1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <math.h>
18 #include <stdlib.h>
19 #include <string.h>
20
21 #include <utils/Log.h>
22
23 #include <SkMatrix.h>
24
25 #include "Matrix.h"
26
27 namespace android {
28 namespace uirenderer {
29
30 ///////////////////////////////////////////////////////////////////////////////
31 // Defines
32 ///////////////////////////////////////////////////////////////////////////////
33
34 static const float EPSILON = 0.0000001f;
35
36 ///////////////////////////////////////////////////////////////////////////////
37 // Matrix
38 ///////////////////////////////////////////////////////////////////////////////
39
identity()40 const Matrix4& Matrix4::identity() {
41 static Matrix4 sIdentity;
42 return sIdentity;
43 }
44
loadIdentity()45 void Matrix4::loadIdentity() {
46 data[kScaleX] = 1.0f;
47 data[kSkewY] = 0.0f;
48 data[2] = 0.0f;
49 data[kPerspective0] = 0.0f;
50
51 data[kSkewX] = 0.0f;
52 data[kScaleY] = 1.0f;
53 data[6] = 0.0f;
54 data[kPerspective1] = 0.0f;
55
56 data[8] = 0.0f;
57 data[9] = 0.0f;
58 data[kScaleZ] = 1.0f;
59 data[11] = 0.0f;
60
61 data[kTranslateX] = 0.0f;
62 data[kTranslateY] = 0.0f;
63 data[kTranslateZ] = 0.0f;
64 data[kPerspective2] = 1.0f;
65
66 mType = kTypeIdentity | kTypeRectToRect;
67 }
68
isZero(float f)69 static bool isZero(float f) {
70 return fabs(f) <= EPSILON;
71 }
72
getType() const73 uint8_t Matrix4::getType() const {
74 if (mType & kTypeUnknown) {
75 mType = kTypeIdentity;
76
77 if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
78 data[kPerspective2] != 1.0f) {
79 mType |= kTypePerspective;
80 }
81
82 if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
83 mType |= kTypeTranslate;
84 }
85
86 float m00 = data[kScaleX];
87 float m01 = data[kSkewX];
88 float m10 = data[kSkewY];
89 float m11 = data[kScaleY];
90 float m32 = data[kTranslateZ];
91
92 if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
93 mType |= kTypeAffine;
94 }
95
96 if (m00 != 1.0f || m11 != 1.0f) {
97 mType |= kTypeScale;
98 }
99
100 // The following section determines whether the matrix will preserve
101 // rectangles. For instance, a rectangle transformed by a pure
102 // translation matrix will result in a rectangle. A rectangle
103 // transformed by a 45 degrees rotation matrix is not a rectangle.
104 // If the matrix has a perspective component then we already know
105 // it doesn't preserve rectangles.
106 if (!(mType & kTypePerspective)) {
107 if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
108 (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
109 mType |= kTypeRectToRect;
110 }
111 }
112 }
113 return mType;
114 }
115
getGeometryType() const116 uint8_t Matrix4::getGeometryType() const {
117 return getType() & sGeometryMask;
118 }
119
rectToRect() const120 bool Matrix4::rectToRect() const {
121 return getType() & kTypeRectToRect;
122 }
123
positiveScale() const124 bool Matrix4::positiveScale() const {
125 return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
126 }
127
changesBounds() const128 bool Matrix4::changesBounds() const {
129 return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
130 }
131
isPureTranslate() const132 bool Matrix4::isPureTranslate() const {
133 // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
134 // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
135 return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
136 }
137
isSimple() const138 bool Matrix4::isSimple() const {
139 return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
140 }
141
isIdentity() const142 bool Matrix4::isIdentity() const {
143 return getGeometryType() == kTypeIdentity;
144 }
145
isPerspective() const146 bool Matrix4::isPerspective() const {
147 return getType() & kTypePerspective;
148 }
149
load(const float * v)150 void Matrix4::load(const float* v) {
151 memcpy(data, v, sizeof(data));
152 mType = kTypeUnknown;
153 }
154
load(const SkMatrix & v)155 void Matrix4::load(const SkMatrix& v) {
156 memset(data, 0, sizeof(data));
157
158 data[kScaleX] = v[SkMatrix::kMScaleX];
159 data[kSkewX] = v[SkMatrix::kMSkewX];
160 data[kTranslateX] = v[SkMatrix::kMTransX];
161
162 data[kSkewY] = v[SkMatrix::kMSkewY];
163 data[kScaleY] = v[SkMatrix::kMScaleY];
164 data[kTranslateY] = v[SkMatrix::kMTransY];
165
166 data[kPerspective0] = v[SkMatrix::kMPersp0];
167 data[kPerspective1] = v[SkMatrix::kMPersp1];
168 data[kPerspective2] = v[SkMatrix::kMPersp2];
169
170 data[kScaleZ] = 1.0f;
171
172 // NOTE: The flags are compatible between SkMatrix and this class.
173 // However, SkMatrix::getType() does not return the flag
174 // kRectStaysRect. The return value is masked with 0xF
175 // so we need the extra rectStaysRect() check
176 mType = v.getType();
177 if (v.rectStaysRect()) {
178 mType |= kTypeRectToRect;
179 }
180 }
181
copyTo(SkMatrix & v) const182 void Matrix4::copyTo(SkMatrix& v) const {
183 v.reset();
184
185 v.set(SkMatrix::kMScaleX, data[kScaleX]);
186 v.set(SkMatrix::kMSkewX, data[kSkewX]);
187 v.set(SkMatrix::kMTransX, data[kTranslateX]);
188
189 v.set(SkMatrix::kMSkewY, data[kSkewY]);
190 v.set(SkMatrix::kMScaleY, data[kScaleY]);
191 v.set(SkMatrix::kMTransY, data[kTranslateY]);
192
193 v.set(SkMatrix::kMPersp0, data[kPerspective0]);
194 v.set(SkMatrix::kMPersp1, data[kPerspective1]);
195 v.set(SkMatrix::kMPersp2, data[kPerspective2]);
196 }
197
loadInverse(const Matrix4 & v)198 void Matrix4::loadInverse(const Matrix4& v) {
199 // Fast case for common translation matrices
200 if (v.isPureTranslate()) {
201 // Reset the matrix
202 // Unnamed fields are never written to except by
203 // loadIdentity(), they don't need to be reset
204 data[kScaleX] = 1.0f;
205 data[kSkewX] = 0.0f;
206
207 data[kScaleY] = 1.0f;
208 data[kSkewY] = 0.0f;
209
210 data[kScaleZ] = 1.0f;
211
212 data[kPerspective0] = 0.0f;
213 data[kPerspective1] = 0.0f;
214 data[kPerspective2] = 1.0f;
215
216 // No need to deal with kTranslateZ because isPureTranslate()
217 // only returns true when the kTranslateZ component is 0
218 data[kTranslateX] = -v.data[kTranslateX];
219 data[kTranslateY] = -v.data[kTranslateY];
220 data[kTranslateZ] = 0.0f;
221
222 // A "pure translate" matrix can be identity or translation
223 mType = v.getType();
224 return;
225 }
226
227 double scale = 1.0 /
228 (v.data[kScaleX] * ((double) v.data[kScaleY] * v.data[kPerspective2] -
229 (double) v.data[kTranslateY] * v.data[kPerspective1]) +
230 v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
231 (double) v.data[kSkewY] * v.data[kPerspective2]) +
232 v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
233 (double) v.data[kScaleY] * v.data[kPerspective0]));
234
235 data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
236 v.data[kTranslateY] * v.data[kPerspective1]) * scale;
237 data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
238 v.data[kSkewX] * v.data[kPerspective2]) * scale;
239 data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
240 v.data[kTranslateX] * v.data[kScaleY]) * scale;
241
242 data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
243 v.data[kSkewY] * v.data[kPerspective2]) * scale;
244 data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
245 v.data[kTranslateX] * v.data[kPerspective0]) * scale;
246 data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
247 v.data[kScaleX] * v.data[kTranslateY]) * scale;
248
249 data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
250 v.data[kScaleY] * v.data[kPerspective0]) * scale;
251 data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
252 v.data[kScaleX] * v.data[kPerspective1]) * scale;
253 data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
254 v.data[kSkewX] * v.data[kSkewY]) * scale;
255
256 mType = kTypeUnknown;
257 }
258
copyTo(float * v) const259 void Matrix4::copyTo(float* v) const {
260 memcpy(v, data, sizeof(data));
261 }
262
getTranslateX() const263 float Matrix4::getTranslateX() const {
264 return data[kTranslateX];
265 }
266
getTranslateY() const267 float Matrix4::getTranslateY() const {
268 return data[kTranslateY];
269 }
270
multiply(float v)271 void Matrix4::multiply(float v) {
272 for (int i = 0; i < 16; i++) {
273 data[i] *= v;
274 }
275 mType = kTypeUnknown;
276 }
277
loadTranslate(float x,float y,float z)278 void Matrix4::loadTranslate(float x, float y, float z) {
279 loadIdentity();
280
281 data[kTranslateX] = x;
282 data[kTranslateY] = y;
283 data[kTranslateZ] = z;
284
285 mType = kTypeTranslate | kTypeRectToRect;
286 }
287
loadScale(float sx,float sy,float sz)288 void Matrix4::loadScale(float sx, float sy, float sz) {
289 loadIdentity();
290
291 data[kScaleX] = sx;
292 data[kScaleY] = sy;
293 data[kScaleZ] = sz;
294
295 mType = kTypeScale | kTypeRectToRect;
296 }
297
loadSkew(float sx,float sy)298 void Matrix4::loadSkew(float sx, float sy) {
299 loadIdentity();
300
301 data[kScaleX] = 1.0f;
302 data[kSkewX] = sx;
303 data[kTranslateX] = 0.0f;
304
305 data[kSkewY] = sy;
306 data[kScaleY] = 1.0f;
307 data[kTranslateY] = 0.0f;
308
309 data[kPerspective0] = 0.0f;
310 data[kPerspective1] = 0.0f;
311 data[kPerspective2] = 1.0f;
312
313 mType = kTypeUnknown;
314 }
315
loadRotate(float angle)316 void Matrix4::loadRotate(float angle) {
317 angle *= float(M_PI / 180.0f);
318 float c = cosf(angle);
319 float s = sinf(angle);
320
321 loadIdentity();
322
323 data[kScaleX] = c;
324 data[kSkewX] = -s;
325
326 data[kSkewY] = s;
327 data[kScaleY] = c;
328
329 mType = kTypeUnknown;
330 }
331
loadRotate(float angle,float x,float y,float z)332 void Matrix4::loadRotate(float angle, float x, float y, float z) {
333 data[kPerspective0] = 0.0f;
334 data[kPerspective1] = 0.0f;
335 data[11] = 0.0f;
336 data[kTranslateX] = 0.0f;
337 data[kTranslateY] = 0.0f;
338 data[kTranslateZ] = 0.0f;
339 data[kPerspective2] = 1.0f;
340
341 angle *= float(M_PI / 180.0f);
342 float c = cosf(angle);
343 float s = sinf(angle);
344
345 const float length = sqrtf(x * x + y * y + z * z);
346 float recipLen = 1.0f / length;
347 x *= recipLen;
348 y *= recipLen;
349 z *= recipLen;
350
351 const float nc = 1.0f - c;
352 const float xy = x * y;
353 const float yz = y * z;
354 const float zx = z * x;
355 const float xs = x * s;
356 const float ys = y * s;
357 const float zs = z * s;
358
359 data[kScaleX] = x * x * nc + c;
360 data[kSkewX] = xy * nc - zs;
361 data[8] = zx * nc + ys;
362 data[kSkewY] = xy * nc + zs;
363 data[kScaleY] = y * y * nc + c;
364 data[9] = yz * nc - xs;
365 data[2] = zx * nc - ys;
366 data[6] = yz * nc + xs;
367 data[kScaleZ] = z * z * nc + c;
368
369 mType = kTypeUnknown;
370 }
371
loadMultiply(const Matrix4 & u,const Matrix4 & v)372 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
373 for (int i = 0 ; i < 4 ; i++) {
374 float x = 0;
375 float y = 0;
376 float z = 0;
377 float w = 0;
378
379 for (int j = 0 ; j < 4 ; j++) {
380 const float e = v.get(i, j);
381 x += u.get(j, 0) * e;
382 y += u.get(j, 1) * e;
383 z += u.get(j, 2) * e;
384 w += u.get(j, 3) * e;
385 }
386
387 set(i, 0, x);
388 set(i, 1, y);
389 set(i, 2, z);
390 set(i, 3, w);
391 }
392
393 mType = kTypeUnknown;
394 }
395
loadOrtho(float left,float right,float bottom,float top,float near,float far)396 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
397 loadIdentity();
398
399 data[kScaleX] = 2.0f / (right - left);
400 data[kScaleY] = 2.0f / (top - bottom);
401 data[kScaleZ] = -2.0f / (far - near);
402 data[kTranslateX] = -(right + left) / (right - left);
403 data[kTranslateY] = -(top + bottom) / (top - bottom);
404 data[kTranslateZ] = -(far + near) / (far - near);
405
406 mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
407 }
408
mapZ(const Vector3 & orig) const409 float Matrix4::mapZ(const Vector3& orig) const {
410 // duplicates logic for mapPoint3d's z coordinate
411 return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
412 }
413
mapPoint3d(Vector3 & vec) const414 void Matrix4::mapPoint3d(Vector3& vec) const {
415 //TODO: optimize simple case
416 const Vector3 orig(vec);
417 vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
418 vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
419 vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
420 }
421
422 #define MUL_ADD_STORE(a, b, c) ((a) = (a) * (b) + (c))
423
mapPoint(float & x,float & y) const424 void Matrix4::mapPoint(float& x, float& y) const {
425 if (isSimple()) {
426 MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
427 MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
428 return;
429 }
430
431 float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
432 float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
433 float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
434 if (dz) dz = 1.0f / dz;
435
436 x = dx * dz;
437 y = dy * dz;
438 }
439
440 /**
441 * Set the contents of the rect to be the bounding rect around each of the corners, mapped by the
442 * matrix.
443 *
444 * NOTE: an empty rect to an arbitrary matrix isn't guaranteed to have an empty output, since that's
445 * important for conservative bounds estimation (e.g. rotate45Matrix.mapRect of Rect(0, 10) should
446 * result in non-empty.
447 */
mapRect(Rect & r) const448 void Matrix4::mapRect(Rect& r) const {
449 if (isIdentity()) return;
450
451 if (isSimple()) {
452 MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
453 MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
454 MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
455 MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
456
457 if (r.left > r.right) {
458 float x = r.left;
459 r.left = r.right;
460 r.right = x;
461 }
462
463 if (r.top > r.bottom) {
464 float y = r.top;
465 r.top = r.bottom;
466 r.bottom = y;
467 }
468
469 return;
470 }
471
472 float vertices[] = {
473 r.left, r.top,
474 r.right, r.top,
475 r.right, r.bottom,
476 r.left, r.bottom
477 };
478
479 float x, y, z;
480
481 for (int i = 0; i < 8; i+= 2) {
482 float px = vertices[i];
483 float py = vertices[i + 1];
484
485 x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
486 y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
487 z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
488 if (z) z = 1.0f / z;
489
490 vertices[i] = x * z;
491 vertices[i + 1] = y * z;
492 }
493
494 r.left = r.right = vertices[0];
495 r.top = r.bottom = vertices[1];
496
497 for (int i = 2; i < 8; i += 2) {
498 x = vertices[i];
499 y = vertices[i + 1];
500
501 if (x < r.left) r.left = x;
502 else if (x > r.right) r.right = x;
503 if (y < r.top) r.top = y;
504 else if (y > r.bottom) r.bottom = y;
505 }
506 }
507
decomposeScale(float & sx,float & sy) const508 void Matrix4::decomposeScale(float& sx, float& sy) const {
509 float len;
510 len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
511 sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
512 len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
513 sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
514 }
515
dump(const char * label) const516 void Matrix4::dump(const char* label) const {
517 ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
518 ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
519 ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
520 ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
521 ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
522 ALOGD("]");
523 }
524
525 }; // namespace uirenderer
526 }; // namespace android
527