/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Implementation file of the dexlayout utility. * * This is a tool to read dex files into an internal representation, * reorganize the representation, and emit dex files with a better * file layout. */ #include "dexlayout.h" #include #include #include // For the PROT_* and MAP_* constants. #include #include #include #include #include "android-base/stringprintf.h" #include "base/logging.h" // For VLOG_IS_ON. #include "base/os.h" #include "base/utils.h" #include "dex/art_dex_file_loader.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_layout.h" #include "dex/dex_file_loader.h" #include "dex/dex_file_types.h" #include "dex/dex_file_verifier.h" #include "dex/dex_instruction-inl.h" #include "dex_ir_builder.h" #include "dex_verify.h" #include "dex_visualize.h" #include "dex_writer.h" #include "jit/profile_compilation_info.h" #include "mem_map.h" namespace art { using android::base::StringPrintf; /* * Flags for use with createAccessFlagStr(). */ enum AccessFor { kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX }; const int kNumFlags = 18; /* * Gets 2 little-endian bytes. */ static inline uint16_t Get2LE(unsigned char const* src) { return src[0] | (src[1] << 8); } /* * Converts a type descriptor to human-readable "dotted" form. For * example, "Ljava/lang/String;" becomes "java.lang.String", and * "[I" becomes "int[]". Also converts '$' to '.', which means this * form can't be converted back to a descriptor. */ static std::string DescriptorToDotWrapper(const char* descriptor) { std::string result = DescriptorToDot(descriptor); size_t found = result.find('$'); while (found != std::string::npos) { result[found] = '.'; found = result.find('$', found); } return result; } /* * Converts the class name portion of a type descriptor to human-readable * "dotted" form. For example, "Ljava/lang/String;" becomes "String". */ static std::string DescriptorClassToDot(const char* str) { std::string descriptor(str); // Reduce to just the class name prefix. size_t last_slash = descriptor.rfind('/'); if (last_slash == std::string::npos) { last_slash = 0; } // Start past the '/' or 'L'. last_slash++; // Copy class name over, trimming trailing ';'. size_t size = descriptor.size() - 1 - last_slash; std::string result(descriptor.substr(last_slash, size)); // Replace '$' with '.'. size_t dollar_sign = result.find('$'); while (dollar_sign != std::string::npos) { result[dollar_sign] = '.'; dollar_sign = result.find('$', dollar_sign); } return result; } /* * Returns string representing the boolean value. */ static const char* StrBool(bool val) { return val ? "true" : "false"; } /* * Returns a quoted string representing the boolean value. */ static const char* QuotedBool(bool val) { return val ? "\"true\"" : "\"false\""; } /* * Returns a quoted string representing the access flags. */ static const char* QuotedVisibility(uint32_t access_flags) { if (access_flags & kAccPublic) { return "\"public\""; } else if (access_flags & kAccProtected) { return "\"protected\""; } else if (access_flags & kAccPrivate) { return "\"private\""; } else { return "\"package\""; } } /* * Counts the number of '1' bits in a word. */ static int CountOnes(uint32_t val) { val = val - ((val >> 1) & 0x55555555); val = (val & 0x33333333) + ((val >> 2) & 0x33333333); return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24; } /* * Creates a new string with human-readable access flags. * * In the base language the access_flags fields are type uint16_t; in Dalvik they're uint32_t. */ static char* CreateAccessFlagStr(uint32_t flags, AccessFor for_what) { static const char* kAccessStrings[kAccessForMAX][kNumFlags] = { { "PUBLIC", /* 0x00001 */ "PRIVATE", /* 0x00002 */ "PROTECTED", /* 0x00004 */ "STATIC", /* 0x00008 */ "FINAL", /* 0x00010 */ "?", /* 0x00020 */ "?", /* 0x00040 */ "?", /* 0x00080 */ "?", /* 0x00100 */ "INTERFACE", /* 0x00200 */ "ABSTRACT", /* 0x00400 */ "?", /* 0x00800 */ "SYNTHETIC", /* 0x01000 */ "ANNOTATION", /* 0x02000 */ "ENUM", /* 0x04000 */ "?", /* 0x08000 */ "VERIFIED", /* 0x10000 */ "OPTIMIZED", /* 0x20000 */ }, { "PUBLIC", /* 0x00001 */ "PRIVATE", /* 0x00002 */ "PROTECTED", /* 0x00004 */ "STATIC", /* 0x00008 */ "FINAL", /* 0x00010 */ "SYNCHRONIZED", /* 0x00020 */ "BRIDGE", /* 0x00040 */ "VARARGS", /* 0x00080 */ "NATIVE", /* 0x00100 */ "?", /* 0x00200 */ "ABSTRACT", /* 0x00400 */ "STRICT", /* 0x00800 */ "SYNTHETIC", /* 0x01000 */ "?", /* 0x02000 */ "?", /* 0x04000 */ "MIRANDA", /* 0x08000 */ "CONSTRUCTOR", /* 0x10000 */ "DECLARED_SYNCHRONIZED", /* 0x20000 */ }, { "PUBLIC", /* 0x00001 */ "PRIVATE", /* 0x00002 */ "PROTECTED", /* 0x00004 */ "STATIC", /* 0x00008 */ "FINAL", /* 0x00010 */ "?", /* 0x00020 */ "VOLATILE", /* 0x00040 */ "TRANSIENT", /* 0x00080 */ "?", /* 0x00100 */ "?", /* 0x00200 */ "?", /* 0x00400 */ "?", /* 0x00800 */ "SYNTHETIC", /* 0x01000 */ "?", /* 0x02000 */ "ENUM", /* 0x04000 */ "?", /* 0x08000 */ "?", /* 0x10000 */ "?", /* 0x20000 */ }, }; // Allocate enough storage to hold the expected number of strings, // plus a space between each. We over-allocate, using the longest // string above as the base metric. const int kLongest = 21; // The strlen of longest string above. const int count = CountOnes(flags); char* str; char* cp; cp = str = reinterpret_cast(malloc(count * (kLongest + 1) + 1)); for (int i = 0; i < kNumFlags; i++) { if (flags & 0x01) { const char* accessStr = kAccessStrings[for_what][i]; const int len = strlen(accessStr); if (cp != str) { *cp++ = ' '; } memcpy(cp, accessStr, len); cp += len; } flags >>= 1; } // for *cp = '\0'; return str; } static std::string GetSignatureForProtoId(const dex_ir::ProtoId* proto) { if (proto == nullptr) { return ""; } std::string result("("); const dex_ir::TypeList* type_list = proto->Parameters(); if (type_list != nullptr) { for (const dex_ir::TypeId* type_id : *type_list->GetTypeList()) { result += type_id->GetStringId()->Data(); } } result += ")"; result += proto->ReturnType()->GetStringId()->Data(); return result; } /* * Copies character data from "data" to "out", converting non-ASCII values * to fprintf format chars or an ASCII filler ('.' or '?'). * * The output buffer must be able to hold (2*len)+1 bytes. The result is * NULL-terminated. */ static void Asciify(char* out, const unsigned char* data, size_t len) { while (len--) { if (*data < 0x20) { // Could do more here, but we don't need them yet. switch (*data) { case '\0': *out++ = '\\'; *out++ = '0'; break; case '\n': *out++ = '\\'; *out++ = 'n'; break; default: *out++ = '.'; break; } // switch } else if (*data >= 0x80) { *out++ = '?'; } else { *out++ = *data; } data++; } // while *out = '\0'; } /* * Dumps a string value with some escape characters. */ static void DumpEscapedString(const char* p, FILE* out_file) { fputs("\"", out_file); for (; *p; p++) { switch (*p) { case '\\': fputs("\\\\", out_file); break; case '\"': fputs("\\\"", out_file); break; case '\t': fputs("\\t", out_file); break; case '\n': fputs("\\n", out_file); break; case '\r': fputs("\\r", out_file); break; default: putc(*p, out_file); } // switch } // for fputs("\"", out_file); } /* * Dumps a string as an XML attribute value. */ static void DumpXmlAttribute(const char* p, FILE* out_file) { for (; *p; p++) { switch (*p) { case '&': fputs("&", out_file); break; case '<': fputs("<", out_file); break; case '>': fputs(">", out_file); break; case '"': fputs(""", out_file); break; case '\t': fputs(" ", out_file); break; case '\n': fputs(" ", out_file); break; case '\r': fputs(" ", out_file); break; default: putc(*p, out_file); } // switch } // for } /* * Helper for dumpInstruction(), which builds the string * representation for the index in the given instruction. * Returns a pointer to a buffer of sufficient size. */ static std::unique_ptr IndexString(dex_ir::Header* header, const Instruction* dec_insn, size_t buf_size) { std::unique_ptr buf(new char[buf_size]); // Determine index and width of the string. uint32_t index = 0; uint32_t secondary_index = dex::kDexNoIndex; uint32_t width = 4; switch (Instruction::FormatOf(dec_insn->Opcode())) { // SOME NOT SUPPORTED: // case Instruction::k20bc: case Instruction::k21c: case Instruction::k35c: // case Instruction::k35ms: case Instruction::k3rc: // case Instruction::k3rms: // case Instruction::k35mi: // case Instruction::k3rmi: index = dec_insn->VRegB(); width = 4; break; case Instruction::k31c: index = dec_insn->VRegB(); width = 8; break; case Instruction::k22c: // case Instruction::k22cs: index = dec_insn->VRegC(); width = 4; break; case Instruction::k45cc: case Instruction::k4rcc: index = dec_insn->VRegB(); secondary_index = dec_insn->VRegH(); width = 4; break; default: break; } // switch // Determine index type. size_t outSize = 0; switch (Instruction::IndexTypeOf(dec_insn->Opcode())) { case Instruction::kIndexUnknown: // This function should never get called for this type, but do // something sensible here, just to help with debugging. outSize = snprintf(buf.get(), buf_size, ""); break; case Instruction::kIndexNone: // This function should never get called for this type, but do // something sensible here, just to help with debugging. outSize = snprintf(buf.get(), buf_size, ""); break; case Instruction::kIndexTypeRef: if (index < header->GetCollections().TypeIdsSize()) { const char* tp = header->GetCollections().GetTypeId(index)->GetStringId()->Data(); outSize = snprintf(buf.get(), buf_size, "%s // type@%0*x", tp, width, index); } else { outSize = snprintf(buf.get(), buf_size, " // type@%0*x", width, index); } break; case Instruction::kIndexStringRef: if (index < header->GetCollections().StringIdsSize()) { const char* st = header->GetCollections().GetStringId(index)->Data(); outSize = snprintf(buf.get(), buf_size, "\"%s\" // string@%0*x", st, width, index); } else { outSize = snprintf(buf.get(), buf_size, " // string@%0*x", width, index); } break; case Instruction::kIndexMethodRef: if (index < header->GetCollections().MethodIdsSize()) { dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index); const char* name = method_id->Name()->Data(); std::string type_descriptor = GetSignatureForProtoId(method_id->Proto()); const char* back_descriptor = method_id->Class()->GetStringId()->Data(); outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // method@%0*x", back_descriptor, name, type_descriptor.c_str(), width, index); } else { outSize = snprintf(buf.get(), buf_size, " // method@%0*x", width, index); } break; case Instruction::kIndexFieldRef: if (index < header->GetCollections().FieldIdsSize()) { dex_ir::FieldId* field_id = header->GetCollections().GetFieldId(index); const char* name = field_id->Name()->Data(); const char* type_descriptor = field_id->Type()->GetStringId()->Data(); const char* back_descriptor = field_id->Class()->GetStringId()->Data(); outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // field@%0*x", back_descriptor, name, type_descriptor, width, index); } else { outSize = snprintf(buf.get(), buf_size, " // field@%0*x", width, index); } break; case Instruction::kIndexVtableOffset: outSize = snprintf(buf.get(), buf_size, "[%0*x] // vtable #%0*x", width, index, width, index); break; case Instruction::kIndexFieldOffset: outSize = snprintf(buf.get(), buf_size, "[obj+%0*x]", width, index); break; case Instruction::kIndexMethodAndProtoRef: { std::string method(""); std::string proto(""); if (index < header->GetCollections().MethodIdsSize()) { dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index); const char* name = method_id->Name()->Data(); std::string type_descriptor = GetSignatureForProtoId(method_id->Proto()); const char* back_descriptor = method_id->Class()->GetStringId()->Data(); method = StringPrintf("%s.%s:%s", back_descriptor, name, type_descriptor.c_str()); } if (secondary_index < header->GetCollections().ProtoIdsSize()) { dex_ir::ProtoId* proto_id = header->GetCollections().GetProtoId(secondary_index); proto = GetSignatureForProtoId(proto_id); } outSize = snprintf(buf.get(), buf_size, "%s, %s // method@%0*x, proto@%0*x", method.c_str(), proto.c_str(), width, index, width, secondary_index); } break; // SOME NOT SUPPORTED: // case Instruction::kIndexVaries: // case Instruction::kIndexInlineMethod: default: outSize = snprintf(buf.get(), buf_size, ""); break; } // switch // Determine success of string construction. if (outSize >= buf_size) { // The buffer wasn't big enough; retry with computed size. Note: snprintf() // doesn't count/ the '\0' as part of its returned size, so we add explicit // space for it here. return IndexString(header, dec_insn, outSize + 1); } return buf; } /* * Dumps encoded annotation. */ void DexLayout::DumpEncodedAnnotation(dex_ir::EncodedAnnotation* annotation) { fputs(annotation->GetType()->GetStringId()->Data(), out_file_); // Display all name=value pairs. for (auto& subannotation : *annotation->GetAnnotationElements()) { fputc(' ', out_file_); fputs(subannotation->GetName()->Data(), out_file_); fputc('=', out_file_); DumpEncodedValue(subannotation->GetValue()); } } /* * Dumps encoded value. */ void DexLayout::DumpEncodedValue(const dex_ir::EncodedValue* data) { switch (data->Type()) { case DexFile::kDexAnnotationByte: fprintf(out_file_, "%" PRId8, data->GetByte()); break; case DexFile::kDexAnnotationShort: fprintf(out_file_, "%" PRId16, data->GetShort()); break; case DexFile::kDexAnnotationChar: fprintf(out_file_, "%" PRIu16, data->GetChar()); break; case DexFile::kDexAnnotationInt: fprintf(out_file_, "%" PRId32, data->GetInt()); break; case DexFile::kDexAnnotationLong: fprintf(out_file_, "%" PRId64, data->GetLong()); break; case DexFile::kDexAnnotationFloat: { fprintf(out_file_, "%g", data->GetFloat()); break; } case DexFile::kDexAnnotationDouble: { fprintf(out_file_, "%g", data->GetDouble()); break; } case DexFile::kDexAnnotationString: { dex_ir::StringId* string_id = data->GetStringId(); if (options_.output_format_ == kOutputPlain) { DumpEscapedString(string_id->Data(), out_file_); } else { DumpXmlAttribute(string_id->Data(), out_file_); } break; } case DexFile::kDexAnnotationType: { dex_ir::TypeId* type_id = data->GetTypeId(); fputs(type_id->GetStringId()->Data(), out_file_); break; } case DexFile::kDexAnnotationField: case DexFile::kDexAnnotationEnum: { dex_ir::FieldId* field_id = data->GetFieldId(); fputs(field_id->Name()->Data(), out_file_); break; } case DexFile::kDexAnnotationMethod: { dex_ir::MethodId* method_id = data->GetMethodId(); fputs(method_id->Name()->Data(), out_file_); break; } case DexFile::kDexAnnotationArray: { fputc('{', out_file_); // Display all elements. for (auto& value : *data->GetEncodedArray()->GetEncodedValues()) { fputc(' ', out_file_); DumpEncodedValue(value.get()); } fputs(" }", out_file_); break; } case DexFile::kDexAnnotationAnnotation: { DumpEncodedAnnotation(data->GetEncodedAnnotation()); break; } case DexFile::kDexAnnotationNull: fputs("null", out_file_); break; case DexFile::kDexAnnotationBoolean: fputs(StrBool(data->GetBoolean()), out_file_); break; default: fputs("????", out_file_); break; } // switch } /* * Dumps the file header. */ void DexLayout::DumpFileHeader() { char sanitized[8 * 2 + 1]; dex_ir::Collections& collections = header_->GetCollections(); fprintf(out_file_, "DEX file header:\n"); Asciify(sanitized, header_->Magic(), 8); fprintf(out_file_, "magic : '%s'\n", sanitized); fprintf(out_file_, "checksum : %08x\n", header_->Checksum()); fprintf(out_file_, "signature : %02x%02x...%02x%02x\n", header_->Signature()[0], header_->Signature()[1], header_->Signature()[DexFile::kSha1DigestSize - 2], header_->Signature()[DexFile::kSha1DigestSize - 1]); fprintf(out_file_, "file_size : %d\n", header_->FileSize()); fprintf(out_file_, "header_size : %d\n", header_->HeaderSize()); fprintf(out_file_, "link_size : %d\n", header_->LinkSize()); fprintf(out_file_, "link_off : %d (0x%06x)\n", header_->LinkOffset(), header_->LinkOffset()); fprintf(out_file_, "string_ids_size : %d\n", collections.StringIdsSize()); fprintf(out_file_, "string_ids_off : %d (0x%06x)\n", collections.StringIdsOffset(), collections.StringIdsOffset()); fprintf(out_file_, "type_ids_size : %d\n", collections.TypeIdsSize()); fprintf(out_file_, "type_ids_off : %d (0x%06x)\n", collections.TypeIdsOffset(), collections.TypeIdsOffset()); fprintf(out_file_, "proto_ids_size : %d\n", collections.ProtoIdsSize()); fprintf(out_file_, "proto_ids_off : %d (0x%06x)\n", collections.ProtoIdsOffset(), collections.ProtoIdsOffset()); fprintf(out_file_, "field_ids_size : %d\n", collections.FieldIdsSize()); fprintf(out_file_, "field_ids_off : %d (0x%06x)\n", collections.FieldIdsOffset(), collections.FieldIdsOffset()); fprintf(out_file_, "method_ids_size : %d\n", collections.MethodIdsSize()); fprintf(out_file_, "method_ids_off : %d (0x%06x)\n", collections.MethodIdsOffset(), collections.MethodIdsOffset()); fprintf(out_file_, "class_defs_size : %d\n", collections.ClassDefsSize()); fprintf(out_file_, "class_defs_off : %d (0x%06x)\n", collections.ClassDefsOffset(), collections.ClassDefsOffset()); fprintf(out_file_, "data_size : %d\n", header_->DataSize()); fprintf(out_file_, "data_off : %d (0x%06x)\n\n", header_->DataOffset(), header_->DataOffset()); } /* * Dumps a class_def_item. */ void DexLayout::DumpClassDef(int idx) { // General class information. dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx); fprintf(out_file_, "Class #%d header:\n", idx); fprintf(out_file_, "class_idx : %d\n", class_def->ClassType()->GetIndex()); fprintf(out_file_, "access_flags : %d (0x%04x)\n", class_def->GetAccessFlags(), class_def->GetAccessFlags()); uint32_t superclass_idx = class_def->Superclass() == nullptr ? DexFile::kDexNoIndex16 : class_def->Superclass()->GetIndex(); fprintf(out_file_, "superclass_idx : %d\n", superclass_idx); fprintf(out_file_, "interfaces_off : %d (0x%06x)\n", class_def->InterfacesOffset(), class_def->InterfacesOffset()); uint32_t source_file_offset = 0xffffffffU; if (class_def->SourceFile() != nullptr) { source_file_offset = class_def->SourceFile()->GetIndex(); } fprintf(out_file_, "source_file_idx : %d\n", source_file_offset); uint32_t annotations_offset = 0; if (class_def->Annotations() != nullptr) { annotations_offset = class_def->Annotations()->GetOffset(); } fprintf(out_file_, "annotations_off : %d (0x%06x)\n", annotations_offset, annotations_offset); if (class_def->GetClassData() == nullptr) { fprintf(out_file_, "class_data_off : %d (0x%06x)\n", 0, 0); } else { fprintf(out_file_, "class_data_off : %d (0x%06x)\n", class_def->GetClassData()->GetOffset(), class_def->GetClassData()->GetOffset()); } // Fields and methods. dex_ir::ClassData* class_data = class_def->GetClassData(); if (class_data != nullptr && class_data->StaticFields() != nullptr) { fprintf(out_file_, "static_fields_size : %zu\n", class_data->StaticFields()->size()); } else { fprintf(out_file_, "static_fields_size : 0\n"); } if (class_data != nullptr && class_data->InstanceFields() != nullptr) { fprintf(out_file_, "instance_fields_size: %zu\n", class_data->InstanceFields()->size()); } else { fprintf(out_file_, "instance_fields_size: 0\n"); } if (class_data != nullptr && class_data->DirectMethods() != nullptr) { fprintf(out_file_, "direct_methods_size : %zu\n", class_data->DirectMethods()->size()); } else { fprintf(out_file_, "direct_methods_size : 0\n"); } if (class_data != nullptr && class_data->VirtualMethods() != nullptr) { fprintf(out_file_, "virtual_methods_size: %zu\n", class_data->VirtualMethods()->size()); } else { fprintf(out_file_, "virtual_methods_size: 0\n"); } fprintf(out_file_, "\n"); } /** * Dumps an annotation set item. */ void DexLayout::DumpAnnotationSetItem(dex_ir::AnnotationSetItem* set_item) { if (set_item == nullptr || set_item->GetItems()->size() == 0) { fputs(" empty-annotation-set\n", out_file_); return; } for (dex_ir::AnnotationItem* annotation : *set_item->GetItems()) { if (annotation == nullptr) { continue; } fputs(" ", out_file_); switch (annotation->GetVisibility()) { case DexFile::kDexVisibilityBuild: fputs("VISIBILITY_BUILD ", out_file_); break; case DexFile::kDexVisibilityRuntime: fputs("VISIBILITY_RUNTIME ", out_file_); break; case DexFile::kDexVisibilitySystem: fputs("VISIBILITY_SYSTEM ", out_file_); break; default: fputs("VISIBILITY_UNKNOWN ", out_file_); break; } // switch DumpEncodedAnnotation(annotation->GetAnnotation()); fputc('\n', out_file_); } } /* * Dumps class annotations. */ void DexLayout::DumpClassAnnotations(int idx) { dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx); dex_ir::AnnotationsDirectoryItem* annotations_directory = class_def->Annotations(); if (annotations_directory == nullptr) { return; // none } fprintf(out_file_, "Class #%d annotations:\n", idx); dex_ir::AnnotationSetItem* class_set_item = annotations_directory->GetClassAnnotation(); dex_ir::FieldAnnotationVector* fields = annotations_directory->GetFieldAnnotations(); dex_ir::MethodAnnotationVector* methods = annotations_directory->GetMethodAnnotations(); dex_ir::ParameterAnnotationVector* parameters = annotations_directory->GetParameterAnnotations(); // Annotations on the class itself. if (class_set_item != nullptr) { fprintf(out_file_, "Annotations on class\n"); DumpAnnotationSetItem(class_set_item); } // Annotations on fields. if (fields != nullptr) { for (auto& field : *fields) { const dex_ir::FieldId* field_id = field->GetFieldId(); const uint32_t field_idx = field_id->GetIndex(); const char* field_name = field_id->Name()->Data(); fprintf(out_file_, "Annotations on field #%u '%s'\n", field_idx, field_name); DumpAnnotationSetItem(field->GetAnnotationSetItem()); } } // Annotations on methods. if (methods != nullptr) { for (auto& method : *methods) { const dex_ir::MethodId* method_id = method->GetMethodId(); const uint32_t method_idx = method_id->GetIndex(); const char* method_name = method_id->Name()->Data(); fprintf(out_file_, "Annotations on method #%u '%s'\n", method_idx, method_name); DumpAnnotationSetItem(method->GetAnnotationSetItem()); } } // Annotations on method parameters. if (parameters != nullptr) { for (auto& parameter : *parameters) { const dex_ir::MethodId* method_id = parameter->GetMethodId(); const uint32_t method_idx = method_id->GetIndex(); const char* method_name = method_id->Name()->Data(); fprintf(out_file_, "Annotations on method #%u '%s' parameters\n", method_idx, method_name); uint32_t j = 0; for (dex_ir::AnnotationSetItem* annotation : *parameter->GetAnnotations()->GetItems()) { fprintf(out_file_, "#%u\n", j); DumpAnnotationSetItem(annotation); ++j; } } } fputc('\n', out_file_); } /* * Dumps an interface that a class declares to implement. */ void DexLayout::DumpInterface(const dex_ir::TypeId* type_item, int i) { const char* interface_name = type_item->GetStringId()->Data(); if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " #%d : '%s'\n", i, interface_name); } else { std::string dot(DescriptorToDotWrapper(interface_name)); fprintf(out_file_, "\n\n", dot.c_str()); } } /* * Dumps the catches table associated with the code. */ void DexLayout::DumpCatches(const dex_ir::CodeItem* code) { const uint16_t tries_size = code->TriesSize(); // No catch table. if (tries_size == 0) { fprintf(out_file_, " catches : (none)\n"); return; } // Dump all table entries. fprintf(out_file_, " catches : %d\n", tries_size); std::vector>* tries = code->Tries(); for (uint32_t i = 0; i < tries_size; i++) { const dex_ir::TryItem* try_item = (*tries)[i].get(); const uint32_t start = try_item->StartAddr(); const uint32_t end = start + try_item->InsnCount(); fprintf(out_file_, " 0x%04x - 0x%04x\n", start, end); for (auto& handler : *try_item->GetHandlers()->GetHandlers()) { const dex_ir::TypeId* type_id = handler->GetTypeId(); const char* descriptor = (type_id == nullptr) ? "" : type_id->GetStringId()->Data(); fprintf(out_file_, " %s -> 0x%04x\n", descriptor, handler->GetAddress()); } // for } // for } /* * Dumps a single instruction. */ void DexLayout::DumpInstruction(const dex_ir::CodeItem* code, uint32_t code_offset, uint32_t insn_idx, uint32_t insn_width, const Instruction* dec_insn) { // Address of instruction (expressed as byte offset). fprintf(out_file_, "%06x:", code_offset + 0x10 + insn_idx * 2); // Dump (part of) raw bytes. const uint16_t* insns = code->Insns(); for (uint32_t i = 0; i < 8; i++) { if (i < insn_width) { if (i == 7) { fprintf(out_file_, " ... "); } else { // Print 16-bit value in little-endian order. const uint8_t* bytePtr = (const uint8_t*) &insns[insn_idx + i]; fprintf(out_file_, " %02x%02x", bytePtr[0], bytePtr[1]); } } else { fputs(" ", out_file_); } } // for // Dump pseudo-instruction or opcode. if (dec_insn->Opcode() == Instruction::NOP) { const uint16_t instr = Get2LE((const uint8_t*) &insns[insn_idx]); if (instr == Instruction::kPackedSwitchSignature) { fprintf(out_file_, "|%04x: packed-switch-data (%d units)", insn_idx, insn_width); } else if (instr == Instruction::kSparseSwitchSignature) { fprintf(out_file_, "|%04x: sparse-switch-data (%d units)", insn_idx, insn_width); } else if (instr == Instruction::kArrayDataSignature) { fprintf(out_file_, "|%04x: array-data (%d units)", insn_idx, insn_width); } else { fprintf(out_file_, "|%04x: nop // spacer", insn_idx); } } else { fprintf(out_file_, "|%04x: %s", insn_idx, dec_insn->Name()); } // Set up additional argument. std::unique_ptr index_buf; if (Instruction::IndexTypeOf(dec_insn->Opcode()) != Instruction::kIndexNone) { index_buf = IndexString(header_, dec_insn, 200); } // Dump the instruction. // // NOTE: pDecInsn->DumpString(pDexFile) differs too much from original. // switch (Instruction::FormatOf(dec_insn->Opcode())) { case Instruction::k10x: // op break; case Instruction::k12x: // op vA, vB fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB()); break; case Instruction::k11n: // op vA, #+B fprintf(out_file_, " v%d, #int %d // #%x", dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint8_t)dec_insn->VRegB()); break; case Instruction::k11x: // op vAA fprintf(out_file_, " v%d", dec_insn->VRegA()); break; case Instruction::k10t: // op +AA case Instruction::k20t: { // op +AAAA const int32_t targ = (int32_t) dec_insn->VRegA(); fprintf(out_file_, " %04x // %c%04x", insn_idx + targ, (targ < 0) ? '-' : '+', (targ < 0) ? -targ : targ); break; } case Instruction::k22x: // op vAA, vBBBB fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB()); break; case Instruction::k21t: { // op vAA, +BBBB const int32_t targ = (int32_t) dec_insn->VRegB(); fprintf(out_file_, " v%d, %04x // %c%04x", dec_insn->VRegA(), insn_idx + targ, (targ < 0) ? '-' : '+', (targ < 0) ? -targ : targ); break; } case Instruction::k21s: // op vAA, #+BBBB fprintf(out_file_, " v%d, #int %d // #%x", dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint16_t)dec_insn->VRegB()); break; case Instruction::k21h: // op vAA, #+BBBB0000[00000000] // The printed format varies a bit based on the actual opcode. if (dec_insn->Opcode() == Instruction::CONST_HIGH16) { const int32_t value = dec_insn->VRegB() << 16; fprintf(out_file_, " v%d, #int %d // #%x", dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB()); } else { const int64_t value = ((int64_t) dec_insn->VRegB()) << 48; fprintf(out_file_, " v%d, #long %" PRId64 " // #%x", dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB()); } break; case Instruction::k21c: // op vAA, thing@BBBB case Instruction::k31c: // op vAA, thing@BBBBBBBB fprintf(out_file_, " v%d, %s", dec_insn->VRegA(), index_buf.get()); break; case Instruction::k23x: // op vAA, vBB, vCC fprintf(out_file_, " v%d, v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB(), dec_insn->VRegC()); break; case Instruction::k22b: // op vAA, vBB, #+CC fprintf(out_file_, " v%d, v%d, #int %d // #%02x", dec_insn->VRegA(), dec_insn->VRegB(), (int32_t) dec_insn->VRegC(), (uint8_t) dec_insn->VRegC()); break; case Instruction::k22t: { // op vA, vB, +CCCC const int32_t targ = (int32_t) dec_insn->VRegC(); fprintf(out_file_, " v%d, v%d, %04x // %c%04x", dec_insn->VRegA(), dec_insn->VRegB(), insn_idx + targ, (targ < 0) ? '-' : '+', (targ < 0) ? -targ : targ); break; } case Instruction::k22s: // op vA, vB, #+CCCC fprintf(out_file_, " v%d, v%d, #int %d // #%04x", dec_insn->VRegA(), dec_insn->VRegB(), (int32_t) dec_insn->VRegC(), (uint16_t) dec_insn->VRegC()); break; case Instruction::k22c: // op vA, vB, thing@CCCC // NOT SUPPORTED: // case Instruction::k22cs: // [opt] op vA, vB, field offset CCCC fprintf(out_file_, " v%d, v%d, %s", dec_insn->VRegA(), dec_insn->VRegB(), index_buf.get()); break; case Instruction::k30t: fprintf(out_file_, " #%08x", dec_insn->VRegA()); break; case Instruction::k31i: { // op vAA, #+BBBBBBBB // This is often, but not always, a float. union { float f; uint32_t i; } conv; conv.i = dec_insn->VRegB(); fprintf(out_file_, " v%d, #float %g // #%08x", dec_insn->VRegA(), conv.f, dec_insn->VRegB()); break; } case Instruction::k31t: // op vAA, offset +BBBBBBBB fprintf(out_file_, " v%d, %08x // +%08x", dec_insn->VRegA(), insn_idx + dec_insn->VRegB(), dec_insn->VRegB()); break; case Instruction::k32x: // op vAAAA, vBBBB fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB()); break; case Instruction::k35c: // op {vC, vD, vE, vF, vG}, thing@BBBB case Instruction::k45cc: { // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH // NOT SUPPORTED: // case Instruction::k35ms: // [opt] invoke-virtual+super // case Instruction::k35mi: // [opt] inline invoke uint32_t arg[Instruction::kMaxVarArgRegs]; dec_insn->GetVarArgs(arg); fputs(" {", out_file_); for (int i = 0, n = dec_insn->VRegA(); i < n; i++) { if (i == 0) { fprintf(out_file_, "v%d", arg[i]); } else { fprintf(out_file_, ", v%d", arg[i]); } } // for fprintf(out_file_, "}, %s", index_buf.get()); break; } case Instruction::k3rc: // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB case Instruction::k4rcc: // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH // NOT SUPPORTED: // case Instruction::k3rms: // [opt] invoke-virtual+super/range // case Instruction::k3rmi: // [opt] execute-inline/range { // This doesn't match the "dx" output when some of the args are // 64-bit values -- dx only shows the first register. fputs(" {", out_file_); for (int i = 0, n = dec_insn->VRegA(); i < n; i++) { if (i == 0) { fprintf(out_file_, "v%d", dec_insn->VRegC() + i); } else { fprintf(out_file_, ", v%d", dec_insn->VRegC() + i); } } // for fprintf(out_file_, "}, %s", index_buf.get()); } break; case Instruction::k51l: { // op vAA, #+BBBBBBBBBBBBBBBB // This is often, but not always, a double. union { double d; uint64_t j; } conv; conv.j = dec_insn->WideVRegB(); fprintf(out_file_, " v%d, #double %g // #%016" PRIx64, dec_insn->VRegA(), conv.d, dec_insn->WideVRegB()); break; } // NOT SUPPORTED: // case Instruction::k00x: // unknown op or breakpoint // break; default: fprintf(out_file_, " ???"); break; } // switch fputc('\n', out_file_); } /* * Dumps a bytecode disassembly. */ void DexLayout::DumpBytecodes(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) { dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx); const char* name = method_id->Name()->Data(); std::string type_descriptor = GetSignatureForProtoId(method_id->Proto()); const char* back_descriptor = method_id->Class()->GetStringId()->Data(); // Generate header. std::string dot(DescriptorToDotWrapper(back_descriptor)); fprintf(out_file_, "%06x: |[%06x] %s.%s:%s\n", code_offset, code_offset, dot.c_str(), name, type_descriptor.c_str()); // Iterate over all instructions. for (const DexInstructionPcPair& inst : code->Instructions()) { const uint32_t insn_width = inst->SizeInCodeUnits(); if (insn_width == 0) { LOG(WARNING) << "GLITCH: zero-width instruction at idx=0x" << std::hex << inst.DexPc(); break; } DumpInstruction(code, code_offset, inst.DexPc(), insn_width, &inst.Inst()); } // for } /* * Callback for dumping each positions table entry. */ static bool DumpPositionsCb(void* context, const DexFile::PositionInfo& entry) { FILE* out_file = reinterpret_cast(context); fprintf(out_file, " 0x%04x line=%d\n", entry.address_, entry.line_); return false; } /* * Callback for dumping locals table entry. */ static void DumpLocalsCb(void* context, const DexFile::LocalInfo& entry) { const char* signature = entry.signature_ != nullptr ? entry.signature_ : ""; FILE* out_file = reinterpret_cast(context); fprintf(out_file, " 0x%04x - 0x%04x reg=%d %s %s %s\n", entry.start_address_, entry.end_address_, entry.reg_, entry.name_, entry.descriptor_, signature); } /* * Lookup functions. */ static const char* StringDataByIdx(uint32_t idx, dex_ir::Collections& collections) { dex_ir::StringId* string_id = collections.GetStringIdOrNullPtr(idx); if (string_id == nullptr) { return nullptr; } return string_id->Data(); } static const char* StringDataByTypeIdx(uint16_t idx, dex_ir::Collections& collections) { dex_ir::TypeId* type_id = collections.GetTypeIdOrNullPtr(idx); if (type_id == nullptr) { return nullptr; } dex_ir::StringId* string_id = type_id->GetStringId(); if (string_id == nullptr) { return nullptr; } return string_id->Data(); } /* * Dumps code of a method. */ void DexLayout::DumpCode(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset, const char* declaring_class_descriptor, const char* method_name, bool is_static, const dex_ir::ProtoId* proto) { fprintf(out_file_, " registers : %d\n", code->RegistersSize()); fprintf(out_file_, " ins : %d\n", code->InsSize()); fprintf(out_file_, " outs : %d\n", code->OutsSize()); fprintf(out_file_, " insns size : %d 16-bit code units\n", code->InsnsSize()); // Bytecode disassembly, if requested. if (options_.disassemble_) { DumpBytecodes(idx, code, code_offset); } // Try-catch blocks. DumpCatches(code); // Positions and locals table in the debug info. dex_ir::DebugInfoItem* debug_info = code->DebugInfo(); fprintf(out_file_, " positions : \n"); if (debug_info != nullptr) { DexFile::DecodeDebugPositionInfo(debug_info->GetDebugInfo(), [this](uint32_t idx) { return StringDataByIdx(idx, this->header_->GetCollections()); }, DumpPositionsCb, out_file_); } fprintf(out_file_, " locals : \n"); if (debug_info != nullptr) { std::vector arg_descriptors; const dex_ir::TypeList* parameters = proto->Parameters(); if (parameters != nullptr) { const dex_ir::TypeIdVector* parameter_type_vector = parameters->GetTypeList(); if (parameter_type_vector != nullptr) { for (const dex_ir::TypeId* type_id : *parameter_type_vector) { arg_descriptors.push_back(type_id->GetStringId()->Data()); } } } DexFile::DecodeDebugLocalInfo(debug_info->GetDebugInfo(), "DexLayout in-memory", declaring_class_descriptor, arg_descriptors, method_name, is_static, code->RegistersSize(), code->InsSize(), code->InsnsSize(), [this](uint32_t idx) { return StringDataByIdx(idx, this->header_->GetCollections()); }, [this](uint32_t idx) { return StringDataByTypeIdx(dchecked_integral_cast(idx), this->header_->GetCollections()); }, DumpLocalsCb, out_file_); } } /* * Dumps a method. */ void DexLayout::DumpMethod(uint32_t idx, uint32_t flags, const dex_ir::CodeItem* code, int i) { // Bail for anything private if export only requested. if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) { return; } dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx); const char* name = method_id->Name()->Data(); char* type_descriptor = strdup(GetSignatureForProtoId(method_id->Proto()).c_str()); const char* back_descriptor = method_id->Class()->GetStringId()->Data(); char* access_str = CreateAccessFlagStr(flags, kAccessForMethod); if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " #%d : (in %s)\n", i, back_descriptor); fprintf(out_file_, " name : '%s'\n", name); fprintf(out_file_, " type : '%s'\n", type_descriptor); fprintf(out_file_, " access : 0x%04x (%s)\n", flags, access_str); if (code == nullptr) { fprintf(out_file_, " code : (none)\n"); } else { fprintf(out_file_, " code -\n"); DumpCode(idx, code, code->GetOffset(), back_descriptor, name, (flags & kAccStatic) != 0, method_id->Proto()); } if (options_.disassemble_) { fputc('\n', out_file_); } } else if (options_.output_format_ == kOutputXml) { const bool constructor = (name[0] == '<'); // Method name and prototype. if (constructor) { std::string dot(DescriptorClassToDot(back_descriptor)); fprintf(out_file_, "\n", QuotedVisibility(flags)); // Parameters. if (type_descriptor[0] != '(') { LOG(ERROR) << "ERROR: bad descriptor '" << type_descriptor << "'"; goto bail; } char* tmp_buf = reinterpret_cast(malloc(strlen(type_descriptor) + 1)); const char* base = type_descriptor + 1; int arg_num = 0; while (*base != ')') { char* cp = tmp_buf; while (*base == '[') { *cp++ = *base++; } if (*base == 'L') { // Copy through ';'. do { *cp = *base++; } while (*cp++ != ';'); } else { // Primitive char, copy it. if (strchr("ZBCSIFJD", *base) == nullptr) { LOG(ERROR) << "ERROR: bad method signature '" << base << "'"; break; // while } *cp++ = *base++; } // Null terminate and display. *cp++ = '\0'; std::string dot(DescriptorToDotWrapper(tmp_buf)); fprintf(out_file_, "\n" "\n", arg_num++, dot.c_str()); } // while free(tmp_buf); if (constructor) { fprintf(out_file_, "\n"); } else { fprintf(out_file_, "\n"); } } bail: free(type_descriptor); free(access_str); } /* * Dumps a static (class) field. */ void DexLayout::DumpSField(uint32_t idx, uint32_t flags, int i, dex_ir::EncodedValue* init) { // Bail for anything private if export only requested. if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) { return; } dex_ir::FieldId* field_id = header_->GetCollections().GetFieldId(idx); const char* name = field_id->Name()->Data(); const char* type_descriptor = field_id->Type()->GetStringId()->Data(); const char* back_descriptor = field_id->Class()->GetStringId()->Data(); char* access_str = CreateAccessFlagStr(flags, kAccessForField); if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " #%d : (in %s)\n", i, back_descriptor); fprintf(out_file_, " name : '%s'\n", name); fprintf(out_file_, " type : '%s'\n", type_descriptor); fprintf(out_file_, " access : 0x%04x (%s)\n", flags, access_str); if (init != nullptr) { fputs(" value : ", out_file_); DumpEncodedValue(init); fputs("\n", out_file_); } } else if (options_.output_format_ == kOutputXml) { fprintf(out_file_, "\n\n", out_file_); } free(access_str); } /* * Dumps an instance field. */ void DexLayout::DumpIField(uint32_t idx, uint32_t flags, int i) { DumpSField(idx, flags, i, nullptr); } /* * Dumps the class. * * Note "idx" is a DexClassDef index, not a DexTypeId index. * * If "*last_package" is nullptr or does not match the current class' package, * the value will be replaced with a newly-allocated string. */ void DexLayout::DumpClass(int idx, char** last_package) { dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx); // Omitting non-public class. if (options_.exports_only_ && (class_def->GetAccessFlags() & kAccPublic) == 0) { return; } if (options_.show_section_headers_) { DumpClassDef(idx); } if (options_.show_annotations_) { DumpClassAnnotations(idx); } // For the XML output, show the package name. Ideally we'd gather // up the classes, sort them, and dump them alphabetically so the // package name wouldn't jump around, but that's not a great plan // for something that needs to run on the device. const char* class_descriptor = header_->GetCollections().GetClassDef(idx)->ClassType()->GetStringId()->Data(); if (!(class_descriptor[0] == 'L' && class_descriptor[strlen(class_descriptor)-1] == ';')) { // Arrays and primitives should not be defined explicitly. Keep going? LOG(ERROR) << "Malformed class name '" << class_descriptor << "'"; } else if (options_.output_format_ == kOutputXml) { char* mangle = strdup(class_descriptor + 1); mangle[strlen(mangle)-1] = '\0'; // Reduce to just the package name. char* last_slash = strrchr(mangle, '/'); if (last_slash != nullptr) { *last_slash = '\0'; } else { *mangle = '\0'; } for (char* cp = mangle; *cp != '\0'; cp++) { if (*cp == '/') { *cp = '.'; } } // for if (*last_package == nullptr || strcmp(mangle, *last_package) != 0) { // Start of a new package. if (*last_package != nullptr) { fprintf(out_file_, "\n"); } fprintf(out_file_, "\n", mangle); free(*last_package); *last_package = mangle; } else { free(mangle); } } // General class information. char* access_str = CreateAccessFlagStr(class_def->GetAccessFlags(), kAccessForClass); const char* superclass_descriptor = nullptr; if (class_def->Superclass() != nullptr) { superclass_descriptor = class_def->Superclass()->GetStringId()->Data(); } if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, "Class #%d -\n", idx); fprintf(out_file_, " Class descriptor : '%s'\n", class_descriptor); fprintf(out_file_, " Access flags : 0x%04x (%s)\n", class_def->GetAccessFlags(), access_str); if (superclass_descriptor != nullptr) { fprintf(out_file_, " Superclass : '%s'\n", superclass_descriptor); } fprintf(out_file_, " Interfaces -\n"); } else { std::string dot(DescriptorClassToDot(class_descriptor)); fprintf(out_file_, "GetAccessFlags() & kAccInterface) != 0)); fprintf(out_file_, " abstract=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccAbstract) != 0)); fprintf(out_file_, " static=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccStatic) != 0)); fprintf(out_file_, " final=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccFinal) != 0)); // The "deprecated=" not knowable w/o parsing annotations. fprintf(out_file_, " visibility=%s\n", QuotedVisibility(class_def->GetAccessFlags())); fprintf(out_file_, ">\n"); } // Interfaces. const dex_ir::TypeList* interfaces = class_def->Interfaces(); if (interfaces != nullptr) { const dex_ir::TypeIdVector* interfaces_vector = interfaces->GetTypeList(); for (uint32_t i = 0; i < interfaces_vector->size(); i++) { DumpInterface((*interfaces_vector)[i], i); } // for } // Fields and methods. dex_ir::ClassData* class_data = class_def->GetClassData(); // Prepare data for static fields. dex_ir::EncodedArrayItem* static_values = class_def->StaticValues(); dex_ir::EncodedValueVector* encoded_values = static_values == nullptr ? nullptr : static_values->GetEncodedValues(); const uint32_t encoded_values_size = (encoded_values == nullptr) ? 0 : encoded_values->size(); // Static fields. if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " Static fields -\n"); } if (class_data != nullptr) { dex_ir::FieldItemVector* static_fields = class_data->StaticFields(); if (static_fields != nullptr) { for (uint32_t i = 0; i < static_fields->size(); i++) { DumpSField((*static_fields)[i]->GetFieldId()->GetIndex(), (*static_fields)[i]->GetAccessFlags(), i, i < encoded_values_size ? (*encoded_values)[i].get() : nullptr); } // for } } // Instance fields. if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " Instance fields -\n"); } if (class_data != nullptr) { dex_ir::FieldItemVector* instance_fields = class_data->InstanceFields(); if (instance_fields != nullptr) { for (uint32_t i = 0; i < instance_fields->size(); i++) { DumpIField((*instance_fields)[i]->GetFieldId()->GetIndex(), (*instance_fields)[i]->GetAccessFlags(), i); } // for } } // Direct methods. if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " Direct methods -\n"); } if (class_data != nullptr) { dex_ir::MethodItemVector* direct_methods = class_data->DirectMethods(); if (direct_methods != nullptr) { for (uint32_t i = 0; i < direct_methods->size(); i++) { DumpMethod((*direct_methods)[i]->GetMethodId()->GetIndex(), (*direct_methods)[i]->GetAccessFlags(), (*direct_methods)[i]->GetCodeItem(), i); } // for } } // Virtual methods. if (options_.output_format_ == kOutputPlain) { fprintf(out_file_, " Virtual methods -\n"); } if (class_data != nullptr) { dex_ir::MethodItemVector* virtual_methods = class_data->VirtualMethods(); if (virtual_methods != nullptr) { for (uint32_t i = 0; i < virtual_methods->size(); i++) { DumpMethod((*virtual_methods)[i]->GetMethodId()->GetIndex(), (*virtual_methods)[i]->GetAccessFlags(), (*virtual_methods)[i]->GetCodeItem(), i); } // for } } // End of class. if (options_.output_format_ == kOutputPlain) { const char* file_name = "unknown"; if (class_def->SourceFile() != nullptr) { file_name = class_def->SourceFile()->Data(); } const dex_ir::StringId* source_file = class_def->SourceFile(); fprintf(out_file_, " source_file_idx : %d (%s)\n\n", source_file == nullptr ? 0xffffffffU : source_file->GetIndex(), file_name); } else if (options_.output_format_ == kOutputXml) { fprintf(out_file_, "\n"); } free(access_str); } void DexLayout::DumpDexFile() { // Headers. if (options_.show_file_headers_) { DumpFileHeader(); } // Open XML context. if (options_.output_format_ == kOutputXml) { fprintf(out_file_, "\n"); } // Iterate over all classes. char* package = nullptr; const uint32_t class_defs_size = header_->GetCollections().ClassDefsSize(); for (uint32_t i = 0; i < class_defs_size; i++) { DumpClass(i, &package); } // for // Free the last package allocated. if (package != nullptr) { fprintf(out_file_, "\n"); free(package); } // Close XML context. if (options_.output_format_ == kOutputXml) { fprintf(out_file_, "\n"); } } void DexLayout::LayoutClassDefsAndClassData(const DexFile* dex_file) { std::vector new_class_def_order; for (std::unique_ptr& class_def : header_->GetCollections().ClassDefs()) { dex::TypeIndex type_idx(class_def->ClassType()->GetIndex()); if (info_->ContainsClass(*dex_file, type_idx)) { new_class_def_order.push_back(class_def.get()); } } for (std::unique_ptr& class_def : header_->GetCollections().ClassDefs()) { dex::TypeIndex type_idx(class_def->ClassType()->GetIndex()); if (!info_->ContainsClass(*dex_file, type_idx)) { new_class_def_order.push_back(class_def.get()); } } std::unordered_set visited_class_data; size_t class_data_index = 0; dex_ir::CollectionVector::Vector& class_datas = header_->GetCollections().ClassDatas(); for (dex_ir::ClassDef* class_def : new_class_def_order) { dex_ir::ClassData* class_data = class_def->GetClassData(); if (class_data != nullptr && visited_class_data.find(class_data) == visited_class_data.end()) { visited_class_data.insert(class_data); // Overwrite the existing vector with the new ordering, note that the sets of objects are // equivalent, but the order changes. This is why this is not a memory leak. // TODO: Consider cleaning this up with a shared_ptr. class_datas[class_data_index].release(); class_datas[class_data_index].reset(class_data); ++class_data_index; } } CHECK_EQ(class_data_index, class_datas.size()); if (DexLayout::kChangeClassDefOrder) { // This currently produces dex files that violate the spec since the super class class_def is // supposed to occur before any subclasses. dex_ir::CollectionVector::Vector& class_defs = header_->GetCollections().ClassDefs(); CHECK_EQ(new_class_def_order.size(), class_defs.size()); for (size_t i = 0; i < class_defs.size(); ++i) { // Overwrite the existing vector with the new ordering, note that the sets of objects are // equivalent, but the order changes. This is why this is not a memory leak. // TODO: Consider cleaning this up with a shared_ptr. class_defs[i].release(); class_defs[i].reset(new_class_def_order[i]); } } } void DexLayout::LayoutStringData(const DexFile* dex_file) { const size_t num_strings = header_->GetCollections().StringIds().size(); std::vector is_shorty(num_strings, false); std::vector from_hot_method(num_strings, false); for (std::unique_ptr& class_def : header_->GetCollections().ClassDefs()) { // A name of a profile class is probably going to get looked up by ClassTable::Lookup, mark it // as hot. Add its super class and interfaces as well, which can be used during initialization. const bool is_profile_class = info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex())); if (is_profile_class) { from_hot_method[class_def->ClassType()->GetStringId()->GetIndex()] = true; const dex_ir::TypeId* superclass = class_def->Superclass(); if (superclass != nullptr) { from_hot_method[superclass->GetStringId()->GetIndex()] = true; } const dex_ir::TypeList* interfaces = class_def->Interfaces(); if (interfaces != nullptr) { for (const dex_ir::TypeId* interface_type : *interfaces->GetTypeList()) { from_hot_method[interface_type->GetStringId()->GetIndex()] = true; } } } dex_ir::ClassData* data = class_def->GetClassData(); if (data == nullptr) { continue; } for (size_t i = 0; i < 2; ++i) { for (auto& method : *(i == 0 ? data->DirectMethods() : data->VirtualMethods())) { const dex_ir::MethodId* method_id = method->GetMethodId(); dex_ir::CodeItem* code_item = method->GetCodeItem(); if (code_item == nullptr) { continue; } const bool is_clinit = is_profile_class && (method->GetAccessFlags() & kAccConstructor) != 0 && (method->GetAccessFlags() & kAccStatic) != 0; const bool method_executed = is_clinit || info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex())).IsInProfile(); if (!method_executed) { continue; } is_shorty[method_id->Proto()->Shorty()->GetIndex()] = true; dex_ir::CodeFixups* fixups = code_item->GetCodeFixups(); if (fixups == nullptr) { continue; } // Add const-strings. for (dex_ir::StringId* id : fixups->StringIds()) { from_hot_method[id->GetIndex()] = true; } // Add field classes, names, and types. for (dex_ir::FieldId* id : fixups->FieldIds()) { // TODO: Only visit field ids from static getters and setters. from_hot_method[id->Class()->GetStringId()->GetIndex()] = true; from_hot_method[id->Name()->GetIndex()] = true; from_hot_method[id->Type()->GetStringId()->GetIndex()] = true; } // For clinits, add referenced method classes, names, and protos. if (is_clinit) { for (dex_ir::MethodId* id : fixups->MethodIds()) { from_hot_method[id->Class()->GetStringId()->GetIndex()] = true; from_hot_method[id->Name()->GetIndex()] = true; is_shorty[id->Proto()->Shorty()->GetIndex()] = true; } } } } } // Sort string data by specified order. std::vector string_ids; for (auto& string_id : header_->GetCollections().StringIds()) { string_ids.push_back(string_id.get()); } std::sort(string_ids.begin(), string_ids.end(), [&is_shorty, &from_hot_method](const dex_ir::StringId* a, const dex_ir::StringId* b) { const bool a_is_hot = from_hot_method[a->GetIndex()]; const bool b_is_hot = from_hot_method[b->GetIndex()]; if (a_is_hot != b_is_hot) { return a_is_hot < b_is_hot; } // After hot methods are partitioned, subpartition shorties. const bool a_is_shorty = is_shorty[a->GetIndex()]; const bool b_is_shorty = is_shorty[b->GetIndex()]; if (a_is_shorty != b_is_shorty) { return a_is_shorty < b_is_shorty; } // Order by index by default. return a->GetIndex() < b->GetIndex(); }); dex_ir::CollectionVector::Vector& string_datas = header_->GetCollections().StringDatas(); // Now we know what order we want the string data, reorder them. size_t data_index = 0; for (dex_ir::StringId* string_id : string_ids) { string_datas[data_index].release(); string_datas[data_index].reset(string_id->DataItem()); ++data_index; } if (kIsDebugBuild) { std::unordered_set visited; for (const std::unique_ptr& data : string_datas) { visited.insert(data.get()); } for (auto& string_id : header_->GetCollections().StringIds()) { CHECK(visited.find(string_id->DataItem()) != visited.end()); } } CHECK_EQ(data_index, string_datas.size()); } // Orders code items according to specified class data ordering. void DexLayout::LayoutCodeItems(const DexFile* dex_file) { static constexpr InvokeType invoke_types[] = { kDirect, kVirtual }; std::unordered_map& code_item_layout = layout_hotness_info_.code_item_layout_; // Assign hotness flags to all code items. for (InvokeType invoke_type : invoke_types) { for (std::unique_ptr& class_def : header_->GetCollections().ClassDefs()) { const bool is_profile_class = info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex())); // Skip classes that are not defined in this dex file. dex_ir::ClassData* class_data = class_def->GetClassData(); if (class_data == nullptr) { continue; } for (auto& method : *(invoke_type == InvokeType::kDirect ? class_data->DirectMethods() : class_data->VirtualMethods())) { const dex_ir::MethodId *method_id = method->GetMethodId(); dex_ir::CodeItem *code_item = method->GetCodeItem(); if (code_item == nullptr) { continue; } // Separate executed methods (clinits and profiled methods) from unexecuted methods. const bool is_clinit = (method->GetAccessFlags() & kAccConstructor) != 0 && (method->GetAccessFlags() & kAccStatic) != 0; const bool is_startup_clinit = is_profile_class && is_clinit; using Hotness = ProfileCompilationInfo::MethodHotness; Hotness hotness = info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex())); LayoutType state = LayoutType::kLayoutTypeUnused; if (hotness.IsHot()) { // Hot code is compiled, maybe one day it won't be accessed. So lay it out together for // now. state = LayoutType::kLayoutTypeHot; } else if (is_startup_clinit || hotness.GetFlags() == Hotness::kFlagStartup) { // Startup clinit or a method that only has the startup flag. state = LayoutType::kLayoutTypeStartupOnly; } else if (is_clinit) { state = LayoutType::kLayoutTypeUsedOnce; } else if (hotness.IsInProfile()) { state = LayoutType::kLayoutTypeSometimesUsed; } auto it = code_item_layout.emplace(code_item, state); if (!it.second) { LayoutType& layout_type = it.first->second; // Already exists, merge the hotness. layout_type = MergeLayoutType(layout_type, state); } } } } dex_ir::CollectionVector::Vector& code_items = header_->GetCollections().CodeItems(); if (VLOG_IS_ON(dex)) { size_t layout_count[static_cast(LayoutType::kLayoutTypeCount)] = {}; for (const std::unique_ptr& code_item : code_items) { auto it = code_item_layout.find(code_item.get()); DCHECK(it != code_item_layout.end()); ++layout_count[static_cast(it->second)]; } for (size_t i = 0; i < static_cast(LayoutType::kLayoutTypeCount); ++i) { LOG(INFO) << "Code items in category " << i << " count=" << layout_count[i]; } } // Sort the code items vector by new layout. The writing process will take care of calculating // all the offsets. Stable sort to preserve any existing locality that might be there. std::stable_sort(code_items.begin(), code_items.end(), [&](const std::unique_ptr& a, const std::unique_ptr& b) { auto it_a = code_item_layout.find(a.get()); auto it_b = code_item_layout.find(b.get()); DCHECK(it_a != code_item_layout.end()); DCHECK(it_b != code_item_layout.end()); const LayoutType layout_type_a = it_a->second; const LayoutType layout_type_b = it_b->second; return layout_type_a < layout_type_b; }); } void DexLayout::LayoutOutputFile(const DexFile* dex_file) { LayoutStringData(dex_file); LayoutClassDefsAndClassData(dex_file); LayoutCodeItems(dex_file); } bool DexLayout::OutputDexFile(const DexFile* input_dex_file, bool compute_offsets, std::unique_ptr* dex_container, std::string* error_msg) { const std::string& dex_file_location = input_dex_file->GetLocation(); std::unique_ptr new_file; // If options_.output_dex_directory_ is non null, we are outputting to a file. if (options_.output_dex_directory_ != nullptr) { std::string output_location(options_.output_dex_directory_); size_t last_slash = dex_file_location.rfind('/'); std::string dex_file_directory = dex_file_location.substr(0, last_slash + 1); if (output_location == dex_file_directory) { output_location = dex_file_location + ".new"; } else if (last_slash != std::string::npos) { output_location += dex_file_location.substr(last_slash); } else { output_location += "/" + dex_file_location + ".new"; } new_file.reset(OS::CreateEmptyFile(output_location.c_str())); if (new_file == nullptr) { LOG(ERROR) << "Could not create dex writer output file: " << output_location; return false; } } if (!DexWriter::Output(this, dex_container, compute_offsets, error_msg)) { return false; } if (new_file != nullptr) { DexContainer* const container = dex_container->get(); DexContainer::Section* const main_section = container->GetMainSection(); if (!new_file->WriteFully(main_section->Begin(), main_section->Size())) { LOG(ERROR) << "Failed to write main section for dex file " << dex_file_location; new_file->Erase(); return false; } DexContainer::Section* const data_section = container->GetDataSection(); if (!new_file->WriteFully(data_section->Begin(), data_section->Size())) { LOG(ERROR) << "Failed to write data section for dex file " << dex_file_location; new_file->Erase(); return false; } UNUSED(new_file->FlushCloseOrErase()); } return true; } /* * Dumps the requested sections of the file. */ bool DexLayout::ProcessDexFile(const char* file_name, const DexFile* dex_file, size_t dex_file_index, std::unique_ptr* dex_container, std::string* error_msg) { const bool has_output_container = dex_container != nullptr; const bool output = options_.output_dex_directory_ != nullptr || has_output_container; // Try to avoid eagerly assigning offsets to find bugs since GetOffset will abort if the offset // is unassigned. bool eagerly_assign_offsets = false; if (options_.visualize_pattern_ || options_.show_section_statistics_ || options_.dump_) { // These options required the offsets for dumping purposes. eagerly_assign_offsets = true; } std::unique_ptr header(dex_ir::DexIrBuilder(*dex_file, eagerly_assign_offsets, GetOptions())); SetHeader(header.get()); if (options_.verbose_) { fprintf(out_file_, "Opened '%s', DEX version '%.3s'\n", file_name, dex_file->GetHeader().magic_ + 4); } if (options_.visualize_pattern_) { VisualizeDexLayout(header_, dex_file, dex_file_index, info_); return true; } if (options_.show_section_statistics_) { ShowDexSectionStatistics(header_, dex_file_index); return true; } // Dump dex file. if (options_.dump_) { DumpDexFile(); } // In case we are outputting to a file, keep it open so we can verify. if (output) { // Layout information about what strings and code items are hot. Used by the writing process // to generate the sections that are stored in the oat file. bool do_layout = info_ != nullptr; if (do_layout) { LayoutOutputFile(dex_file); } // The output needs a dex container, use a temporary one. std::unique_ptr temp_container; if (dex_container == nullptr) { dex_container = &temp_container; } // If we didn't set the offsets eagerly, we definitely need to compute them here. if (!OutputDexFile(dex_file, do_layout || !eagerly_assign_offsets, dex_container, error_msg)) { return false; } // Clear header before verifying to reduce peak RAM usage. const size_t file_size = header_->FileSize(); header.reset(); // Verify the output dex file's structure, only enabled by default for debug builds. if (options_.verify_output_ && has_output_container) { std::string location = "memory mapped file for " + std::string(file_name); // Dex file verifier cannot handle compact dex. bool verify = options_.compact_dex_level_ == CompactDexLevel::kCompactDexLevelNone; const ArtDexFileLoader dex_file_loader; DexContainer::Section* const main_section = (*dex_container)->GetMainSection(); DexContainer::Section* const data_section = (*dex_container)->GetDataSection(); DCHECK_EQ(file_size, main_section->Size()) << main_section->Size() << " " << data_section->Size(); std::unique_ptr output_dex_file( dex_file_loader.OpenWithDataSection( main_section->Begin(), main_section->Size(), data_section->Begin(), data_section->Size(), location, /* checksum */ 0, /*oat_dex_file*/ nullptr, verify, /*verify_checksum*/ false, error_msg)); CHECK(output_dex_file != nullptr) << "Failed to re-open output file:" << *error_msg; // Do IR-level comparison between input and output. This check ignores potential differences // due to layout, so offsets are not checked. Instead, it checks the data contents of each // item. // // Regenerate output IR to catch any bugs that might happen during writing. std::unique_ptr output_header( dex_ir::DexIrBuilder(*output_dex_file, /*eagerly_assign_offsets*/ true, GetOptions())); std::unique_ptr orig_header( dex_ir::DexIrBuilder(*dex_file, /*eagerly_assign_offsets*/ true, GetOptions())); CHECK(VerifyOutputDexFile(output_header.get(), orig_header.get(), error_msg)) << *error_msg; } } return true; } /* * Processes a single file (either direct .dex or indirect .zip/.jar/.apk). */ int DexLayout::ProcessFile(const char* file_name) { if (options_.verbose_) { fprintf(out_file_, "Processing '%s'...\n", file_name); } // If the file is not a .dex file, the function tries .zip/.jar/.apk files, // all of which are Zip archives with "classes.dex" inside. const bool verify_checksum = !options_.ignore_bad_checksum_; std::string error_msg; const ArtDexFileLoader dex_file_loader; std::vector> dex_files; if (!dex_file_loader.Open( file_name, file_name, /* verify */ true, verify_checksum, &error_msg, &dex_files)) { // Display returned error message to user. Note that this error behavior // differs from the error messages shown by the original Dalvik dexdump. LOG(ERROR) << error_msg; return -1; } // Success. Either report checksum verification or process // all dex files found in given file. if (options_.checksum_only_) { fprintf(out_file_, "Checksum verified\n"); } else { for (size_t i = 0; i < dex_files.size(); i++) { // Pass in a null container to avoid output by default. if (!ProcessDexFile(file_name, dex_files[i].get(), i, /*dex_container*/ nullptr, &error_msg)) { LOG(WARNING) << "Failed to run dex file " << i << " in " << file_name << " : " << error_msg; } } } return 0; } } // namespace art