• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_EXAMPLE_EXAMPLES_H_
28 #define VIXL_EXAMPLE_EXAMPLES_H_
29 
30 #include "aarch64/debugger-aarch64.h"
31 #include "aarch64/macro-assembler-aarch64.h"
32 
33 using namespace vixl;
34 using namespace vixl::aarch64;
35 
36 // Generate a function with the following prototype:
37 //   uint64_t factorial(uint64_t n)
38 //
39 // It provides an iterative implementation of the factorial computation.
40 void GenerateFactorial(MacroAssembler* masm);
41 
42 // Generate a function with the following prototype:
43 //   uint64_t factorial_rec(uint64_t n)
44 //
45 // It provides a recursive implementation of the factorial computation.
46 void GenerateFactorialRec(MacroAssembler* masm);
47 
48 // Generate a function with the following prototype:
49 //   void neon_matrix_multiply(float* dst, float* mat1, float* mat2)
50 //
51 // It provides an implementation of a column-major 4x4 matrix multiplication.
52 void GenerateNEONMatrixMultiply(MacroAssembler* masm);
53 
54 // Generate a function with the following prototype:
55 //   void add2_vectors(int8_t *vecA, const int8_t *vecB, unsigned size)
56 //
57 // Demonstrate how to add two vectors using NEON. The result is stored in vecA.
58 void GenerateAdd2Vectors(MacroAssembler* masm);
59 
60 // Generate a function with the following prototype:
61 //   double add3_double(double x, double y, double z)
62 //
63 // This example is intended to show the calling convention with double
64 // floating point arguments.
65 void GenerateAdd3Double(MacroAssembler* masm);
66 
67 // Generate a function with the following prototype:
68 //   double add4_double(uint64_t a, double b, uint64_t c, double d)
69 //
70 // The generated function pictures the calling convention for functions
71 // mixing integer and floating point arguments.
72 void GenerateAdd4Double(MacroAssembler* masm);
73 
74 // Generate a function with the following prototype:
75 //   uint32_t sum_array(uint8_t* array, uint32_t size)
76 //
77 // The generated function computes the sum of all the elements in
78 // the given array.
79 void GenerateSumArray(MacroAssembler* masm);
80 
81 // Generate a function with the following prototype:
82 //   int64_t abs(int64_t x)
83 //
84 // The generated function computes the absolute value of an integer.
85 void GenerateAbs(MacroAssembler* masm);
86 
87 // Generate a function with the following prototype:
88 //   uint64_t check_bounds(uint64_t value, uint64_t low, uint64_t high)
89 //
90 // The goal of this example is to illustrate the use of conditional
91 // instructions. The generated function will check that the given value is
92 // contained within the given boundaries. It returns 1 if 'value' is between
93 // 'low' and 'high' (ie. low <= value <= high).
94 void GenerateCheckBounds(MacroAssembler* masm);
95 
96 // Generate a function with the following prototype:
97 //   uint32_t crc32(const char *msg, size_t msg_length)
98 //
99 // The generated function computes the CRC-32 checksum on the input msg
100 // with specified length, and returns the result.
101 void GenerateCrc32(MacroAssembler* masm);
102 
103 // Generate a function which uses the stack to swap the content of the x0, x1,
104 // x2 and x3 registers.
105 void GenerateSwap4(MacroAssembler* masm);
106 
107 // Generate a function which swaps the content of w0 and w1.
108 // This example demonstrates some interesting features of VIXL's stack
109 // operations.
110 void GenerateSwapInt32(MacroAssembler* masm);
111 
112 // Generate a function with the following prototype:
113 //   uint64_t demo_function(uint64_t x)
114 //
115 // This is the example used in doc/getting-started-aarch64.txt
116 void GenerateDemoFunction(MacroAssembler* masm);
117 
118 // This function generates and runs code that uses literals to sum the `a` and
119 // `b` inputs.
120 int64_t LiteralExample(int64_t a, int64_t b);
121 
122 // Generate a few examples of runtime calls.
123 void GenerateRuntimeCallExamples(MacroAssembler* masm);
124 
125 #endif  // VIXL_EXAMPLE_EXAMPLES_H_
126