/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_ #define ART_RUNTIME_BASE_MUTEX_INL_H_ #include #include "mutex.h" #include "base/utils.h" #include "base/value_object.h" #include "thread.h" #if ART_USE_FUTEXES #include "linux/futex.h" #include "sys/syscall.h" #ifndef SYS_futex #define SYS_futex __NR_futex #endif #endif // ART_USE_FUTEXES #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_) namespace art { #if ART_USE_FUTEXES static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout, volatile int *uaddr2, int val3) { return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3); } #endif // ART_USE_FUTEXES // The following isn't strictly necessary, but we want updates on Atomic to be lock-free. // TODO: Use std::atomic::is_always_lock_free after switching to C++17 atomics. static_assert(sizeof(pid_t) <= sizeof(int32_t), "pid_t should fit in 32 bits"); static inline pid_t SafeGetTid(const Thread* self) { if (self != nullptr) { return self->GetTid(); } else { return GetTid(); } } static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS { // The check below enumerates the cases where we expect not to be able to sanity check locks // on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock. // TODO: tighten this check. if (kDebugLocking) { CHECK(!Locks::IsSafeToCallAbortRacy() || // Used during thread creation to avoid races with runtime shutdown. Thread::Current not // yet established. level == kRuntimeShutdownLock || // Thread Ids are allocated/released before threads are established. level == kAllocatedThreadIdsLock || // Thread LDT's are initialized without Thread::Current established. level == kModifyLdtLock || // Threads are unregistered while holding the thread list lock, during this process they // no longer exist and so we expect an unlock with no self. level == kThreadListLock || // Ignore logging which may or may not have set up thread data structures. level == kLoggingLock || // When transitioning from suspended to runnable, a daemon thread might be in // a situation where the runtime is shutting down. To not crash our debug locking // mechanism we just pass null Thread* to the MutexLock during that transition // (see Thread::TransitionFromSuspendedToRunnable). level == kThreadSuspendCountLock || // Avoid recursive death. level == kAbortLock || // Locks at the absolute top of the stack can be locked at any time. level == kTopLockLevel) << level; } } inline void BaseMutex::RegisterAsLocked(Thread* self) { if (UNLIKELY(self == nullptr)) { CheckUnattachedThread(level_); return; } if (kDebugLocking) { // Check if a bad Mutex of this level or lower is held. bool bad_mutexes_held = false; // Specifically allow a kTopLockLevel lock to be gained when the current thread holds the // mutator_lock_ exclusive. This is because we suspending when holding locks at this level is // not allowed and if we hold the mutator_lock_ exclusive we must unsuspend stuff eventually // so there are no deadlocks. if (level_ == kTopLockLevel && Locks::mutator_lock_->IsSharedHeld(self) && !Locks::mutator_lock_->IsExclusiveHeld(self)) { LOG(ERROR) << "Lock level violation: holding \"" << Locks::mutator_lock_->name_ << "\" " << "(level " << kMutatorLock << " - " << static_cast(kMutatorLock) << ") non-exclusive while locking \"" << name_ << "\" " << "(level " << level_ << " - " << static_cast(level_) << ") a top level" << "mutex. This is not allowed."; bad_mutexes_held = true; } else if (this == Locks::mutator_lock_ && self->GetHeldMutex(kTopLockLevel) != nullptr) { LOG(ERROR) << "Lock level violation. Locking mutator_lock_ while already having a " << "kTopLevelLock (" << self->GetHeldMutex(kTopLockLevel)->name_ << "held is " << "not allowed."; bad_mutexes_held = true; } for (int i = level_; i >= 0; --i) { LockLevel lock_level_i = static_cast(i); BaseMutex* held_mutex = self->GetHeldMutex(lock_level_i); if (level_ == kTopLockLevel && lock_level_i == kMutatorLock && Locks::mutator_lock_->IsExclusiveHeld(self)) { // This is checked above. continue; } else if (UNLIKELY(held_mutex != nullptr) && lock_level_i != kAbortLock) { LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" " << "(level " << lock_level_i << " - " << i << ") while locking \"" << name_ << "\" " << "(level " << level_ << " - " << static_cast(level_) << ")"; if (lock_level_i > kAbortLock) { // Only abort in the check below if this is more than abort level lock. bad_mutexes_held = true; } } } if (gAborting == 0) { // Avoid recursive aborts. CHECK(!bad_mutexes_held); } } // Don't record monitors as they are outside the scope of analysis. They may be inspected off of // the monitor list. if (level_ != kMonitorLock) { self->SetHeldMutex(level_, this); } } inline void BaseMutex::RegisterAsUnlocked(Thread* self) { if (UNLIKELY(self == nullptr)) { CheckUnattachedThread(level_); return; } if (level_ != kMonitorLock) { if (kDebugLocking && gAborting == 0) { // Avoid recursive aborts. CHECK(self->GetHeldMutex(level_) == this) << "Unlocking on unacquired mutex: " << name_; } self->SetHeldMutex(level_, nullptr); } } inline void ReaderWriterMutex::SharedLock(Thread* self) { DCHECK(self == nullptr || self == Thread::Current()); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_.LoadRelaxed(); if (LIKELY(cur_state >= 0)) { // Add as an extra reader. done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1); } else { HandleSharedLockContention(self, cur_state); } } while (!done); #else CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_)); #endif DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1); RegisterAsLocked(self); AssertSharedHeld(self); } inline void ReaderWriterMutex::SharedUnlock(Thread* self) { DCHECK(self == nullptr || self == Thread::Current()); DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1); AssertSharedHeld(self); RegisterAsUnlocked(self); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_.LoadRelaxed(); if (LIKELY(cur_state > 0)) { // Reduce state by 1 and impose lock release load/store ordering. // Note, the relaxed loads below musn't reorder before the CompareAndSet. // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing // a status bit into the state on contention. done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, cur_state - 1); if (done && (cur_state - 1) == 0) { // Weak CAS may fail spuriously. if (num_pending_writers_.LoadRelaxed() > 0 || num_pending_readers_.LoadRelaxed() > 0) { // Wake any exclusive waiters as there are now no readers. futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0); } } } else { LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_; } } while (!done); #else CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_)); #endif } inline bool Mutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == nullptr || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity debug check that if we think it is locked we have it in our held mutexes. if (result && self != nullptr && level_ != kMonitorLock && !gAborting) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } inline pid_t Mutex::GetExclusiveOwnerTid() const { return exclusive_owner_.LoadRelaxed(); } inline void Mutex::AssertExclusiveHeld(const Thread* self) const { if (kDebugLocking && (gAborting == 0)) { CHECK(IsExclusiveHeld(self)) << *this; } } inline void Mutex::AssertHeld(const Thread* self) const { AssertExclusiveHeld(self); } inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == nullptr || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity that if the pthread thinks we own the lock the Thread agrees. if (self != nullptr && result) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } inline pid_t ReaderWriterMutex::GetExclusiveOwnerTid() const { #if ART_USE_FUTEXES int32_t state = state_.LoadRelaxed(); if (state == 0) { return 0; // No owner. } else if (state > 0) { return -1; // Shared. } else { return exclusive_owner_.LoadRelaxed(); } #else return exclusive_owner_.LoadRelaxed(); #endif } inline void ReaderWriterMutex::AssertExclusiveHeld(const Thread* self) const { if (kDebugLocking && (gAborting == 0)) { CHECK(IsExclusiveHeld(self)) << *this; } } inline void ReaderWriterMutex::AssertWriterHeld(const Thread* self) const { AssertExclusiveHeld(self); } inline void MutatorMutex::TransitionFromRunnableToSuspended(Thread* self) { AssertSharedHeld(self); RegisterAsUnlocked(self); } inline void MutatorMutex::TransitionFromSuspendedToRunnable(Thread* self) { RegisterAsLocked(self); AssertSharedHeld(self); } inline ReaderMutexLock::ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) : self_(self), mu_(mu) { mu_.SharedLock(self_); } inline ReaderMutexLock::~ReaderMutexLock() { mu_.SharedUnlock(self_); } // Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of // "ReaderMutexLock mu(lock)". #define ReaderMutexLock(x) static_assert(0, "ReaderMutexLock declaration missing variable name") } // namespace art #endif // ART_RUNTIME_BASE_MUTEX_INL_H_