# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """MetaGraph and related functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os.path import re import six from google.protobuf.any_pb2 import Any from google.protobuf import text_format from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import saver_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import context from tensorflow.python.framework import graph_io from tensorflow.python.framework import importer from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import versions from tensorflow.python.lib.io import file_io from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat # Prefix to be added to unbound input names so they are easily identifiable. _UNBOUND_INPUT_PREFIX = "$unbound_inputs_" # List of collections that didn't register proto functions, as a result in # a previously exported meta_graph the items are of a different data type. _COMPAT_COLLECTION_LIST = [ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.MODEL_VARIABLES] def _node_def(from_node_def, export_scope, unbound_inputs, clear_devices=False): """Create a `NodeDef` proto with export_scope stripped. Args: from_node_def: A `node_def_pb2.NodeDef` protocol buffer. export_scope: A `string` representing the name scope to remove. unbound_inputs: An array of unbound input names if they exist. clear_devices: Boolean which controls whether to clear device information from node_def. Default false. Returns: A `node_def_pb2.NodeDef` protocol buffer. """ node_def = copy.deepcopy(from_node_def) for i, v in enumerate(node_def.input): if (export_scope and not node_def.input[i].lstrip("^").startswith(export_scope)): # Adds "$unbound_inputs_" prefix to the unbound name so they are easily # identifiable. node_def.input[i] = re.sub(r"([\^]|^)(.*)", r"\1" + _UNBOUND_INPUT_PREFIX + r"\2", compat.as_str(v)) unbound_inputs.append(node_def.input[i]) else: node_def.input[i] = ops.strip_name_scope(v, export_scope) node_def.name = compat.as_bytes( ops.strip_name_scope(from_node_def.name, export_scope)) for k, v in six.iteritems(from_node_def.attr): if k == "_class": new_s = [compat.as_bytes( ops.strip_name_scope(s, export_scope)) for s in v.list.s if not export_scope or compat.as_str(s).split("@")[1].startswith(export_scope)] node_def.attr[k].CopyFrom(attr_value_pb2.AttrValue( list=attr_value_pb2.AttrValue.ListValue(s=new_s))) elif node_def.op in ("Enter", "RefEnter") and k == "frame_name": if not export_scope or compat.as_str(v.s).startswith(export_scope): new_s = compat.as_bytes(ops.strip_name_scope(v.s, export_scope)) node_def.attr[k].CopyFrom(attr_value_pb2.AttrValue(s=new_s)) else: node_def.attr[k].CopyFrom(v) if clear_devices: node_def.device = "" return node_def def _read_file(filename): """Reads a file containing `GraphDef` and returns the protocol buffer. Args: filename: `graph_def` filename including the path. Returns: A `GraphDef` protocol buffer. Raises: IOError: If the file doesn't exist, or cannot be successfully parsed. """ graph_def = graph_pb2.GraphDef() if not file_io.file_exists(filename): raise IOError("File %s does not exist." % filename) # First try to read it as a binary file. file_content = file_io.FileIO(filename, "rb").read() try: graph_def.ParseFromString(file_content) return graph_def except Exception: # pylint: disable=broad-except pass # Next try to read it as a text file. try: text_format.Merge(file_content, graph_def) except text_format.ParseError as e: raise IOError("Cannot parse file %s: %s." % (filename, str(e))) return graph_def def ops_used_by_graph_def(graph_def): """Collect the list of ops used by a graph. Does not validate that the ops are all registered. Args: graph_def: A `GraphDef` proto, as from `graph.as_graph_def()`. Returns: A list of strings, each naming an op used by the graph. """ # Map function names to definitions name_to_function = {} for fun in graph_def.library.function: name_to_function[fun.signature.name] = fun # Collect the list of op names. Since functions can reference functions, we # need a recursive traversal. used_ops = set() # Includes both primitive ops and functions functions_to_process = [] # A subset of used_ops def mark_op_as_used(op): if op not in used_ops and op in name_to_function: functions_to_process.append(name_to_function[op]) used_ops.add(op) for node in graph_def.node: mark_op_as_used(node.op) while functions_to_process: fun = functions_to_process.pop() for node in fun.node_def: mark_op_as_used(node.op) return [op for op in used_ops if op not in name_to_function] def stripped_op_list_for_graph(graph_def): """Collect the stripped OpDefs for ops used by a graph. This function computes the `stripped_op_list` field of `MetaGraphDef` and similar protos. The result can be communicated from the producer to the consumer, which can then use the C++ function `RemoveNewDefaultAttrsFromGraphDef` to improve forwards compatibility. Args: graph_def: A `GraphDef` proto, as from `graph.as_graph_def()`. Returns: An `OpList` of ops used by the graph. Raises: ValueError: If an unregistered op is used. """ # This is the Python equivalent of StrippedOpListForGraph in C++. # Unfortunately, since the Python op registry can differ from that in C++, we # can't remove the duplication using swig (at least naively). # TODO(irving): Support taking graphs directly. used_ops = ops_used_by_graph_def(graph_def) # Verify that all used ops are registered. registered_ops = op_def_registry.get_registered_ops() # These internal ops used by functions are not registered, so we need to # whitelist them. # TODO(irving): Do something better here. op_whitelist = ("_Arg", "_Retval", "_ListToArray", "_ArrayToList") for op in used_ops: if op not in registered_ops and op not in op_whitelist: raise ValueError("Op %s is used by the graph, but is not registered" % op) # Build the stripped op list in sorted order return op_def_pb2.OpList(op=[registered_ops[op] for op in sorted(used_ops) if op in registered_ops]) def _get_kind_name(item): """Returns the kind name in CollectionDef. Args: item: A data item. Returns: The string representation of the kind in CollectionDef. """ if isinstance(item, (six.string_types, six.binary_type)): kind = "bytes_list" elif isinstance(item, six.integer_types): kind = "int64_list" elif isinstance(item, float): kind = "float_list" elif isinstance(item, Any): kind = "any_list" else: kind = "node_list" return kind SAVE_AND_RESTORE_OPS = ["SaveV2", "Save", "SaveSlice", "LegacySave", "LegacySaveSlice", "RestoreV2", "Restore", "RestoreSlice", "LegacyRestore", "LegacyRestoreSlice"] def _op_name(tensor_name): """Extract the Op name from a Tensor name. The Op name is everything before a colon, if present, not including any ^ prefix denoting a control dependency. Args: tensor_name: the full name of a Tensor in the graph. Returns: The name of the Op of which the given Tensor is an output. Raises: ValueError: if tensor_name is None or empty. """ if not tensor_name: raise ValueError("Tensor name cannot be empty or None.") # Control dependency inputs start with ^. if tensor_name.startswith("^"): tensor_name = tensor_name[1:] if ":" in tensor_name: op_name, _ = tensor_name.split(":") return op_name return tensor_name def _get_scope(node_name): """Extract the scope name from a node name. The scope name is everything before the final slash, not including any ^ prefix denoting a control dependency. Args: node_name: the full name of an Op or a Tensor in the graph. Returns: The deepest named scope containing the node. Raises: ValueError: if tensor_name is None or empty """ if not node_name: raise ValueError("Node name cannot be empty or None.") # Control dependency inputs start with ^. if node_name.startswith("^"): node_name = node_name[1:] if "/" in node_name: scope, _ = node_name.rsplit("/", 1) return scope return "" def _find_extraneous_saver_nodes(graph_def, saver_def): """Identifies any nodes in the graph_def related to unused Savers. This approach assumes that each Saver is cleanly isolated in its own name scope, so we need only identify the scopes associated with extraneous Savers and return all the nodes in those scopes. Args: graph_def: a GraphDef proto to evaluate. saver_def: a SaverDef proto referencing Save/Restore ops to be retained. Returns: An iterable of node names that may be safely omitted. """ # TODO(soergel): confirm that the assumption of scope isolation is valid. # If not, we need to walk up the graph from any restore_all nodes, and walk # down the graph from any Save/Restore nodes. I drafted that approach too, # but it seems unnecessarily complex given the name scope solution. # load the graph DAG in minimal form, without initializing a full Graph object nodes = {node_def.name: (set([_op_name(x) for x in node_def.input]), node_def.op) for node_def in graph_def.node} retain_scope_save = None retain_scope_restore = None # It's possible to have no saver if the graph has no Variables if saver_def is not None: save_op_name = _op_name(saver_def.save_tensor_name) restore_op_name = _op_name(saver_def.restore_op_name) # The save and restore scopes should always be the same, but if they differ # for some reason, we retain them both to be safe. retain_scope_restore = _get_scope(restore_op_name) + "/" retain_scope_save = _get_scope(save_op_name) + "/" all_saver_node_names = set([name for name, (_, op) in nodes.items() if op in SAVE_AND_RESTORE_OPS]) all_saver_scopes = (set([_get_scope(x) for x in all_saver_node_names]) - all_saver_node_names) all_saver_scopes = set([x + "/" for x in all_saver_scopes]) extraneous_scopes = all_saver_scopes - set([retain_scope_save, retain_scope_restore]) extraneous_node_names = set() for name, _ in nodes.items(): for extraneous_scope in extraneous_scopes: if name.startswith(extraneous_scope): extraneous_node_names.add(name) break return extraneous_node_names def _should_include_node(node_or_node_name, export_scope, exclude_nodes): """Returns `True` if a node should be included. Args: node_or_node_name: A node or `string` node name. export_scope: `string`. Name scope under which to extract the subgraph. The scope name will be stripped from the node definitions for easy import later into new name scopes. exclude_nodes: An iterable of nodes or `string` node names to omit from the export, or None. Note no sanity-checking is done, so this list must be carefully constructed to avoid producing an invalid graph. Returns: `True` if the node should be included. """ if not isinstance(node_or_node_name, six.string_types): try: node_name = node_or_node_name.name except AttributeError: # Keep the object that we don't know how to process. return True else: node_name = node_or_node_name if exclude_nodes and (node_or_node_name in exclude_nodes or node_name in exclude_nodes): return False return (node_name.startswith(_UNBOUND_INPUT_PREFIX) or (not export_scope or node_name.startswith(export_scope))) def add_collection_def(meta_graph_def, key, graph=None, export_scope=None, exclude_nodes=None, override_contents=None): """Adds a collection to MetaGraphDef protocol buffer. Args: meta_graph_def: MetaGraphDef protocol buffer. key: One of the GraphKeys or user-defined string. graph: The `Graph` from which to get collections. export_scope: Optional `string`. Name scope to remove. exclude_nodes: An iterable of nodes or `string` node names to omit from the collection, or None. override_contents: An iterable of values to place in the collection, ignoring the current values (if set). """ if graph and not isinstance(graph, ops.Graph): raise TypeError("graph must be of type Graph, not %s", type(graph)) if not isinstance(key, six.string_types) and not isinstance(key, bytes): logging.warning("Only collections with string type keys will be " "serialized. This key has %s", type(key)) return # Sets graph to default graph if it's not passed in. graph = graph or ops.get_default_graph() if override_contents: collection_list = override_contents else: collection_list = graph.get_collection(key) # Remove nodes that should not be exported from the collection list. collection_list = [x for x in collection_list if _should_include_node(x, export_scope, exclude_nodes)] if not collection_list: return try: col_def = meta_graph_def.collection_def[key] to_proto = ops.get_to_proto_function(key) proto_type = ops.get_collection_proto_type(key) if to_proto: kind = "bytes_list" for x in collection_list: # Additional type check to make sure the returned proto is indeed # what we expect. proto = to_proto(x, export_scope=export_scope) if proto: assert isinstance(proto, proto_type) getattr(col_def, kind).value.append(proto.SerializeToString()) else: kind = _get_kind_name(collection_list[0]) if kind == "node_list": for x in collection_list: if not export_scope or x.name.startswith(export_scope): getattr(col_def, kind).value.append( ops.strip_name_scope(x.name, export_scope)) elif kind == "bytes_list": # NOTE(opensource): This force conversion is to work around the fact # that Python3 distinguishes between bytes and strings. getattr(col_def, kind).value.extend( [compat.as_bytes(x) for x in collection_list]) else: getattr(col_def, kind).value.extend([x for x in collection_list]) except Exception as e: # pylint: disable=broad-except logging.warning("Error encountered when serializing %s.\n" "Type is unsupported, or the types of the items don't " "match field type in CollectionDef.\n%s", key, str(e)) if key in meta_graph_def.collection_def: del meta_graph_def.collection_def[key] return def _is_default_attr_value(op_def, attr_name, attr_value): """Checks if given attribute matches the default value in the op def.""" for attr_def in op_def.attr: if attr_def.name == attr_name: if not attr_def.HasField("default_value"): return False # pywrap_tensorflow.EqualAttrValueWrapper returns an empty string # if both arguments represent an equivalent AttrValue instance. return not pywrap_tensorflow.EqualAttrValueWrapper( attr_value.SerializeToString(), attr_def.default_value.SerializeToString()) return False def _strip_graph_default_valued_attrs(meta_graph_def): """Strips default valued attributes for node defs in given MetaGraphDef. This method also sets `meta_info_def.stripped_default_attrs` in the given `MetaGraphDef` proto to True. Args: meta_graph_def: `MetaGraphDef` protocol buffer Returns: None. """ # Map function op names to their function definitions. op_name_to_function = {} for function_def in meta_graph_def.graph_def.library.function: op_name_to_function[function_def.signature.name] = function_def # Get all registered ops. registered_ops = op_def_registry.get_registered_ops() def _strip_node_default_valued_attrs(node_def): """Removes default valued attributes from a single node def.""" if node_def.op in op_name_to_function or node_def.op not in registered_ops: return op_def = registered_ops[node_def.op] attrs_to_strip = set() for attr_name, attr_value in node_def.attr.items(): if _is_default_attr_value(op_def, attr_name, attr_value): attrs_to_strip.add(attr_name) for attr in attrs_to_strip: del node_def.attr[attr] # Process all NodeDef instances in graph_def. for node_def in meta_graph_def.graph_def.node: _strip_node_default_valued_attrs(node_def) # Process all NodeDef instances in graph_def.library.function. for function_def in meta_graph_def.graph_def.library.function: for function_node_def in function_def.node_def: _strip_node_default_valued_attrs(function_node_def) # Tell consumers of this graph that default valued attrs have been stripped. meta_graph_def.meta_info_def.stripped_default_attrs = True def create_meta_graph_def(meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, graph=None, export_scope=None, exclude_nodes=None, clear_extraneous_savers=False, strip_default_attrs=False): # pylint: disable=line-too-long """Construct and returns a `MetaGraphDef` protocol buffer. Args: meta_info_def: `MetaInfoDef` protocol buffer. graph_def: `GraphDef` protocol buffer. saver_def: `SaverDef` protocol buffer. collection_list: List of string keys to collect. graph: The `Graph` to create `MetaGraphDef` out of. export_scope: Optional `string`. Name scope to remove. exclude_nodes: An iterable of nodes or `string` node names to omit from all collection, or None. clear_extraneous_savers: Remove any preexisting SaverDefs from the SAVERS collection. Note this method does not alter the graph, so any extraneous Save/Restore ops should have been removed already, as needed. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: MetaGraphDef protocol buffer. Raises: TypeError: If the arguments are not of the correct proto buffer type. """ # pylint: enable=line-too-long # Type check. if graph and not isinstance(graph, ops.Graph): raise TypeError("graph must be of type Graph, not %s", type(graph)) if meta_info_def and not isinstance(meta_info_def, meta_graph_pb2.MetaGraphDef.MetaInfoDef): raise TypeError("meta_info_def must be of type MetaInfoDef, not %s", type(meta_info_def)) if graph_def and not isinstance(graph_def, graph_pb2.GraphDef): raise TypeError("graph_def must be of type GraphDef, not %s", type(graph_def)) if saver_def and not isinstance(saver_def, saver_pb2.SaverDef): raise TypeError("saver_def must be of type SaverDef, not %s", type(saver_def)) # Sets graph to default graph if it's not passed in. graph = graph or ops.get_default_graph() # Creates a MetaGraphDef proto. meta_graph_def = meta_graph_pb2.MetaGraphDef() # Adds meta_info_def. if not meta_info_def: meta_info_def = meta_graph_pb2.MetaGraphDef.MetaInfoDef() # Set the tf version strings to the current tf build. meta_info_def.tensorflow_version = versions.__version__ meta_info_def.tensorflow_git_version = versions.__git_version__ meta_graph_def.meta_info_def.MergeFrom(meta_info_def) # Adds graph_def or the default. if not graph_def: meta_graph_def.graph_def.MergeFrom(graph.as_graph_def(add_shapes=True)) else: meta_graph_def.graph_def.MergeFrom(graph_def) # Fills in meta_info_def.stripped_op_list using the ops from graph_def. # pylint: disable=g-explicit-length-test if len(meta_graph_def.meta_info_def.stripped_op_list.op) == 0: meta_graph_def.meta_info_def.stripped_op_list.MergeFrom( stripped_op_list_for_graph(meta_graph_def.graph_def)) # pylint: enable=g-explicit-length-test # Strip default valued attributes in graph_def. if strip_default_attrs: _strip_graph_default_valued_attrs(meta_graph_def) # Adds saver_def. if saver_def: meta_graph_def.saver_def.MergeFrom(saver_def) # Adds collection_list. if collection_list is not None: clist = collection_list else: clist = graph.get_all_collection_keys() for ctype in clist: if clear_extraneous_savers and ctype == ops.GraphKeys.SAVERS: # Avoid importing Saver here from_proto = ops.get_from_proto_function(ctype) add_collection_def(meta_graph_def, ctype, graph=graph, export_scope=export_scope, exclude_nodes=exclude_nodes, override_contents=[from_proto(saver_def)]) else: add_collection_def(meta_graph_def, ctype, graph=graph, export_scope=export_scope, exclude_nodes=exclude_nodes) return meta_graph_def def read_meta_graph_file(filename): """Reads a file containing `MetaGraphDef` and returns the protocol buffer. Args: filename: `meta_graph_def` filename including the path. Returns: A `MetaGraphDef` protocol buffer. Raises: IOError: If the file doesn't exist, or cannot be successfully parsed. """ meta_graph_def = meta_graph_pb2.MetaGraphDef() if not file_io.file_exists(filename): raise IOError("File %s does not exist." % filename) # First try to read it as a binary file. file_content = file_io.FileIO(filename, "rb").read() try: meta_graph_def.ParseFromString(file_content) return meta_graph_def except Exception: # pylint: disable=broad-except pass # Next try to read it as a text file. try: text_format.Merge(file_content.decode("utf-8"), meta_graph_def) except text_format.ParseError as e: raise IOError("Cannot parse file %s: %s." % (filename, str(e))) return meta_graph_def def import_scoped_meta_graph(meta_graph_or_file, clear_devices=False, graph=None, import_scope=None, input_map=None, unbound_inputs_col_name="unbound_inputs", restore_collections_predicate=(lambda key: True)): """Recreates a `Graph` saved in a `MetaGraphDef` proto. This function takes a `MetaGraphDef` protocol buffer as input. If the argument is a file containing a `MetaGraphDef` protocol buffer , it constructs a protocol buffer from the file content. The function then adds all the nodes from the `graph_def` field to the current graph, recreates the desired collections, and returns a dictionary of all the Variables imported into the name scope. In combination with `export_scoped_meta_graph()`, this function can be used to * Serialize a graph along with other Python objects such as `QueueRunner`, `Variable` into a `MetaGraphDef`. * Restart training from a saved graph and checkpoints. * Run inference from a saved graph and checkpoints. Args: meta_graph_or_file: `MetaGraphDef` protocol buffer or filename (including the path) containing a `MetaGraphDef`. clear_devices: Boolean which controls whether to clear device information from graph_def. Default false. graph: The `Graph` to import into. If `None`, use the default graph. import_scope: Optional `string`. Name scope into which to import the subgraph. If `None`, the graph is imported to the root name scope. input_map: A dictionary mapping input names (as strings) in `graph_def` to `Tensor` objects. The values of the named input tensors in the imported graph will be re-mapped to the respective `Tensor` values. unbound_inputs_col_name: Collection name for looking up unbound inputs. restore_collections_predicate: a predicate on collection names. A collection named c (i.e whose key is c) will be restored iff 1) `restore_collections_predicate(c)` is True, and 2) `c != unbound_inputs_col_name`. Returns: A dictionary of all the `Variables` imported into the name scope. Raises: ValueError: If the graph_def contains unbound inputs. """ if context.in_eager_mode(): raise ValueError("Exporting/importing meta graphs is not supported when " "eager execution is enabled.") if isinstance(meta_graph_or_file, meta_graph_pb2.MetaGraphDef): meta_graph_def = meta_graph_or_file else: meta_graph_def = read_meta_graph_file(meta_graph_or_file) if unbound_inputs_col_name: for key, col_def in meta_graph_def.collection_def.items(): if key == unbound_inputs_col_name: kind = col_def.WhichOneof("kind") field = getattr(col_def, kind) if field.value and ( not input_map or sorted([compat.as_str(v) for v in field.value]) != sorted(input_map)): raise ValueError("Graph contains unbound inputs: %s. Must " "provide these inputs through input_map." % ",".join([compat.as_str(v) for v in field.value if not input_map or v not in input_map])) break # Sets graph to default graph if it's not passed in. graph = graph or ops.get_default_graph() # Gathers the list of nodes we are interested in. with graph.as_default(): producer_op_list = None if meta_graph_def.meta_info_def.HasField("stripped_op_list"): producer_op_list = meta_graph_def.meta_info_def.stripped_op_list input_graph_def = meta_graph_def.graph_def # Remove all the explicit device specifications for this node. This helps to # make the graph more portable. if clear_devices: for node in input_graph_def.node: node.device = "" scope_to_prepend_to_names = graph.unique_name( import_scope or "", mark_as_used=False) importer.import_graph_def( input_graph_def, name=(import_scope or ""), input_map=input_map, producer_op_list=producer_op_list) # Restores all the other collections. variable_objects = {} for key, col_def in sorted(meta_graph_def.collection_def.items()): # Don't add unbound_inputs to the new graph. if key == unbound_inputs_col_name: continue if not restore_collections_predicate(key): continue kind = col_def.WhichOneof("kind") if kind is None: logging.error("Cannot identify data type for collection %s. Skipping.", key) continue from_proto = ops.get_from_proto_function(key) if from_proto and kind == "bytes_list": proto_type = ops.get_collection_proto_type(key) if key in ops.GraphKeys._VARIABLE_COLLECTIONS: # pylint: disable=protected-access for value in col_def.bytes_list.value: variable = variable_objects.get(value, None) if variable is None: proto = proto_type() proto.ParseFromString(value) variable = from_proto( proto, import_scope=scope_to_prepend_to_names) variable_objects[value] = variable graph.add_to_collection(key, variable) else: for value in col_def.bytes_list.value: proto = proto_type() proto.ParseFromString(value) graph.add_to_collection( key, from_proto( proto, import_scope=scope_to_prepend_to_names)) else: field = getattr(col_def, kind) if key in _COMPAT_COLLECTION_LIST: logging.warning( "The saved meta_graph is possibly from an older release:\n" "'%s' collection should be of type 'byte_list', but instead " "is of type '%s'.", key, kind) if kind == "node_list": for value in field.value: col_op = graph.as_graph_element( ops.prepend_name_scope(value, scope_to_prepend_to_names)) graph.add_to_collection(key, col_op) elif kind == "int64_list": # NOTE(opensource): This force conversion is to work around the fact # that Python2 distinguishes between int and long, while Python3 has # only int. for value in field.value: graph.add_to_collection(key, int(value)) else: for value in field.value: graph.add_to_collection( key, ops.prepend_name_scope(value, scope_to_prepend_to_names)) var_list = {} variables = graph.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope=scope_to_prepend_to_names) for v in variables: var_list[ops.strip_name_scope(v.name, scope_to_prepend_to_names)] = v return var_list def export_scoped_meta_graph(filename=None, graph_def=None, graph=None, export_scope=None, as_text=False, unbound_inputs_col_name="unbound_inputs", clear_devices=False, saver_def=None, clear_extraneous_savers=False, strip_default_attrs=False, **kwargs): """Returns `MetaGraphDef` proto. Optionally writes it to filename. This function exports the graph, saver, and collection objects into `MetaGraphDef` protocol buffer with the intention of it being imported at a later time or location to restart training, run inference, or be a subgraph. Args: filename: Optional filename including the path for writing the generated `MetaGraphDef` protocol buffer. graph_def: `GraphDef` protocol buffer. graph: The `Graph` to export. If `None`, use the default graph. export_scope: Optional `string`. Name scope under which to extract the subgraph. The scope name will be stripped from the node definitions for easy import later into new name scopes. If `None`, the whole graph is exported. as_text: If `True`, writes the `MetaGraphDef` as an ASCII proto. unbound_inputs_col_name: Optional `string`. If provided, a string collection with the given name will be added to the returned `MetaGraphDef`, containing the names of tensors that must be remapped when importing the `MetaGraphDef`. clear_devices: Boolean which controls whether to clear device information before exporting the graph. saver_def: `SaverDef` protocol buffer. clear_extraneous_savers: Remove any Saver-related information from the graph (both Save/Restore ops and SaverDefs) that are not associated with the provided SaverDef. strip_default_attrs: Set to true if default valued attributes must be removed while exporting the GraphDef. **kwargs: Optional keyed arguments, including meta_info_def and collection_list. Returns: A `MetaGraphDef` proto and dictionary of `Variables` in the exported name scope. Raises: ValueError: When the `GraphDef` is larger than 2GB. """ if context.in_eager_mode(): raise ValueError("Exporting/importing meta graphs is not supported when " "Eager Execution is enabled.") graph = graph or ops.get_default_graph() exclude_nodes = None unbound_inputs = [] if export_scope or clear_extraneous_savers or clear_devices: if graph_def: new_graph_def = graph_pb2.GraphDef() new_graph_def.versions.CopyFrom(graph_def.versions) new_graph_def.library.CopyFrom(graph_def.library) if clear_extraneous_savers: exclude_nodes = _find_extraneous_saver_nodes(graph_def, saver_def) for node_def in graph_def.node: if _should_include_node(node_def.name, export_scope, exclude_nodes): new_node_def = _node_def(node_def, export_scope, unbound_inputs, clear_devices=clear_devices) new_graph_def.node.extend([new_node_def]) graph_def = new_graph_def else: # Only do this complicated work if we want to remove a name scope. graph_def = graph_pb2.GraphDef() # pylint: disable=protected-access graph_def.versions.CopyFrom(graph.graph_def_versions) bytesize = 0 if clear_extraneous_savers: exclude_nodes = _find_extraneous_saver_nodes(graph.as_graph_def(), saver_def) for key in sorted(graph._nodes_by_id): if _should_include_node(graph._nodes_by_id[key].name, export_scope, exclude_nodes): value = graph._nodes_by_id[key] # pylint: enable=protected-access node_def = _node_def(value.node_def, export_scope, unbound_inputs, clear_devices=clear_devices) graph_def.node.extend([node_def]) if value.outputs: assert "_output_shapes" not in graph_def.node[-1].attr graph_def.node[-1].attr["_output_shapes"].list.shape.extend([ output.get_shape().as_proto() for output in value.outputs]) bytesize += value.node_def.ByteSize() if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") graph._copy_functions_to_graph_def(graph_def, bytesize) # pylint: disable=protected-access # It's possible that not all the inputs are in the export_scope. # If we would like such information included in the exported meta_graph, # add them to a special unbound_inputs collection. if unbound_inputs_col_name: # Clears the unbound_inputs collections. graph.clear_collection(unbound_inputs_col_name) for k in unbound_inputs: graph.add_to_collection(unbound_inputs_col_name, k) var_list = {} variables = graph.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope=export_scope) for v in variables: if _should_include_node(v, export_scope, exclude_nodes): var_list[ops.strip_name_scope(v.name, export_scope)] = v scoped_meta_graph_def = create_meta_graph_def( graph_def=graph_def, graph=graph, export_scope=export_scope, exclude_nodes=exclude_nodes, clear_extraneous_savers=clear_extraneous_savers, saver_def=saver_def, strip_default_attrs=strip_default_attrs, **kwargs) if filename: graph_io.write_graph( scoped_meta_graph_def, os.path.dirname(filename), os.path.basename(filename), as_text=as_text) return scoped_meta_graph_def, var_list def copy_scoped_meta_graph(from_scope, to_scope, from_graph=None, to_graph=None): """Copies a sub-meta_graph from one scope to another. Args: from_scope: `String` name scope containing the subgraph to be copied. to_scope: `String` name scope under which the copied subgraph will reside. from_graph: Optional `Graph` from which to copy the subgraph. If `None`, the default graph is use. to_graph: Optional `Graph` to which to copy the subgraph. If `None`, the default graph is used. Returns: A dictionary of `Variables` that has been copied into `to_scope`. Raises: ValueError: If `from_scope` and `to_scope` are the same while `from_graph` and `to_graph` are also the same. """ from_graph = from_graph or ops.get_default_graph() to_graph = to_graph or ops.get_default_graph() if from_graph == to_graph and from_scope == to_scope: raise ValueError("'from_scope' and 'to_scope' need to be different " "when performing copy in the same graph.") orig_meta_graph, var_list = export_scoped_meta_graph( export_scope=from_scope, graph=from_graph) var_list = import_scoped_meta_graph(orig_meta_graph, graph=to_graph, import_scope=to_scope) return var_list