• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_NODE_MATCHERS_H_
6 #define V8_COMPILER_NODE_MATCHERS_H_
7 
8 #include <cmath>
9 
10 // TODO(turbofan): Move ExternalReference out of assembler.h
11 #include "src/assembler.h"
12 #include "src/base/compiler-specific.h"
13 #include "src/compiler/node.h"
14 #include "src/compiler/operator.h"
15 #include "src/double.h"
16 #include "src/globals.h"
17 
18 namespace v8 {
19 namespace internal {
20 namespace compiler {
21 
22 // A pattern matcher for nodes.
23 struct NodeMatcher {
NodeMatcherNodeMatcher24   explicit NodeMatcher(Node* node) : node_(node) {}
25 
nodeNodeMatcher26   Node* node() const { return node_; }
opNodeMatcher27   const Operator* op() const { return node()->op(); }
opcodeNodeMatcher28   IrOpcode::Value opcode() const { return node()->opcode(); }
29 
HasPropertyNodeMatcher30   bool HasProperty(Operator::Property property) const {
31     return op()->HasProperty(property);
32   }
InputAtNodeMatcher33   Node* InputAt(int index) const { return node()->InputAt(index); }
34 
EqualsNodeMatcher35   bool Equals(const Node* node) const { return node_ == node; }
36 
37   bool IsComparison() const;
38 
39 #define DEFINE_IS_OPCODE(Opcode) \
40   bool Is##Opcode() const { return opcode() == IrOpcode::k##Opcode; }
41   ALL_OP_LIST(DEFINE_IS_OPCODE)
42 #undef DEFINE_IS_OPCODE
43 
44  private:
45   Node* node_;
46 };
47 
48 
49 // A pattern matcher for abitrary value constants.
50 template <typename T, IrOpcode::Value kOpcode>
51 struct ValueMatcher : public NodeMatcher {
52   typedef T ValueType;
53 
ValueMatcherValueMatcher54   explicit ValueMatcher(Node* node)
55       : NodeMatcher(node), value_(), has_value_(opcode() == kOpcode) {
56     if (has_value_) {
57       value_ = OpParameter<T>(node);
58     }
59   }
60 
HasValueValueMatcher61   bool HasValue() const { return has_value_; }
ValueValueMatcher62   const T& Value() const {
63     DCHECK(HasValue());
64     return value_;
65   }
66 
67  private:
68   T value_;
69   bool has_value_;
70 };
71 
72 
73 template <>
ValueMatcher(Node * node)74 inline ValueMatcher<uint32_t, IrOpcode::kInt32Constant>::ValueMatcher(
75     Node* node)
76     : NodeMatcher(node),
77       value_(),
78       has_value_(opcode() == IrOpcode::kInt32Constant) {
79   if (has_value_) {
80     value_ = static_cast<uint32_t>(OpParameter<int32_t>(node));
81   }
82 }
83 
84 
85 template <>
ValueMatcher(Node * node)86 inline ValueMatcher<int64_t, IrOpcode::kInt64Constant>::ValueMatcher(Node* node)
87     : NodeMatcher(node), value_(), has_value_(false) {
88   if (opcode() == IrOpcode::kInt32Constant) {
89     value_ = OpParameter<int32_t>(node);
90     has_value_ = true;
91   } else if (opcode() == IrOpcode::kInt64Constant) {
92     value_ = OpParameter<int64_t>(node);
93     has_value_ = true;
94   }
95 }
96 
97 
98 template <>
ValueMatcher(Node * node)99 inline ValueMatcher<uint64_t, IrOpcode::kInt64Constant>::ValueMatcher(
100     Node* node)
101     : NodeMatcher(node), value_(), has_value_(false) {
102   if (opcode() == IrOpcode::kInt32Constant) {
103     value_ = static_cast<uint32_t>(OpParameter<int32_t>(node));
104     has_value_ = true;
105   } else if (opcode() == IrOpcode::kInt64Constant) {
106     value_ = static_cast<uint64_t>(OpParameter<int64_t>(node));
107     has_value_ = true;
108   }
109 }
110 
111 
112 // A pattern matcher for integer constants.
113 template <typename T, IrOpcode::Value kOpcode>
114 struct IntMatcher final : public ValueMatcher<T, kOpcode> {
IntMatcherfinal115   explicit IntMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {}
116 
Isfinal117   bool Is(const T& value) const {
118     return this->HasValue() && this->Value() == value;
119   }
IsInRangefinal120   bool IsInRange(const T& low, const T& high) const {
121     return this->HasValue() && low <= this->Value() && this->Value() <= high;
122   }
IsMultipleOffinal123   bool IsMultipleOf(T n) const {
124     return this->HasValue() && (this->Value() % n) == 0;
125   }
IsPowerOf2final126   bool IsPowerOf2() const {
127     return this->HasValue() && this->Value() > 0 &&
128            (this->Value() & (this->Value() - 1)) == 0;
129   }
IsNegativePowerOf2final130   bool IsNegativePowerOf2() const {
131     return this->HasValue() && this->Value() < 0 &&
132            (-this->Value() & (-this->Value() - 1)) == 0;
133   }
IsNegativefinal134   bool IsNegative() const { return this->HasValue() && this->Value() < 0; }
135 };
136 
137 typedef IntMatcher<int32_t, IrOpcode::kInt32Constant> Int32Matcher;
138 typedef IntMatcher<uint32_t, IrOpcode::kInt32Constant> Uint32Matcher;
139 typedef IntMatcher<int64_t, IrOpcode::kInt64Constant> Int64Matcher;
140 typedef IntMatcher<uint64_t, IrOpcode::kInt64Constant> Uint64Matcher;
141 #if V8_HOST_ARCH_32_BIT
142 typedef Int32Matcher IntPtrMatcher;
143 typedef Uint32Matcher UintPtrMatcher;
144 #else
145 typedef Int64Matcher IntPtrMatcher;
146 typedef Uint64Matcher UintPtrMatcher;
147 #endif
148 
149 
150 // A pattern matcher for floating point constants.
151 template <typename T, IrOpcode::Value kOpcode>
152 struct FloatMatcher final : public ValueMatcher<T, kOpcode> {
FloatMatcherfinal153   explicit FloatMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {}
154 
Isfinal155   bool Is(const T& value) const {
156     return this->HasValue() && this->Value() == value;
157   }
IsInRangefinal158   bool IsInRange(const T& low, const T& high) const {
159     return this->HasValue() && low <= this->Value() && this->Value() <= high;
160   }
IsMinusZerofinal161   bool IsMinusZero() const {
162     return this->Is(0.0) && std::signbit(this->Value());
163   }
IsNegativefinal164   bool IsNegative() const { return this->HasValue() && this->Value() < 0.0; }
IsNaNfinal165   bool IsNaN() const { return this->HasValue() && std::isnan(this->Value()); }
IsZerofinal166   bool IsZero() const { return this->Is(0.0) && !std::signbit(this->Value()); }
IsNormalfinal167   bool IsNormal() const {
168     return this->HasValue() && std::isnormal(this->Value());
169   }
IsIntegerfinal170   bool IsInteger() const {
171     return this->HasValue() && std::nearbyint(this->Value()) == this->Value();
172   }
IsPositiveOrNegativePowerOf2final173   bool IsPositiveOrNegativePowerOf2() const {
174     if (!this->HasValue() || (this->Value() == 0.0)) {
175       return false;
176     }
177     Double value = Double(this->Value());
178     return !value.IsInfinite() &&
179            base::bits::IsPowerOfTwo64(value.Significand());
180   }
181 };
182 
183 typedef FloatMatcher<float, IrOpcode::kFloat32Constant> Float32Matcher;
184 typedef FloatMatcher<double, IrOpcode::kFloat64Constant> Float64Matcher;
185 typedef FloatMatcher<double, IrOpcode::kNumberConstant> NumberMatcher;
186 
187 
188 // A pattern matcher for heap object constants.
189 struct HeapObjectMatcher final
190     : public ValueMatcher<Handle<HeapObject>, IrOpcode::kHeapConstant> {
HeapObjectMatcherfinal191   explicit HeapObjectMatcher(Node* node)
192       : ValueMatcher<Handle<HeapObject>, IrOpcode::kHeapConstant>(node) {}
193 
Isfinal194   bool Is(Handle<HeapObject> const& value) const {
195     return this->HasValue() && this->Value().address() == value.address();
196   }
197 };
198 
199 
200 // A pattern matcher for external reference constants.
201 struct ExternalReferenceMatcher final
202     : public ValueMatcher<ExternalReference, IrOpcode::kExternalConstant> {
ExternalReferenceMatcherfinal203   explicit ExternalReferenceMatcher(Node* node)
204       : ValueMatcher<ExternalReference, IrOpcode::kExternalConstant>(node) {}
Isfinal205   bool Is(const ExternalReference& value) const {
206     return this->HasValue() && this->Value() == value;
207   }
208 };
209 
210 
211 // For shorter pattern matching code, this struct matches the inputs to
212 // machine-level load operations.
213 template <typename Object>
214 struct LoadMatcher : public NodeMatcher {
LoadMatcherLoadMatcher215   explicit LoadMatcher(Node* node)
216       : NodeMatcher(node), object_(InputAt(0)), index_(InputAt(1)) {}
217 
218   typedef Object ObjectMatcher;
219 
objectLoadMatcher220   Object const& object() const { return object_; }
indexLoadMatcher221   IntPtrMatcher const& index() const { return index_; }
222 
223  private:
224   Object const object_;
225   IntPtrMatcher const index_;
226 };
227 
228 
229 // For shorter pattern matching code, this struct matches both the left and
230 // right hand sides of a binary operation and can put constants on the right
231 // if they appear on the left hand side of a commutative operation.
232 template <typename Left, typename Right>
233 struct BinopMatcher : public NodeMatcher {
BinopMatcherBinopMatcher234   explicit BinopMatcher(Node* node)
235       : NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) {
236     if (HasProperty(Operator::kCommutative)) PutConstantOnRight();
237   }
BinopMatcherBinopMatcher238   BinopMatcher(Node* node, bool allow_input_swap)
239       : NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) {
240     if (allow_input_swap) PutConstantOnRight();
241   }
242 
243   typedef Left LeftMatcher;
244   typedef Right RightMatcher;
245 
leftBinopMatcher246   const Left& left() const { return left_; }
rightBinopMatcher247   const Right& right() const { return right_; }
248 
IsFoldableBinopMatcher249   bool IsFoldable() const { return left().HasValue() && right().HasValue(); }
LeftEqualsRightBinopMatcher250   bool LeftEqualsRight() const { return left().node() == right().node(); }
251 
252  protected:
SwapInputsBinopMatcher253   void SwapInputs() {
254     std::swap(left_, right_);
255     node()->ReplaceInput(0, left().node());
256     node()->ReplaceInput(1, right().node());
257   }
258 
259  private:
PutConstantOnRightBinopMatcher260   void PutConstantOnRight() {
261     if (left().HasValue() && !right().HasValue()) {
262       SwapInputs();
263     }
264   }
265 
266   Left left_;
267   Right right_;
268 };
269 
270 typedef BinopMatcher<Int32Matcher, Int32Matcher> Int32BinopMatcher;
271 typedef BinopMatcher<Uint32Matcher, Uint32Matcher> Uint32BinopMatcher;
272 typedef BinopMatcher<Int64Matcher, Int64Matcher> Int64BinopMatcher;
273 typedef BinopMatcher<Uint64Matcher, Uint64Matcher> Uint64BinopMatcher;
274 typedef BinopMatcher<IntPtrMatcher, IntPtrMatcher> IntPtrBinopMatcher;
275 typedef BinopMatcher<UintPtrMatcher, UintPtrMatcher> UintPtrBinopMatcher;
276 typedef BinopMatcher<Float32Matcher, Float32Matcher> Float32BinopMatcher;
277 typedef BinopMatcher<Float64Matcher, Float64Matcher> Float64BinopMatcher;
278 typedef BinopMatcher<NumberMatcher, NumberMatcher> NumberBinopMatcher;
279 typedef BinopMatcher<HeapObjectMatcher, HeapObjectMatcher>
280     HeapObjectBinopMatcher;
281 
282 template <class BinopMatcher, IrOpcode::Value kMulOpcode,
283           IrOpcode::Value kShiftOpcode>
284 struct ScaleMatcher {
285   explicit ScaleMatcher(Node* node, bool allow_power_of_two_plus_one = false)
286       : scale_(-1), power_of_two_plus_one_(false) {
287     if (node->InputCount() < 2) return;
288     BinopMatcher m(node);
289     if (node->opcode() == kShiftOpcode) {
290       if (m.right().HasValue()) {
291         typename BinopMatcher::RightMatcher::ValueType value =
292             m.right().Value();
293         if (value >= 0 && value <= 3) {
294           scale_ = static_cast<int>(value);
295         }
296       }
297     } else if (node->opcode() == kMulOpcode) {
298       if (m.right().HasValue()) {
299         typename BinopMatcher::RightMatcher::ValueType value =
300             m.right().Value();
301         if (value == 1) {
302           scale_ = 0;
303         } else if (value == 2) {
304           scale_ = 1;
305         } else if (value == 4) {
306           scale_ = 2;
307         } else if (value == 8) {
308           scale_ = 3;
309         } else if (allow_power_of_two_plus_one) {
310           if (value == 3) {
311             scale_ = 1;
312             power_of_two_plus_one_ = true;
313           } else if (value == 5) {
314             scale_ = 2;
315             power_of_two_plus_one_ = true;
316           } else if (value == 9) {
317             scale_ = 3;
318             power_of_two_plus_one_ = true;
319           }
320         }
321       }
322     }
323   }
324 
matchesScaleMatcher325   bool matches() const { return scale_ != -1; }
scaleScaleMatcher326   int scale() const { return scale_; }
power_of_two_plus_oneScaleMatcher327   bool power_of_two_plus_one() const { return power_of_two_plus_one_; }
328 
329  private:
330   int scale_;
331   bool power_of_two_plus_one_;
332 };
333 
334 typedef ScaleMatcher<Int32BinopMatcher, IrOpcode::kInt32Mul,
335                      IrOpcode::kWord32Shl> Int32ScaleMatcher;
336 typedef ScaleMatcher<Int64BinopMatcher, IrOpcode::kInt64Mul,
337                      IrOpcode::kWord64Shl> Int64ScaleMatcher;
338 
339 template <class BinopMatcher, IrOpcode::Value AddOpcode,
340           IrOpcode::Value SubOpcode, IrOpcode::Value kMulOpcode,
341           IrOpcode::Value kShiftOpcode>
342 struct AddMatcher : public BinopMatcher {
343   static const IrOpcode::Value kAddOpcode = AddOpcode;
344   static const IrOpcode::Value kSubOpcode = SubOpcode;
345   typedef ScaleMatcher<BinopMatcher, kMulOpcode, kShiftOpcode> Matcher;
346 
AddMatcherAddMatcher347   AddMatcher(Node* node, bool allow_input_swap)
348       : BinopMatcher(node, allow_input_swap),
349         scale_(-1),
350         power_of_two_plus_one_(false) {
351     Initialize(node, allow_input_swap);
352   }
AddMatcherAddMatcher353   explicit AddMatcher(Node* node)
354       : BinopMatcher(node, node->op()->HasProperty(Operator::kCommutative)),
355         scale_(-1),
356         power_of_two_plus_one_(false) {
357     Initialize(node, node->op()->HasProperty(Operator::kCommutative));
358   }
359 
HasIndexInputAddMatcher360   bool HasIndexInput() const { return scale_ != -1; }
IndexInputAddMatcher361   Node* IndexInput() const {
362     DCHECK(HasIndexInput());
363     return this->left().node()->InputAt(0);
364   }
scaleAddMatcher365   int scale() const {
366     DCHECK(HasIndexInput());
367     return scale_;
368   }
power_of_two_plus_oneAddMatcher369   bool power_of_two_plus_one() const { return power_of_two_plus_one_; }
370 
371  private:
InitializeAddMatcher372   void Initialize(Node* node, bool allow_input_swap) {
373     Matcher left_matcher(this->left().node(), true);
374     if (left_matcher.matches()) {
375       scale_ = left_matcher.scale();
376       power_of_two_plus_one_ = left_matcher.power_of_two_plus_one();
377       return;
378     }
379 
380     if (!allow_input_swap) {
381       return;
382     }
383 
384     Matcher right_matcher(this->right().node(), true);
385     if (right_matcher.matches()) {
386       scale_ = right_matcher.scale();
387       power_of_two_plus_one_ = right_matcher.power_of_two_plus_one();
388       this->SwapInputs();
389       return;
390     }
391 
392     if (this->right().opcode() == kAddOpcode &&
393         this->left().opcode() != kAddOpcode) {
394       this->SwapInputs();
395     } else if (this->right().opcode() == kSubOpcode &&
396                this->left().opcode() != kSubOpcode) {
397       this->SwapInputs();
398     }
399   }
400 
401   int scale_;
402   bool power_of_two_plus_one_;
403 };
404 
405 typedef AddMatcher<Int32BinopMatcher, IrOpcode::kInt32Add, IrOpcode::kInt32Sub,
406                    IrOpcode::kInt32Mul, IrOpcode::kWord32Shl>
407     Int32AddMatcher;
408 typedef AddMatcher<Int64BinopMatcher, IrOpcode::kInt64Add, IrOpcode::kInt64Sub,
409                    IrOpcode::kInt64Mul, IrOpcode::kWord64Shl>
410     Int64AddMatcher;
411 
412 enum DisplacementMode { kPositiveDisplacement, kNegativeDisplacement };
413 
414 enum class AddressOption : uint8_t {
415   kAllowNone = 0u,
416   kAllowInputSwap = 1u << 0,
417   kAllowScale = 1u << 1,
418   kAllowAll = kAllowInputSwap | kAllowScale
419 };
420 
421 typedef base::Flags<AddressOption, uint8_t> AddressOptions;
422 DEFINE_OPERATORS_FOR_FLAGS(AddressOptions);
423 
424 template <class AddMatcher>
425 struct BaseWithIndexAndDisplacementMatcher {
BaseWithIndexAndDisplacementMatcherBaseWithIndexAndDisplacementMatcher426   BaseWithIndexAndDisplacementMatcher(Node* node, AddressOptions options)
427       : matches_(false),
428         index_(nullptr),
429         scale_(0),
430         base_(nullptr),
431         displacement_(nullptr),
432         displacement_mode_(kPositiveDisplacement) {
433     Initialize(node, options);
434   }
435 
BaseWithIndexAndDisplacementMatcherBaseWithIndexAndDisplacementMatcher436   explicit BaseWithIndexAndDisplacementMatcher(Node* node)
437       : matches_(false),
438         index_(nullptr),
439         scale_(0),
440         base_(nullptr),
441         displacement_(nullptr),
442         displacement_mode_(kPositiveDisplacement) {
443     Initialize(node, AddressOption::kAllowScale |
444                          (node->op()->HasProperty(Operator::kCommutative)
445                               ? AddressOption::kAllowInputSwap
446                               : AddressOption::kAllowNone));
447   }
448 
matchesBaseWithIndexAndDisplacementMatcher449   bool matches() const { return matches_; }
indexBaseWithIndexAndDisplacementMatcher450   Node* index() const { return index_; }
scaleBaseWithIndexAndDisplacementMatcher451   int scale() const { return scale_; }
baseBaseWithIndexAndDisplacementMatcher452   Node* base() const { return base_; }
displacementBaseWithIndexAndDisplacementMatcher453   Node* displacement() const { return displacement_; }
displacement_modeBaseWithIndexAndDisplacementMatcher454   DisplacementMode displacement_mode() const { return displacement_mode_; }
455 
456  private:
457   bool matches_;
458   Node* index_;
459   int scale_;
460   Node* base_;
461   Node* displacement_;
462   DisplacementMode displacement_mode_;
463 
InitializeBaseWithIndexAndDisplacementMatcher464   void Initialize(Node* node, AddressOptions options) {
465     // The BaseWithIndexAndDisplacementMatcher canonicalizes the order of
466     // displacements and scale factors that are used as inputs, so instead of
467     // enumerating all possible patterns by brute force, checking for node
468     // clusters using the following templates in the following order suffices to
469     // find all of the interesting cases (S = index * scale, B = base input, D =
470     // displacement input):
471     // (S + (B + D))
472     // (S + (B + B))
473     // (S + D)
474     // (S + B)
475     // ((S + D) + B)
476     // ((S + B) + D)
477     // ((B + D) + B)
478     // ((B + B) + D)
479     // (B + D)
480     // (B + B)
481     if (node->InputCount() < 2) return;
482     AddMatcher m(node, options & AddressOption::kAllowInputSwap);
483     Node* left = m.left().node();
484     Node* right = m.right().node();
485     Node* displacement = nullptr;
486     Node* base = nullptr;
487     Node* index = nullptr;
488     Node* scale_expression = nullptr;
489     bool power_of_two_plus_one = false;
490     DisplacementMode displacement_mode = kPositiveDisplacement;
491     int scale = 0;
492     if (m.HasIndexInput() && left->OwnedByAddressingOperand()) {
493       index = m.IndexInput();
494       scale = m.scale();
495       scale_expression = left;
496       power_of_two_plus_one = m.power_of_two_plus_one();
497       bool match_found = false;
498       if (right->opcode() == AddMatcher::kSubOpcode &&
499           right->OwnedByAddressingOperand()) {
500         AddMatcher right_matcher(right);
501         if (right_matcher.right().HasValue()) {
502           // (S + (B - D))
503           base = right_matcher.left().node();
504           displacement = right_matcher.right().node();
505           displacement_mode = kNegativeDisplacement;
506           match_found = true;
507         }
508       }
509       if (!match_found) {
510         if (right->opcode() == AddMatcher::kAddOpcode &&
511             right->OwnedByAddressingOperand()) {
512           AddMatcher right_matcher(right);
513           if (right_matcher.right().HasValue()) {
514             // (S + (B + D))
515             base = right_matcher.left().node();
516             displacement = right_matcher.right().node();
517           } else {
518             // (S + (B + B))
519             base = right;
520           }
521         } else if (m.right().HasValue()) {
522           // (S + D)
523           displacement = right;
524         } else {
525           // (S + B)
526           base = right;
527         }
528       }
529     } else {
530       bool match_found = false;
531       if (left->opcode() == AddMatcher::kSubOpcode &&
532           left->OwnedByAddressingOperand()) {
533         AddMatcher left_matcher(left);
534         Node* left_left = left_matcher.left().node();
535         Node* left_right = left_matcher.right().node();
536         if (left_matcher.right().HasValue()) {
537           if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) {
538             // ((S - D) + B)
539             index = left_matcher.IndexInput();
540             scale = left_matcher.scale();
541             scale_expression = left_left;
542             power_of_two_plus_one = left_matcher.power_of_two_plus_one();
543             displacement = left_right;
544             displacement_mode = kNegativeDisplacement;
545             base = right;
546           } else {
547             // ((B - D) + B)
548             index = left_left;
549             displacement = left_right;
550             displacement_mode = kNegativeDisplacement;
551             base = right;
552           }
553           match_found = true;
554         }
555       }
556       if (!match_found) {
557         if (left->opcode() == AddMatcher::kAddOpcode &&
558             left->OwnedByAddressingOperand()) {
559           AddMatcher left_matcher(left);
560           Node* left_left = left_matcher.left().node();
561           Node* left_right = left_matcher.right().node();
562           if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) {
563             if (left_matcher.right().HasValue()) {
564               // ((S + D) + B)
565               index = left_matcher.IndexInput();
566               scale = left_matcher.scale();
567               scale_expression = left_left;
568               power_of_two_plus_one = left_matcher.power_of_two_plus_one();
569               displacement = left_right;
570               base = right;
571             } else if (m.right().HasValue()) {
572               if (left->OwnedBy(node)) {
573                 // ((S + B) + D)
574                 index = left_matcher.IndexInput();
575                 scale = left_matcher.scale();
576                 scale_expression = left_left;
577                 power_of_two_plus_one = left_matcher.power_of_two_plus_one();
578                 base = left_right;
579                 displacement = right;
580               } else {
581                 // (B + D)
582                 base = left;
583                 displacement = right;
584               }
585             } else {
586               // (B + B)
587               index = left;
588               base = right;
589             }
590           } else {
591             if (left_matcher.right().HasValue()) {
592               // ((B + D) + B)
593               index = left_left;
594               displacement = left_right;
595               base = right;
596             } else if (m.right().HasValue()) {
597               if (left->OwnedBy(node)) {
598                 // ((B + B) + D)
599                 index = left_left;
600                 base = left_right;
601                 displacement = right;
602               } else {
603                 // (B + D)
604                 base = left;
605                 displacement = right;
606               }
607             } else {
608               // (B + B)
609               index = left;
610               base = right;
611             }
612           }
613         } else {
614           if (m.right().HasValue()) {
615             // (B + D)
616             base = left;
617             displacement = right;
618           } else {
619             // (B + B)
620             base = left;
621             index = right;
622           }
623         }
624       }
625     }
626     int64_t value = 0;
627     if (displacement != nullptr) {
628       switch (displacement->opcode()) {
629         case IrOpcode::kInt32Constant: {
630           value = OpParameter<int32_t>(displacement);
631           break;
632         }
633         case IrOpcode::kInt64Constant: {
634           value = OpParameter<int64_t>(displacement);
635           break;
636         }
637         default:
638           UNREACHABLE();
639           break;
640       }
641       if (value == 0) {
642         displacement = nullptr;
643       }
644     }
645     if (power_of_two_plus_one) {
646       if (base != nullptr) {
647         // If the scale requires explicitly using the index as the base, but a
648         // base is already part of the match, then the (1 << N + 1) scale factor
649         // can't be folded into the match and the entire index * scale
650         // calculation must be computed separately.
651         index = scale_expression;
652         scale = 0;
653       } else {
654         base = index;
655       }
656     }
657     if (!(options & AddressOption::kAllowScale) && scale != 0) {
658       index = scale_expression;
659       scale = 0;
660     }
661     base_ = base;
662     displacement_ = displacement;
663     displacement_mode_ = displacement_mode;
664     index_ = index;
665     scale_ = scale;
666     matches_ = true;
667   }
668 };
669 
670 typedef BaseWithIndexAndDisplacementMatcher<Int32AddMatcher>
671     BaseWithIndexAndDisplacement32Matcher;
672 typedef BaseWithIndexAndDisplacementMatcher<Int64AddMatcher>
673     BaseWithIndexAndDisplacement64Matcher;
674 
675 struct V8_EXPORT_PRIVATE BranchMatcher : public NON_EXPORTED_BASE(NodeMatcher) {
676   explicit BranchMatcher(Node* branch);
677 
MatchedBranchMatcher678   bool Matched() const { return if_true_ && if_false_; }
679 
BranchBranchMatcher680   Node* Branch() const { return node(); }
IfTrueBranchMatcher681   Node* IfTrue() const { return if_true_; }
IfFalseBranchMatcher682   Node* IfFalse() const { return if_false_; }
683 
684  private:
685   Node* if_true_;
686   Node* if_false_;
687 };
688 
689 struct V8_EXPORT_PRIVATE DiamondMatcher
690     : public NON_EXPORTED_BASE(NodeMatcher) {
691   explicit DiamondMatcher(Node* merge);
692 
MatchedDiamondMatcher693   bool Matched() const { return branch_; }
IfProjectionsAreOwnedDiamondMatcher694   bool IfProjectionsAreOwned() const {
695     return if_true_->OwnedBy(node()) && if_false_->OwnedBy(node());
696   }
697 
BranchDiamondMatcher698   Node* Branch() const { return branch_; }
IfTrueDiamondMatcher699   Node* IfTrue() const { return if_true_; }
IfFalseDiamondMatcher700   Node* IfFalse() const { return if_false_; }
MergeDiamondMatcher701   Node* Merge() const { return node(); }
702 
TrueInputOfDiamondMatcher703   Node* TrueInputOf(Node* phi) const {
704     DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
705     DCHECK_EQ(3, phi->InputCount());
706     DCHECK_EQ(Merge(), phi->InputAt(2));
707     return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 0 : 1);
708   }
709 
FalseInputOfDiamondMatcher710   Node* FalseInputOf(Node* phi) const {
711     DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
712     DCHECK_EQ(3, phi->InputCount());
713     DCHECK_EQ(Merge(), phi->InputAt(2));
714     return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 1 : 0);
715   }
716 
717  private:
718   Node* branch_;
719   Node* if_true_;
720   Node* if_false_;
721 };
722 
723 }  // namespace compiler
724 }  // namespace internal
725 }  // namespace v8
726 
727 #endif  // V8_COMPILER_NODE_MATCHERS_H_
728