# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # pylint: disable=unused-import,g-bad-import-order """Contains the core layers: Dense, Dropout. Also contains their functional aliases. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import base from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import nn_ops from tensorflow.python.ops import standard_ops from tensorflow.python.util.tf_export import tf_export @tf_export('layers.Dense') class Dense(base.Layer): """Densely-connected layer class. This layer implements the operation: `outputs = activation(inputs * kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Arguments: units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Properties: units: Python integer, dimensionality of the output space. activation: Activation function (callable). use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer instance (or name) for the kernel matrix. bias_initializer: Initializer instance (or name) for the bias. kernel_regularizer: Regularizer instance for the kernel matrix (callable) bias_regularizer: Regularizer instance for the bias (callable). activity_regularizer: Regularizer instance for the output (callable) kernel_constraint: Constraint function for the kernel matrix. bias_constraint: Constraint function for the bias. kernel: Weight matrix (TensorFlow variable or tensor). bias: Bias vector, if applicable (TensorFlow variable or tensor). """ def __init__(self, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Dense, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.units = units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(min_ndim=2) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if input_shape[-1].value is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') self.input_spec = base.InputSpec(min_ndim=2, axes={-1: input_shape[-1].value}) self.kernel = self.add_variable('kernel', shape=[input_shape[-1].value, self.units], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, dtype=self.dtype, trainable=True) if self.use_bias: self.bias = self.add_variable('bias', shape=[self.units,], initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) shape = inputs.get_shape().as_list() if len(shape) > 2: # Broadcasting is required for the inputs. outputs = standard_ops.tensordot(inputs, self.kernel, [[len(shape) - 1], [0]]) # Reshape the output back to the original ndim of the input. if context.in_graph_mode(): output_shape = shape[:-1] + [self.units] outputs.set_shape(output_shape) else: outputs = standard_ops.matmul(inputs, self.kernel) if self.use_bias: outputs = nn.bias_add(outputs, self.bias) if self.activation is not None: return self.activation(outputs) # pylint: disable=not-callable return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) input_shape = input_shape.with_rank_at_least(2) if input_shape[-1].value is None: raise ValueError( 'The innermost dimension of input_shape must be defined, but saw: %s' % input_shape) return input_shape[:-1].concatenate(self.units) @tf_export('layers.dense') def dense( inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the densely-connected layer. This layer implements the operation: `outputs = activation(inputs.kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Arguments: inputs: Tensor input. units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor the same shape as `inputs` except the last dimension is of size `units`. Raises: ValueError: if eager execution is enabled. """ layer = Dense(units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse) return layer.apply(inputs) @tf_export('layers.Dropout') class Dropout(base.Layer): """Applies Dropout to the input. Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time. Arguments: rate: The dropout rate, between 0 and 1. E.g. `rate=0.1` would drop out 10% of input units. noise_shape: 1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed}. for behavior. name: The name of the layer (string). """ def __init__(self, rate=0.5, noise_shape=None, seed=None, name=None, **kwargs): super(Dropout, self).__init__(name=name, **kwargs) self.rate = rate self.noise_shape = noise_shape self.seed = seed def _get_noise_shape(self, inputs): # Subclasses of `Dropout` may implement `_get_noise_shape(self, inputs)`, # which will override `self.noise_shape`, and allows for custom noise # shapes with dynamically sized inputs. if self.noise_shape is None: return self.noise_shape return nn_ops._get_noise_shape(inputs, self.noise_shape) def call(self, inputs, training=False): def dropped_inputs(): return nn.dropout(inputs, 1 - self.rate, noise_shape=self._get_noise_shape(inputs), seed=self.seed) return utils.smart_cond(training, dropped_inputs, lambda: array_ops.identity(inputs)) def compute_output_shape(self, input_shape): return input_shape @tf_export('layers.dropout') def dropout(inputs, rate=0.5, noise_shape=None, seed=None, training=False, name=None): """Applies Dropout to the input. Dropout consists in randomly setting a fraction `rate` of input units to 0 at each update during training time, which helps prevent overfitting. The units that are kept are scaled by `1 / (1 - rate)`, so that their sum is unchanged at training time and inference time. Arguments: inputs: Tensor input. rate: The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out 10% of input units. noise_shape: 1D tensor of type `int32` representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)`, and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=[batch_size, 1, features]`. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. training: Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (apply dropout) or in inference mode (return the input untouched). name: The name of the layer (string). Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Dropout(rate, noise_shape=noise_shape, seed=seed, name=name) return layer.apply(inputs, training=training) @tf_export('layers.Flatten') class Flatten(base.Layer): """Flattens an input tensor while preserving the batch axis (axis 0). Examples: ``` x = tf.placeholder(shape=(None, 4, 4), dtype='float32') y = Flatten()(x) # now `y` has shape `(None, 16)` x = tf.placeholder(shape=(None, 3, None), dtype='float32') y = Flatten()(x) # now `y` has shape `(None, None)` ``` """ def __init__(self, **kwargs): super(Flatten, self).__init__(**kwargs) self.input_spec = base.InputSpec(min_ndim=2) def call(self, inputs): outputs = array_ops.reshape(inputs, (array_ops.shape(inputs)[0], -1)) if context.in_graph_mode(): outputs.set_shape(self.compute_output_shape(inputs.get_shape())) return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() output_shape = [input_shape[0]] if all(input_shape[1:]): output_shape += [np.prod(input_shape[1:])] else: output_shape += [None] return tensor_shape.TensorShape(output_shape) @tf_export('layers.flatten') def flatten(inputs, name=None): """Flattens an input tensor while preserving the batch axis (axis 0). Arguments: inputs: Tensor input. name: The name of the layer (string). Returns: Reshaped tensor. Examples: ``` x = tf.placeholder(shape=(None, 4, 4), dtype='float32') y = flatten(x) # now `y` has shape `(None, 16)` x = tf.placeholder(shape=(None, 3, None), dtype='float32') y = flatten(x) # now `y` has shape `(None, None)` ``` """ layer = Flatten(name=name) return layer.apply(inputs) # Aliases FullyConnected = Dense fully_connected = dense