/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "scheduler.h" #include "base/scoped_arena_allocator.h" #include "base/scoped_arena_containers.h" #include "data_type-inl.h" #include "prepare_for_register_allocation.h" #ifdef ART_ENABLE_CODEGEN_arm64 #include "scheduler_arm64.h" #endif #ifdef ART_ENABLE_CODEGEN_arm #include "scheduler_arm.h" #endif namespace art { void SchedulingGraph::AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency) { if (node == nullptr || dependency == nullptr) { // A `nullptr` node indicates an instruction out of scheduling range (eg. in // an other block), so we do not need to add a dependency edge to the graph. return; } if (is_data_dependency) { if (!HasImmediateDataDependency(node, dependency)) { node->AddDataPredecessor(dependency); } } else if (!HasImmediateOtherDependency(node, dependency)) { node->AddOtherPredecessor(dependency); } } static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) { // Read after write. if (node.MayDependOn(other)) { return true; } // Write after read. if (other.MayDependOn(node)) { return true; } // Memory write after write. if (node.DoesAnyWrite() && other.DoesAnyWrite()) { return true; } return false; } size_t SchedulingGraph::ArrayAccessHeapLocation(HInstruction* array, HInstruction* index) const { DCHECK(heap_location_collector_ != nullptr); size_t heap_loc = heap_location_collector_->GetArrayHeapLocation(array, index); // This array access should be analyzed and added to HeapLocationCollector before. DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound); return heap_loc; } bool SchedulingGraph::ArrayAccessMayAlias(const HInstruction* node, const HInstruction* other) const { DCHECK(heap_location_collector_ != nullptr); size_t node_heap_loc = ArrayAccessHeapLocation(node->InputAt(0), node->InputAt(1)); size_t other_heap_loc = ArrayAccessHeapLocation(other->InputAt(0), other->InputAt(1)); // For example: arr[0] and arr[0] if (node_heap_loc == other_heap_loc) { return true; } // For example: arr[0] and arr[i] if (heap_location_collector_->MayAlias(node_heap_loc, other_heap_loc)) { return true; } return false; } static bool IsArrayAccess(const HInstruction* instruction) { return instruction->IsArrayGet() || instruction->IsArraySet(); } static bool IsInstanceFieldAccess(const HInstruction* instruction) { return instruction->IsInstanceFieldGet() || instruction->IsInstanceFieldSet() || instruction->IsUnresolvedInstanceFieldGet() || instruction->IsUnresolvedInstanceFieldSet(); } static bool IsStaticFieldAccess(const HInstruction* instruction) { return instruction->IsStaticFieldGet() || instruction->IsStaticFieldSet() || instruction->IsUnresolvedStaticFieldGet() || instruction->IsUnresolvedStaticFieldSet(); } static bool IsResolvedFieldAccess(const HInstruction* instruction) { return instruction->IsInstanceFieldGet() || instruction->IsInstanceFieldSet() || instruction->IsStaticFieldGet() || instruction->IsStaticFieldSet(); } static bool IsUnresolvedFieldAccess(const HInstruction* instruction) { return instruction->IsUnresolvedInstanceFieldGet() || instruction->IsUnresolvedInstanceFieldSet() || instruction->IsUnresolvedStaticFieldGet() || instruction->IsUnresolvedStaticFieldSet(); } static bool IsFieldAccess(const HInstruction* instruction) { return IsResolvedFieldAccess(instruction) || IsUnresolvedFieldAccess(instruction); } static const FieldInfo* GetFieldInfo(const HInstruction* instruction) { if (instruction->IsInstanceFieldGet()) { return &instruction->AsInstanceFieldGet()->GetFieldInfo(); } else if (instruction->IsInstanceFieldSet()) { return &instruction->AsInstanceFieldSet()->GetFieldInfo(); } else if (instruction->IsStaticFieldGet()) { return &instruction->AsStaticFieldGet()->GetFieldInfo(); } else if (instruction->IsStaticFieldSet()) { return &instruction->AsStaticFieldSet()->GetFieldInfo(); } else { LOG(FATAL) << "Unexpected field access type"; UNREACHABLE(); } } size_t SchedulingGraph::FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const { DCHECK(obj != nullptr); DCHECK(field != nullptr); DCHECK(heap_location_collector_ != nullptr); size_t heap_loc = heap_location_collector_->GetFieldHeapLocation(obj, field); // This field access should be analyzed and added to HeapLocationCollector before. DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound); return heap_loc; } bool SchedulingGraph::FieldAccessMayAlias(const HInstruction* node, const HInstruction* other) const { DCHECK(heap_location_collector_ != nullptr); // Static and instance field accesses should not alias. if ((IsInstanceFieldAccess(node) && IsStaticFieldAccess(other)) || (IsStaticFieldAccess(node) && IsInstanceFieldAccess(other))) { return false; } // If either of the field accesses is unresolved. if (IsUnresolvedFieldAccess(node) || IsUnresolvedFieldAccess(other)) { // Conservatively treat these two accesses may alias. return true; } // If both fields accesses are resolved. const FieldInfo* node_field = GetFieldInfo(node); const FieldInfo* other_field = GetFieldInfo(other); size_t node_loc = FieldAccessHeapLocation(node->InputAt(0), node_field); size_t other_loc = FieldAccessHeapLocation(other->InputAt(0), other_field); if (node_loc == other_loc) { return true; } if (!heap_location_collector_->MayAlias(node_loc, other_loc)) { return false; } return true; } bool SchedulingGraph::HasMemoryDependency(const HInstruction* node, const HInstruction* other) const { if (!MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) { return false; } if (heap_location_collector_ == nullptr || heap_location_collector_->GetNumberOfHeapLocations() == 0) { // Without HeapLocation information from load store analysis, // we cannot do further disambiguation analysis on these two instructions. // Just simply say that those two instructions have memory dependency. return true; } if (IsArrayAccess(node) && IsArrayAccess(other)) { return ArrayAccessMayAlias(node, other); } if (IsFieldAccess(node) && IsFieldAccess(other)) { return FieldAccessMayAlias(node, other); } // TODO(xueliang): LSA to support alias analysis among HVecLoad, HVecStore and ArrayAccess if (node->IsVecMemoryOperation() && other->IsVecMemoryOperation()) { return true; } if (node->IsVecMemoryOperation() && IsArrayAccess(other)) { return true; } if (IsArrayAccess(node) && other->IsVecMemoryOperation()) { return true; } // Heap accesses of different kinds should not alias. if (IsArrayAccess(node) && IsFieldAccess(other)) { return false; } if (IsFieldAccess(node) && IsArrayAccess(other)) { return false; } if (node->IsVecMemoryOperation() && IsFieldAccess(other)) { return false; } if (IsFieldAccess(node) && other->IsVecMemoryOperation()) { return false; } // We conservatively treat all other cases having dependency, // for example, Invoke and ArrayGet. return true; } bool SchedulingGraph::HasExceptionDependency(const HInstruction* node, const HInstruction* other) const { if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) { return true; } if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) { return true; } if (other->CanThrow() && node->CanThrow()) { return true; } // Above checks should cover all cases where we cannot reorder two // instructions which may throw exception. return false; } // Check whether `node` depends on `other`, taking into account `SideEffect` // information and `CanThrow` information. bool SchedulingGraph::HasSideEffectDependency(const HInstruction* node, const HInstruction* other) const { if (HasMemoryDependency(node, other)) { return true; } // Even if above memory dependency check has passed, it is still necessary to // check dependencies between instructions that can throw and instructions // that write to memory. if (HasExceptionDependency(node, other)) { return true; } return false; } void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) { SchedulingNode* instruction_node = GetNode(instruction); // Define-use dependencies. for (const HUseListNode& use : instruction->GetUses()) { AddDataDependency(GetNode(use.GetUser()), instruction_node); } // Scheduling barrier dependencies. DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_); if (contains_scheduling_barrier_) { // A barrier depends on instructions after it. And instructions before the // barrier depend on it. for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { SchedulingNode* other_node = GetNode(other); CHECK(other_node != nullptr) << other->DebugName() << " is in block " << other->GetBlock()->GetBlockId() << ", and expected in block " << instruction->GetBlock()->GetBlockId(); bool other_is_barrier = other_node->IsSchedulingBarrier(); if (is_scheduling_barrier || other_is_barrier) { AddOtherDependency(other_node, instruction_node); } if (other_is_barrier) { // This other scheduling barrier guarantees ordering of instructions after // it, so avoid creating additional useless dependencies in the graph. // For example if we have // instr_1 // barrier_2 // instr_3 // barrier_4 // instr_5 // we only create the following non-data dependencies // 1 -> 2 // 2 -> 3 // 2 -> 4 // 3 -> 4 // 4 -> 5 // and do not create // 1 -> 4 // 2 -> 5 // Note that in this example we could also avoid creating the dependency // `2 -> 4`. But if we remove `instr_3` that dependency is required to // order the barriers. So we generate it to avoid a special case. break; } } } // Side effect dependencies. if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) { for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { SchedulingNode* other_node = GetNode(other); if (other_node->IsSchedulingBarrier()) { // We have reached a scheduling barrier so we can stop further // processing. DCHECK(HasImmediateOtherDependency(other_node, instruction_node)); break; } if (HasSideEffectDependency(other, instruction)) { AddOtherDependency(other_node, instruction_node); } } } // Environment dependencies. // We do not need to process those if the instruction is a scheduling barrier, // since the barrier already has non-data dependencies on all following // instructions. if (!is_scheduling_barrier) { for (const HUseListNode& use : instruction->GetEnvUses()) { // Note that here we could stop processing if the environment holder is // across a scheduling barrier. But checking this would likely require // more work than simply iterating through environment uses. AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node); } } } bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const { return ContainsElement(node->GetDataPredecessors(), other); } bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction, const HInstruction* other_instruction) const { const SchedulingNode* node = GetNode(instruction); const SchedulingNode* other = GetNode(other_instruction); if (node == nullptr || other == nullptr) { // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their // corresponding SchedulingNode in the graph, and tell whether there is a dependency. // Otherwise there is no dependency from SchedulingGraph's perspective, for example, // instruction and other_instruction are in different basic blocks. return false; } return HasImmediateDataDependency(node, other); } bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const { return ContainsElement(node->GetOtherPredecessors(), other); } bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction, const HInstruction* other_instruction) const { const SchedulingNode* node = GetNode(instruction); const SchedulingNode* other = GetNode(other_instruction); if (node == nullptr || other == nullptr) { // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their // corresponding SchedulingNode in the graph, and tell whether there is a dependency. // Otherwise there is no dependency from SchedulingGraph's perspective, for example, // instruction and other_instruction are in different basic blocks. return false; } return HasImmediateOtherDependency(node, other); } static const std::string InstructionTypeId(const HInstruction* instruction) { return DataType::TypeId(instruction->GetType()) + std::to_string(instruction->GetId()); } // Ideally we would reuse the graph visualizer code, but it is not available // from here and it is not worth moving all that code only for our use. static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) { const HInstruction* instruction = node->GetInstruction(); // Use the instruction typed id as the node identifier. std::string instruction_id = InstructionTypeId(instruction); output << instruction_id << "[shape=record, label=\"" << instruction_id << ' ' << instruction->DebugName() << " ["; // List the instruction's inputs in its description. When visualizing the // graph this helps differentiating data inputs from other dependencies. const char* seperator = ""; for (const HInstruction* input : instruction->GetInputs()) { output << seperator << InstructionTypeId(input); seperator = ","; } output << "]"; // Other properties of the node. output << "\\ninternal_latency: " << node->GetInternalLatency(); output << "\\ncritical_path: " << node->GetCriticalPath(); if (node->IsSchedulingBarrier()) { output << "\\n(barrier)"; } output << "\"];\n"; // We want program order to go from top to bottom in the graph output, so we // reverse the edges and specify `dir=back`. for (const SchedulingNode* predecessor : node->GetDataPredecessors()) { const HInstruction* predecessor_instruction = predecessor->GetInstruction(); output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n"; } for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) { const HInstruction* predecessor_instruction = predecessor->GetInstruction(); output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " << "[dir=back,color=blue]\n"; } } void SchedulingGraph::DumpAsDotGraph(const std::string& description, const ScopedArenaVector& initial_candidates) { // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that // we should move this dotty graph dump feature to visualizer, and have a compiler option for it. std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app); // Description of this graph, as a comment. output << "// " << description << "\n"; // Start the dot graph. Use an increasing index for easier differentiation. output << "digraph G {\n"; for (const auto& entry : nodes_map_) { SchedulingNode* node = entry.second.get(); DumpAsDotNode(output, node); } // Create a fake 'end_of_scheduling' node to help visualization of critical_paths. for (SchedulingNode* node : initial_candidates) { const HInstruction* instruction = node->GetInstruction(); output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n " << "[label=\"" << node->GetLatency() << "\",dir=back]\n"; } // End of the dot graph. output << "}\n"; output.close(); } SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition( ScopedArenaVector* nodes, const SchedulingGraph& graph) const { // Schedule condition inputs that can be materialized immediately before their use. // In following example, after we've scheduled HSelect, we want LessThan to be scheduled // immediately, because it is a materialized condition, and will be emitted right before HSelect // in codegen phase. // // i20 HLessThan [...] HLessThan HAdd HAdd // i21 HAdd [...] ===> | | | // i22 HAdd [...] +----------+---------+ // i23 HSelect [i21, i22, i20] HSelect if (prev_select_ == nullptr) { return nullptr; } const HInstruction* instruction = prev_select_->GetInstruction(); const HCondition* condition = nullptr; DCHECK(instruction != nullptr); if (instruction->IsIf()) { condition = instruction->AsIf()->InputAt(0)->AsCondition(); } else if (instruction->IsSelect()) { condition = instruction->AsSelect()->GetCondition()->AsCondition(); } SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr; if ((condition_node != nullptr) && condition->HasOnlyOneNonEnvironmentUse() && ContainsElement(*nodes, condition_node)) { DCHECK(!condition_node->HasUnscheduledSuccessors()); // Remove the condition from the list of candidates and schedule it. RemoveElement(*nodes, condition_node); return condition_node; } return nullptr; } SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode( ScopedArenaVector* nodes, const SchedulingGraph& graph) { DCHECK(!nodes->empty()); SchedulingNode* select_node = nullptr; // Optimize for materialized condition and its emit before use scenario. select_node = SelectMaterializedCondition(nodes, graph); if (select_node == nullptr) { // Get highest priority node based on critical path information. select_node = (*nodes)[0]; size_t select = 0; for (size_t i = 1, e = nodes->size(); i < e; i++) { SchedulingNode* check = (*nodes)[i]; SchedulingNode* candidate = (*nodes)[select]; select_node = GetHigherPrioritySchedulingNode(candidate, check); if (select_node == check) { select = i; } } DeleteNodeAtIndex(nodes, select); } prev_select_ = select_node; return select_node; } SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode( SchedulingNode* candidate, SchedulingNode* check) const { uint32_t candidate_path = candidate->GetCriticalPath(); uint32_t check_path = check->GetCriticalPath(); // First look at the critical_path. if (check_path != candidate_path) { return check_path < candidate_path ? check : candidate; } // If both critical paths are equal, schedule instructions with a higher latency // first in program order. return check->GetLatency() < candidate->GetLatency() ? check : candidate; } void HScheduler::Schedule(HGraph* graph) { // We run lsa here instead of in a separate pass to better control whether we // should run the analysis or not. LoadStoreAnalysis lsa(graph); if (!only_optimize_loop_blocks_ || graph->HasLoops()) { lsa.Run(); scheduling_graph_.SetHeapLocationCollector(lsa.GetHeapLocationCollector()); } for (HBasicBlock* block : graph->GetReversePostOrder()) { if (IsSchedulable(block)) { Schedule(block); } } } void HScheduler::Schedule(HBasicBlock* block) { ScopedArenaVector scheduling_nodes(allocator_->Adapter(kArenaAllocScheduler)); // Build the scheduling graph. scheduling_graph_.Clear(); for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); CHECK_EQ(instruction->GetBlock(), block) << instruction->DebugName() << " is in block " << instruction->GetBlock()->GetBlockId() << ", and expected in block " << block->GetBlockId(); SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction)); CalculateLatency(node); scheduling_nodes.push_back(node); } if (scheduling_graph_.Size() <= 1) { scheduling_graph_.Clear(); return; } cursor_ = block->GetLastInstruction(); // Find the initial candidates for scheduling. candidates_.clear(); for (SchedulingNode* node : scheduling_nodes) { if (!node->HasUnscheduledSuccessors()) { node->MaybeUpdateCriticalPath(node->GetLatency()); candidates_.push_back(node); } } ScopedArenaVector initial_candidates(allocator_->Adapter(kArenaAllocScheduler)); if (kDumpDotSchedulingGraphs) { // Remember the list of initial candidates for debug output purposes. initial_candidates.assign(candidates_.begin(), candidates_.end()); } // Schedule all nodes. while (!candidates_.empty()) { Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_)); } if (kDumpDotSchedulingGraphs) { // Dump the graph in `dot` format. HGraph* graph = block->GetGraph(); std::stringstream description; description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx()) << " B" << block->GetBlockId(); scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates); } } void HScheduler::Schedule(SchedulingNode* scheduling_node) { // Check whether any of the node's predecessors will be valid candidates after // this node is scheduled. uint32_t path_to_node = scheduling_node->GetCriticalPath(); for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) { predecessor->MaybeUpdateCriticalPath( path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency()); predecessor->DecrementNumberOfUnscheduledSuccessors(); if (!predecessor->HasUnscheduledSuccessors()) { candidates_.push_back(predecessor); } } for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) { // Do not update the critical path. // The 'other' (so 'non-data') dependencies (usually) do not represent a // 'material' dependency of nodes on others. They exist for program // correctness. So we do not use them to compute the critical path. predecessor->DecrementNumberOfUnscheduledSuccessors(); if (!predecessor->HasUnscheduledSuccessors()) { candidates_.push_back(predecessor); } } Schedule(scheduling_node->GetInstruction()); } // Move an instruction after cursor instruction inside one basic block. static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) { DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock()); DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction()); DCHECK(!instruction->IsControlFlow()); DCHECK(!cursor->IsControlFlow()); instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false); } void HScheduler::Schedule(HInstruction* instruction) { if (instruction == cursor_) { cursor_ = cursor_->GetPrevious(); } else { MoveAfterInBlock(instruction, cursor_); } } bool HScheduler::IsSchedulable(const HInstruction* instruction) const { // We want to avoid exhaustively listing all instructions, so we first check // for instruction categories that we know are safe. if (instruction->IsControlFlow() || instruction->IsConstant()) { return true; } // Currently all unary and binary operations are safe to schedule, so avoid // checking for each of them individually. // Since nothing prevents a new scheduling-unsafe HInstruction to subclass // HUnaryOperation (or HBinaryOperation), check in debug mode that we have // the exhaustive lists here. if (instruction->IsUnaryOperation()) { DCHECK(instruction->IsBooleanNot() || instruction->IsNot() || instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName(); return true; } if (instruction->IsBinaryOperation()) { DCHECK(instruction->IsAdd() || instruction->IsAnd() || instruction->IsCompare() || instruction->IsCondition() || instruction->IsDiv() || instruction->IsMul() || instruction->IsOr() || instruction->IsRem() || instruction->IsRor() || instruction->IsShl() || instruction->IsShr() || instruction->IsSub() || instruction->IsUShr() || instruction->IsXor()) << "unexpected instruction " << instruction->DebugName(); return true; } // The scheduler should not see any of these. DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName(); // List of instructions explicitly excluded: // HClearException // HClinitCheck // HDeoptimize // HLoadClass // HLoadException // HMemoryBarrier // HMonitorOperation // HNativeDebugInfo // HThrow // HTryBoundary // TODO: Some of the instructions above may be safe to schedule (maybe as // scheduling barriers). return instruction->IsArrayGet() || instruction->IsArraySet() || instruction->IsArrayLength() || instruction->IsBoundType() || instruction->IsBoundsCheck() || instruction->IsCheckCast() || instruction->IsClassTableGet() || instruction->IsCurrentMethod() || instruction->IsDivZeroCheck() || (instruction->IsInstanceFieldGet() && !instruction->AsInstanceFieldGet()->IsVolatile()) || (instruction->IsInstanceFieldSet() && !instruction->AsInstanceFieldSet()->IsVolatile()) || instruction->IsInstanceOf() || instruction->IsInvokeInterface() || instruction->IsInvokeStaticOrDirect() || instruction->IsInvokeUnresolved() || instruction->IsInvokeVirtual() || instruction->IsLoadString() || instruction->IsNewArray() || instruction->IsNewInstance() || instruction->IsNullCheck() || instruction->IsPackedSwitch() || instruction->IsParameterValue() || instruction->IsPhi() || instruction->IsReturn() || instruction->IsReturnVoid() || instruction->IsSelect() || (instruction->IsStaticFieldGet() && !instruction->AsStaticFieldGet()->IsVolatile()) || (instruction->IsStaticFieldSet() && !instruction->AsStaticFieldSet()->IsVolatile()) || instruction->IsSuspendCheck() || instruction->IsTypeConversion(); } bool HScheduler::IsSchedulable(const HBasicBlock* block) const { // We may be only interested in loop blocks. if (only_optimize_loop_blocks_ && !block->IsInLoop()) { return false; } if (block->GetTryCatchInformation() != nullptr) { // Do not schedule blocks that are part of try-catch. // Because scheduler cannot see if catch block has assumptions on the instruction order in // the try block. In following example, if we enable scheduler for the try block, // MulitiplyAccumulate may be scheduled before DivZeroCheck, // which can result in an incorrect value in the catch block. // try { // a = a/b; // DivZeroCheck // // Div // c = c*d+e; // MulitiplyAccumulate // } catch {System.out.print(c); } return false; } // Check whether all instructions in this block are schedulable. for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { if (!IsSchedulable(it.Current())) { return false; } } return true; } bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const { return instr->IsControlFlow() || // Don't break calling convention. instr->IsParameterValue() || // Code generation of goto relies on SuspendCheck's position. instr->IsSuspendCheck(); } void HInstructionScheduling::Run(bool only_optimize_loop_blocks, bool schedule_randomly) { #if defined(ART_ENABLE_CODEGEN_arm64) || defined(ART_ENABLE_CODEGEN_arm) // Phase-local allocator that allocates scheduler internal data structures like // scheduling nodes, internel nodes map, dependencies, etc. ScopedArenaAllocator allocator(graph_->GetArenaStack()); CriticalPathSchedulingNodeSelector critical_path_selector; RandomSchedulingNodeSelector random_selector; SchedulingNodeSelector* selector = schedule_randomly ? static_cast(&random_selector) : static_cast(&critical_path_selector); #else // Avoid compilation error when compiling for unsupported instruction set. UNUSED(only_optimize_loop_blocks); UNUSED(schedule_randomly); UNUSED(codegen_); #endif switch (instruction_set_) { #ifdef ART_ENABLE_CODEGEN_arm64 case InstructionSet::kArm64: { arm64::HSchedulerARM64 scheduler(&allocator, selector); scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks); scheduler.Schedule(graph_); break; } #endif #if defined(ART_ENABLE_CODEGEN_arm) case InstructionSet::kThumb2: case InstructionSet::kArm: { arm::SchedulingLatencyVisitorARM arm_latency_visitor(codegen_); arm::HSchedulerARM scheduler(&allocator, selector, &arm_latency_visitor); scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks); scheduler.Schedule(graph_); break; } #endif default: break; } } } // namespace art