/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ /* Wrap trt_conversion */ %{ #define SWIG_FILE_WITH_INIT %} %include "std_pair.i" %include "tensorflow/python/platform/base.i" %{ PyObject* pair_helper(std::pair* in) { PyObject *first(nullptr), *second(nullptr), *tuple(nullptr); first = PyBytes_FromStringAndSize(in->first.data(), in->first.length()); if (!first) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Pair conversion first argument failed"); } return NULL; } second = PyBytes_FromStringAndSize(in->second.data(), in->second.length()); if (!second) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Pair conversion second argument failed"); } return NULL; } tuple = Py_BuildValue("(OO)", first, second); if (!tuple) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Tuple creation from pair failed!"); } return NULL; } return tuple; } %} %typemap(out) std::pair { PyObject *tuple = pair_helper(&$1); if (!tuple) SWIG_fail; $result = tuple; } %{ #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/util/stat_summarizer.h" #include "tensorflow/contrib/tensorrt/convert/convert_graph.h" %} %ignoreall %unignore tensorflow; %unignore trt_convert; %{ std::pair trt_convert( string graph_def_string, // The serialized GraphDef string. std::vector output_names, size_t max_batch_size, size_t max_workspace_size_bytes // Unfortunately we can't use TF_Status here since it // is in c/c_api and brings in a lot of other libraries // which in turn declare ops. These ops are included // statically in our library and cause an abort when // module is loaded due to double registration // until Tensorflow properly exposes these headers // we have to work around this by returning a string // and converting it to exception on python side. //,TF_Status* out_status) { ) { #if GOOGLE_CUDA && GOOGLE_TENSORRT string out_status; tensorflow::GraphDef graph_def; if (!graph_def.ParseFromString(graph_def_string)) { out_status = "InvalidArgument;Couldn't interpret input as a GraphDef"; return std::pair{out_status, ""}; } if (!output_names.size()) { out_status = "InvalidArgument;Size of the output_names vector is 0"; return std::pair{out_status, ""}; // return ""; } tensorflow::GraphDef outGraph; tensorflow::Status conversion_status = tensorflow::tensorrt::convert::ConvertGraphDefToTensorRT( graph_def, output_names, max_batch_size, max_workspace_size_bytes, &outGraph); if (!conversion_status.ok()) { auto retCode = (int)conversion_status.code(); char buff[2000]; snprintf(buff, 2000, "%d;%s", retCode, conversion_status.error_message().c_str()); out_status = buff; return std::pair{out_status, ""}; } string result; if (!outGraph.SerializeToString(&result)) { out_status = "InvalidArgument;Couldn't serialize output as a GraphDef"; return std::pair{out_status, ""}; } out_status = "OK;All good!"; return std::pair{out_status, result}; #else // Returns FAILED_PRECONDITION. return std::pair{"9;TensorRT is not enabled!", ""}; #endif // GOOGLE_CUDA && GOOGLE_TENSORRT } %} std::pair trt_convert(string graph_def_string, std::vector output_names, size_t max_batch_size, size_t max_workspace_size_bytes); %unignoreall