1 // Copyright 2014, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include <cmath>
28
29 #include "test-runner.h"
30 #include "test-utils-aarch64.h"
31
32 #include "aarch64/cpu-aarch64.h"
33 #include "aarch64/disasm-aarch64.h"
34 #include "aarch64/macro-assembler-aarch64.h"
35 #include "aarch64/simulator-aarch64.h"
36
37 #define __ masm->
38
39 namespace vixl {
40 namespace aarch64 {
41
42
43 // This value is a signalling NaN as both a double and as a float (taking the
44 // least-significant word).
45 const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f800001));
46 const float kFP32SignallingNaN = RawbitsToFloat(0x7f800001);
47
48 // A similar value, but as a quiet NaN.
49 const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc00001));
50 const float kFP32QuietNaN = RawbitsToFloat(0x7fc00001);
51
52
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)53 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
54 if (result != expected) {
55 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
56 expected,
57 result);
58 }
59
60 return expected == result;
61 }
62
63
Equal64(uint64_t expected,const RegisterDump *,uint64_t result)64 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
65 if (result != expected) {
66 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
67 expected,
68 result);
69 }
70
71 return expected == result;
72 }
73
74
Equal128(vec128_t expected,const RegisterDump *,vec128_t result)75 bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) {
76 if ((result.h != expected.h) || (result.l != expected.l)) {
77 printf("Expected 0x%016" PRIx64 "%016" PRIx64
78 "\t "
79 "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
80 expected.h,
81 expected.l,
82 result.h,
83 result.l);
84 }
85
86 return ((expected.h == result.h) && (expected.l == result.l));
87 }
88
89
EqualFP32(float expected,const RegisterDump *,float result)90 bool EqualFP32(float expected, const RegisterDump*, float result) {
91 if (FloatToRawbits(expected) == FloatToRawbits(result)) {
92 return true;
93 } else {
94 if (std::isnan(expected) || (expected == 0.0)) {
95 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
96 FloatToRawbits(expected),
97 FloatToRawbits(result));
98 } else {
99 printf("Expected %.9f (0x%08" PRIx32
100 ")\t "
101 "Found %.9f (0x%08" PRIx32 ")\n",
102 expected,
103 FloatToRawbits(expected),
104 result,
105 FloatToRawbits(result));
106 }
107 return false;
108 }
109 }
110
111
EqualFP64(double expected,const RegisterDump *,double result)112 bool EqualFP64(double expected, const RegisterDump*, double result) {
113 if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
114 return true;
115 }
116
117 if (std::isnan(expected) || (expected == 0.0)) {
118 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
119 DoubleToRawbits(expected),
120 DoubleToRawbits(result));
121 } else {
122 printf("Expected %.17f (0x%016" PRIx64
123 ")\t "
124 "Found %.17f (0x%016" PRIx64 ")\n",
125 expected,
126 DoubleToRawbits(expected),
127 result,
128 DoubleToRawbits(result));
129 }
130 return false;
131 }
132
133
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)134 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
135 VIXL_ASSERT(reg.Is32Bits());
136 // Retrieve the corresponding X register so we can check that the upper part
137 // was properly cleared.
138 int64_t result_x = core->xreg(reg.GetCode());
139 if ((result_x & 0xffffffff00000000) != 0) {
140 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
141 expected,
142 result_x);
143 return false;
144 }
145 uint32_t result_w = core->wreg(reg.GetCode());
146 return Equal32(expected, core, result_w);
147 }
148
149
Equal64(uint64_t expected,const RegisterDump * core,const Register & reg)150 bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) {
151 VIXL_ASSERT(reg.Is64Bits());
152 uint64_t result = core->xreg(reg.GetCode());
153 return Equal64(expected, core, result);
154 }
155
156
Equal128(uint64_t expected_h,uint64_t expected_l,const RegisterDump * core,const VRegister & vreg)157 bool Equal128(uint64_t expected_h,
158 uint64_t expected_l,
159 const RegisterDump* core,
160 const VRegister& vreg) {
161 VIXL_ASSERT(vreg.Is128Bits());
162 vec128_t expected = {expected_l, expected_h};
163 vec128_t result = core->qreg(vreg.GetCode());
164 return Equal128(expected, core, result);
165 }
166
167
EqualFP32(float expected,const RegisterDump * core,const FPRegister & fpreg)168 bool EqualFP32(float expected,
169 const RegisterDump* core,
170 const FPRegister& fpreg) {
171 VIXL_ASSERT(fpreg.Is32Bits());
172 // Retrieve the corresponding D register so we can check that the upper part
173 // was properly cleared.
174 uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
175 if ((result_64 & 0xffffffff00000000) != 0) {
176 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
177 FloatToRawbits(expected),
178 expected,
179 result_64);
180 return false;
181 }
182
183 return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
184 }
185
186
EqualFP64(double expected,const RegisterDump * core,const FPRegister & fpreg)187 bool EqualFP64(double expected,
188 const RegisterDump* core,
189 const FPRegister& fpreg) {
190 VIXL_ASSERT(fpreg.Is64Bits());
191 return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
192 }
193
194
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1)195 bool Equal64(const Register& reg0,
196 const RegisterDump* core,
197 const Register& reg1) {
198 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
199 int64_t expected = core->xreg(reg0.GetCode());
200 int64_t result = core->xreg(reg1.GetCode());
201 return Equal64(expected, core, result);
202 }
203
204
Equal64(uint64_t expected,const RegisterDump * core,const VRegister & vreg)205 bool Equal64(uint64_t expected,
206 const RegisterDump* core,
207 const VRegister& vreg) {
208 VIXL_ASSERT(vreg.Is64Bits());
209 uint64_t result = core->dreg_bits(vreg.GetCode());
210 return Equal64(expected, core, result);
211 }
212
213
FlagN(uint32_t flags)214 static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
215
216
FlagZ(uint32_t flags)217 static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
218
219
FlagC(uint32_t flags)220 static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
221
222
FlagV(uint32_t flags)223 static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
224
225
EqualNzcv(uint32_t expected,uint32_t result)226 bool EqualNzcv(uint32_t expected, uint32_t result) {
227 VIXL_ASSERT((expected & ~NZCVFlag) == 0);
228 VIXL_ASSERT((result & ~NZCVFlag) == 0);
229 if (result != expected) {
230 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
231 FlagN(expected),
232 FlagZ(expected),
233 FlagC(expected),
234 FlagV(expected),
235 FlagN(result),
236 FlagZ(result),
237 FlagC(result),
238 FlagV(result));
239 return false;
240 }
241
242 return true;
243 }
244
245
EqualRegisters(const RegisterDump * a,const RegisterDump * b)246 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
247 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
248 if (a->xreg(i) != b->xreg(i)) {
249 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
250 i,
251 a->xreg(i),
252 b->xreg(i));
253 return false;
254 }
255 }
256
257 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
258 uint64_t a_bits = a->dreg_bits(i);
259 uint64_t b_bits = b->dreg_bits(i);
260 if (a_bits != b_bits) {
261 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
262 i,
263 a_bits,
264 b_bits);
265 return false;
266 }
267 }
268
269 return true;
270 }
271
272
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)273 RegList PopulateRegisterArray(Register* w,
274 Register* x,
275 Register* r,
276 int reg_size,
277 int reg_count,
278 RegList allowed) {
279 RegList list = 0;
280 int i = 0;
281 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
282 if (((UINT64_C(1) << n) & allowed) != 0) {
283 // Only assign allowed registers.
284 if (r) {
285 r[i] = Register(n, reg_size);
286 }
287 if (x) {
288 x[i] = Register(n, kXRegSize);
289 }
290 if (w) {
291 w[i] = Register(n, kWRegSize);
292 }
293 list |= (UINT64_C(1) << n);
294 i++;
295 }
296 }
297 // Check that we got enough registers.
298 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
299
300 return list;
301 }
302
303
PopulateFPRegisterArray(FPRegister * s,FPRegister * d,FPRegister * v,int reg_size,int reg_count,RegList allowed)304 RegList PopulateFPRegisterArray(FPRegister* s,
305 FPRegister* d,
306 FPRegister* v,
307 int reg_size,
308 int reg_count,
309 RegList allowed) {
310 RegList list = 0;
311 int i = 0;
312 for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
313 if (((UINT64_C(1) << n) & allowed) != 0) {
314 // Only assigned allowed registers.
315 if (v) {
316 v[i] = FPRegister(n, reg_size);
317 }
318 if (d) {
319 d[i] = FPRegister(n, kDRegSize);
320 }
321 if (s) {
322 s[i] = FPRegister(n, kSRegSize);
323 }
324 list |= (UINT64_C(1) << n);
325 i++;
326 }
327 }
328 // Check that we got enough registers.
329 VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
330
331 return list;
332 }
333
334
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)335 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
336 Register first = NoReg;
337 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
338 if (reg_list & (UINT64_C(1) << i)) {
339 Register xn(i, kXRegSize);
340 // We should never write into sp here.
341 VIXL_ASSERT(!xn.Is(sp));
342 if (!xn.IsZero()) {
343 if (!first.IsValid()) {
344 // This is the first register we've hit, so construct the literal.
345 __ Mov(xn, value);
346 first = xn;
347 } else {
348 // We've already loaded the literal, so re-use the value already
349 // loaded into the first register we hit.
350 __ Mov(xn, first);
351 }
352 }
353 }
354 }
355 }
356
357
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)358 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
359 FPRegister first = NoFPReg;
360 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
361 if (reg_list & (UINT64_C(1) << i)) {
362 FPRegister dn(i, kDRegSize);
363 if (!first.IsValid()) {
364 // This is the first register we've hit, so construct the literal.
365 __ Fmov(dn, value);
366 first = dn;
367 } else {
368 // We've already loaded the literal, so re-use the value already loaded
369 // into the first register we hit.
370 __ Fmov(dn, first);
371 }
372 }
373 }
374 }
375
376
Clobber(MacroAssembler * masm,CPURegList reg_list)377 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
378 if (reg_list.GetType() == CPURegister::kRegister) {
379 // This will always clobber X registers.
380 Clobber(masm, reg_list.GetList());
381 } else if (reg_list.GetType() == CPURegister::kVRegister) {
382 // This will always clobber D registers.
383 ClobberFP(masm, reg_list.GetList());
384 } else {
385 VIXL_UNREACHABLE();
386 }
387 }
388
389
Dump(MacroAssembler * masm)390 void RegisterDump::Dump(MacroAssembler* masm) {
391 VIXL_ASSERT(__ StackPointer().Is(sp));
392
393 // Ensure that we don't unintentionally clobber any registers.
394 UseScratchRegisterScope temps(masm);
395 temps.ExcludeAll();
396
397 // Preserve some temporary registers.
398 Register dump_base = x0;
399 Register dump = x1;
400 Register tmp = x2;
401 Register dump_base_w = dump_base.W();
402 Register dump_w = dump.W();
403 Register tmp_w = tmp.W();
404
405 // Offsets into the dump_ structure.
406 const int x_offset = offsetof(dump_t, x_);
407 const int w_offset = offsetof(dump_t, w_);
408 const int d_offset = offsetof(dump_t, d_);
409 const int s_offset = offsetof(dump_t, s_);
410 const int q_offset = offsetof(dump_t, q_);
411 const int sp_offset = offsetof(dump_t, sp_);
412 const int wsp_offset = offsetof(dump_t, wsp_);
413 const int flags_offset = offsetof(dump_t, flags_);
414
415 __ Push(xzr, dump_base, dump, tmp);
416
417 // Load the address where we will dump the state.
418 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
419
420 // Dump the stack pointer (sp and wsp).
421 // The stack pointer cannot be stored directly; it needs to be moved into
422 // another register first. Also, we pushed four X registers, so we need to
423 // compensate here.
424 __ Add(tmp, sp, 4 * kXRegSizeInBytes);
425 __ Str(tmp, MemOperand(dump_base, sp_offset));
426 __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
427 __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
428
429 // Dump X registers.
430 __ Add(dump, dump_base, x_offset);
431 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
432 __ Stp(Register::GetXRegFromCode(i),
433 Register::GetXRegFromCode(i + 1),
434 MemOperand(dump, i * kXRegSizeInBytes));
435 }
436
437 // Dump W registers.
438 __ Add(dump, dump_base, w_offset);
439 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
440 __ Stp(Register::GetWRegFromCode(i),
441 Register::GetWRegFromCode(i + 1),
442 MemOperand(dump, i * kWRegSizeInBytes));
443 }
444
445 // Dump D registers.
446 __ Add(dump, dump_base, d_offset);
447 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
448 __ Stp(FPRegister::GetDRegFromCode(i),
449 FPRegister::GetDRegFromCode(i + 1),
450 MemOperand(dump, i * kDRegSizeInBytes));
451 }
452
453 // Dump S registers.
454 __ Add(dump, dump_base, s_offset);
455 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
456 __ Stp(FPRegister::GetSRegFromCode(i),
457 FPRegister::GetSRegFromCode(i + 1),
458 MemOperand(dump, i * kSRegSizeInBytes));
459 }
460
461 // Dump Q registers.
462 __ Add(dump, dump_base, q_offset);
463 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) {
464 __ Stp(VRegister::GetQRegFromCode(i),
465 VRegister::GetQRegFromCode(i + 1),
466 MemOperand(dump, i * kQRegSizeInBytes));
467 }
468
469 // Dump the flags.
470 __ Mrs(tmp, NZCV);
471 __ Str(tmp, MemOperand(dump_base, flags_offset));
472
473 // To dump the values that were in tmp amd dump, we need a new scratch
474 // register. We can use any of the already dumped registers since we can
475 // easily restore them.
476 Register dump2_base = x10;
477 Register dump2 = x11;
478 VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
479
480 // Don't lose the dump_ address.
481 __ Mov(dump2_base, dump_base);
482
483 __ Pop(tmp, dump, dump_base, xzr);
484
485 __ Add(dump2, dump2_base, w_offset);
486 __ Str(dump_base_w,
487 MemOperand(dump2, dump_base.GetCode() * kWRegSizeInBytes));
488 __ Str(dump_w, MemOperand(dump2, dump.GetCode() * kWRegSizeInBytes));
489 __ Str(tmp_w, MemOperand(dump2, tmp.GetCode() * kWRegSizeInBytes));
490
491 __ Add(dump2, dump2_base, x_offset);
492 __ Str(dump_base, MemOperand(dump2, dump_base.GetCode() * kXRegSizeInBytes));
493 __ Str(dump, MemOperand(dump2, dump.GetCode() * kXRegSizeInBytes));
494 __ Str(tmp, MemOperand(dump2, tmp.GetCode() * kXRegSizeInBytes));
495
496 // Finally, restore dump2_base and dump2.
497 __ Ldr(dump2_base,
498 MemOperand(dump2, dump2_base.GetCode() * kXRegSizeInBytes));
499 __ Ldr(dump2, MemOperand(dump2, dump2.GetCode() * kXRegSizeInBytes));
500
501 completed_ = true;
502 }
503
504 } // namespace aarch64
505 } // namespace vixl
506