());
469 DCHECK(other.IsClamped());
470 DCHECK(other.used_digits_ > 0);
471
472 // Easy case: if we have less digits than the divisor than the result is 0.
473 // Note: this handles the case where this == 0, too.
474 if (BigitLength() < other.BigitLength()) {
475 return 0;
476 }
477
478 Align(other);
479
480 uint16_t result = 0;
481
482 // Start by removing multiples of 'other' until both numbers have the same
483 // number of digits.
484 while (BigitLength() > other.BigitLength()) {
485 // This naive approach is extremely inefficient if the this divided other
486 // might be big. This function is implemented for doubleToString where
487 // the result should be small (less than 10).
488 DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
489 // Remove the multiples of the first digit.
490 // Example this = 23 and other equals 9. -> Remove 2 multiples.
491 result += bigits_[used_digits_ - 1];
492 SubtractTimes(other, bigits_[used_digits_ - 1]);
493 }
494
495 DCHECK(BigitLength() == other.BigitLength());
496
497 // Both bignums are at the same length now.
498 // Since other has more than 0 digits we know that the access to
499 // bigits_[used_digits_ - 1] is safe.
500 Chunk this_bigit = bigits_[used_digits_ - 1];
501 Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
502
503 if (other.used_digits_ == 1) {
504 // Shortcut for easy (and common) case.
505 int quotient = this_bigit / other_bigit;
506 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
507 result += quotient;
508 Clamp();
509 return result;
510 }
511
512 int division_estimate = this_bigit / (other_bigit + 1);
513 result += division_estimate;
514 SubtractTimes(other, division_estimate);
515
516 if (other_bigit * (division_estimate + 1) > this_bigit) {
517 // No need to even try to subtract. Even if other's remaining digits were 0
518 // another subtraction would be too much.
519 return result;
520 }
521
522 while (LessEqual(other, *this)) {
523 SubtractBignum(other);
524 result++;
525 }
526 return result;
527 }
528
529
530 template<typename S>
SizeInHexChars(S number)531 static int SizeInHexChars(S number) {
532 DCHECK(number > 0);
533 int result = 0;
534 while (number != 0) {
535 number >>= 4;
536 result++;
537 }
538 return result;
539 }
540
541
ToHexString(char * buffer,int buffer_size) const542 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
543 DCHECK(IsClamped());
544 // Each bigit must be printable as separate hex-character.
545 DCHECK(kBigitSize % 4 == 0);
546 const int kHexCharsPerBigit = kBigitSize / 4;
547
548 if (used_digits_ == 0) {
549 if (buffer_size < 2) return false;
550 buffer[0] = '0';
551 buffer[1] = '\0';
552 return true;
553 }
554 // We add 1 for the terminating '\0' character.
555 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
556 SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
557 if (needed_chars > buffer_size) return false;
558 int string_index = needed_chars - 1;
559 buffer[string_index--] = '\0';
560 for (int i = 0; i < exponent_; ++i) {
561 for (int j = 0; j < kHexCharsPerBigit; ++j) {
562 buffer[string_index--] = '0';
563 }
564 }
565 for (int i = 0; i < used_digits_ - 1; ++i) {
566 Chunk current_bigit = bigits_[i];
567 for (int j = 0; j < kHexCharsPerBigit; ++j) {
568 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
569 current_bigit >>= 4;
570 }
571 }
572 // And finally the last bigit.
573 Chunk most_significant_bigit = bigits_[used_digits_ - 1];
574 while (most_significant_bigit != 0) {
575 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
576 most_significant_bigit >>= 4;
577 }
578 return true;
579 }
580
581
BigitAt(int index) const582 Bignum::Chunk Bignum::BigitAt(int index) const {
583 if (index >= BigitLength()) return 0;
584 if (index < exponent_) return 0;
585 return bigits_[index - exponent_];
586 }
587
588
Compare(const Bignum & a,const Bignum & b)589 int Bignum::Compare(const Bignum& a, const Bignum& b) {
590 DCHECK(a.IsClamped());
591 DCHECK(b.IsClamped());
592 int bigit_length_a = a.BigitLength();
593 int bigit_length_b = b.BigitLength();
594 if (bigit_length_a < bigit_length_b) return -1;
595 if (bigit_length_a > bigit_length_b) return +1;
596 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
597 Chunk bigit_a = a.BigitAt(i);
598 Chunk bigit_b = b.BigitAt(i);
599 if (bigit_a < bigit_b) return -1;
600 if (bigit_a > bigit_b) return +1;
601 // Otherwise they are equal up to this digit. Try the next digit.
602 }
603 return 0;
604 }
605
606
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)607 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
608 DCHECK(a.IsClamped());
609 DCHECK(b.IsClamped());
610 DCHECK(c.IsClamped());
611 if (a.BigitLength() < b.BigitLength()) {
612 return PlusCompare(b, a, c);
613 }
614 if (a.BigitLength() + 1 < c.BigitLength()) return -1;
615 if (a.BigitLength() > c.BigitLength()) return +1;
616 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
617 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
618 // of 'a'.
619 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
620 return -1;
621 }
622
623 Chunk borrow = 0;
624 // Starting at min_exponent all digits are == 0. So no need to compare them.
625 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
626 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
627 Chunk chunk_a = a.BigitAt(i);
628 Chunk chunk_b = b.BigitAt(i);
629 Chunk chunk_c = c.BigitAt(i);
630 Chunk sum = chunk_a + chunk_b;
631 if (sum > chunk_c + borrow) {
632 return +1;
633 } else {
634 borrow = chunk_c + borrow - sum;
635 if (borrow > 1) return -1;
636 borrow <<= kBigitSize;
637 }
638 }
639 if (borrow == 0) return 0;
640 return -1;
641 }
642
643
Clamp()644 void Bignum::Clamp() {
645 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
646 used_digits_--;
647 }
648 if (used_digits_ == 0) {
649 // Zero.
650 exponent_ = 0;
651 }
652 }
653
654
IsClamped() const655 bool Bignum::IsClamped() const {
656 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
657 }
658
659
Zero()660 void Bignum::Zero() {
661 for (int i = 0; i < used_digits_; ++i) {
662 bigits_[i] = 0;
663 }
664 used_digits_ = 0;
665 exponent_ = 0;
666 }
667
668
Align(const Bignum & other)669 void Bignum::Align(const Bignum& other) {
670 if (exponent_ > other.exponent_) {
671 // If "X" represents a "hidden" digit (by the exponent) then we are in the
672 // following case (a == this, b == other):
673 // a: aaaaaaXXXX or a: aaaaaXXX
674 // b: bbbbbbX b: bbbbbbbbXX
675 // We replace some of the hidden digits (X) of a with 0 digits.
676 // a: aaaaaa000X or a: aaaaa0XX
677 int zero_digits = exponent_ - other.exponent_;
678 EnsureCapacity(used_digits_ + zero_digits);
679 for (int i = used_digits_ - 1; i >= 0; --i) {
680 bigits_[i + zero_digits] = bigits_[i];
681 }
682 for (int i = 0; i < zero_digits; ++i) {
683 bigits_[i] = 0;
684 }
685 used_digits_ += zero_digits;
686 exponent_ -= zero_digits;
687 DCHECK(used_digits_ >= 0);
688 DCHECK(exponent_ >= 0);
689 }
690 }
691
692
BigitsShiftLeft(int shift_amount)693 void Bignum::BigitsShiftLeft(int shift_amount) {
694 DCHECK(shift_amount < kBigitSize);
695 DCHECK(shift_amount >= 0);
696 Chunk carry = 0;
697 for (int i = 0; i < used_digits_; ++i) {
698 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
699 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
700 carry = new_carry;
701 }
702 if (carry != 0) {
703 bigits_[used_digits_] = carry;
704 used_digits_++;
705 }
706 }
707
708
SubtractTimes(const Bignum & other,int factor)709 void Bignum::SubtractTimes(const Bignum& other, int factor) {
710 #ifdef DEBUG
711 Bignum a, b;
712 a.AssignBignum(*this);
713 b.AssignBignum(other);
714 b.MultiplyByUInt32(factor);
715 a.SubtractBignum(b);
716 #endif
717 DCHECK(exponent_ <= other.exponent_);
718 if (factor < 3) {
719 for (int i = 0; i < factor; ++i) {
720 SubtractBignum(other);
721 }
722 return;
723 }
724 Chunk borrow = 0;
725 int exponent_diff = other.exponent_ - exponent_;
726 for (int i = 0; i < other.used_digits_; ++i) {
727 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
728 DoubleChunk remove = borrow + product;
729 Chunk difference =
730 bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
731 bigits_[i + exponent_diff] = difference & kBigitMask;
732 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
733 (remove >> kBigitSize));
734 }
735 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
736 if (borrow == 0) return;
737 Chunk difference = bigits_[i] - borrow;
738 bigits_[i] = difference & kBigitMask;
739 borrow = difference >> (kChunkSize - 1);
740 }
741 Clamp();
742 DCHECK(Bignum::Equal(a, *this));
743 }
744
745
746 } // namespace internal
747 } // namespace v8
748