Lines Matching refs:net
49 MLPTrain *net; in mlp_init() local
51 net = malloc(sizeof(*net)); in mlp_init()
52 net->topo = malloc(nbLayers*sizeof(net->topo[0])); in mlp_init()
54 net->topo[i] = topo[i]; in mlp_init()
57 net->in_rate = malloc((inDim+1)*sizeof(net->in_rate[0])); in mlp_init()
58 net->weights = malloc((nbLayers-1)*sizeof(net->weights)); in mlp_init()
59 net->best_weights = malloc((nbLayers-1)*sizeof(net->weights)); in mlp_init()
62 net->weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0])); in mlp_init()
63 net->best_weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0])); in mlp_init()
77 net->in_rate[1+j] = .5/(.0001+std); in mlp_init()
83 net->weights[0][k*(topo[0]+1)+j+1] = randn(std); in mlp_init()
85 net->in_rate[0] = 1; in mlp_init()
90 sum += inMean[k]*net->weights[0][j*(topo[0]+1)+k+1]; in mlp_init()
91 net->weights[0][j*(topo[0]+1)] = -sum; in mlp_init()
101 net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)] = mean; in mlp_init()
103 net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)+k+1] = randn(std); in mlp_init()
105 return net; in mlp_init()
111 double compute_gradient(MLPTrain *net, float *inputs, float *outputs, int nbSamples, double *W0_gra… in compute_gradient() argument
124 topo = net->topo; in compute_gradient()
125 inDim = net->topo[0]; in compute_gradient()
126 hiddenDim = net->topo[1]; in compute_gradient()
127 outDim = net->topo[2]; in compute_gradient()
130 W0 = net->weights[0]; in compute_gradient()
131 W1 = net->weights[1]; in compute_gradient()
197 MLPTrain *net; member
211 int *topo = arg->net->topo; in gradient_thread_process()
223 …arg->rms = compute_gradient(arg->net, arg->inputs, arg->outputs, arg->nbSamples, arg->W0_grad, arg… in gradient_thread_process()
230 float mlp_train_backprop(MLPTrain *net, float *inputs, float *outputs, int nbSamples, int nbEpoch, … in mlp_train_backprop() argument
243 topo = net->topo; in mlp_train_backprop()
252 topo = net->topo; in mlp_train_backprop()
253 inDim = net->topo[0]; in mlp_train_backprop()
254 hiddenDim = net->topo[1]; in mlp_train_backprop()
255 outDim = net->topo[2]; in mlp_train_backprop()
256 W0 = net->weights[0]; in mlp_train_backprop()
257 W1 = net->weights[1]; in mlp_train_backprop()
258 best_W0 = net->best_weights[0]; in mlp_train_backprop()
259 best_W1 = net->best_weights[1]; in mlp_train_backprop()
276 W0_rate[i*(inDim+1)+j] = rate*net->in_rate[j]; in mlp_train_backprop()
282 args[i].net = net; in mlp_train_backprop()
465 MLPTrain *net; in main() local
468 net = mlp_init(topo, 3, inputs, outputs, nbSamples); in main()
469 rms = mlp_train_backprop(net, inputs, outputs, nbSamples, nbEpoch, 1); in main()
479 printf ("%gf,", net->weights[0][i]); in main()
488 printf ("%gf,", net->weights[1][i]); in main()