/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Mterp entry point and support functions. */ #include "mterp.h" #include "base/quasi_atomic.h" #include "debugger.h" #include "entrypoints/entrypoint_utils-inl.h" #include "interpreter/interpreter_common.h" #include "interpreter/interpreter_intrinsics.h" namespace art { namespace interpreter { /* * Verify some constants used by the mterp interpreter. */ void CheckMterpAsmConstants() { /* * If we're using computed goto instruction transitions, make sure * none of the handlers overflows the 128-byte limit. This won't tell * which one did, but if any one is too big the total size will * overflow. */ const int width = 128; int interp_size = (uintptr_t) artMterpAsmInstructionEnd - (uintptr_t) artMterpAsmInstructionStart; if ((interp_size == 0) || (interp_size != (art::kNumPackedOpcodes * width))) { LOG(FATAL) << "ERROR: unexpected asm interp size " << interp_size << "(did an instruction handler exceed " << width << " bytes?)"; } } void InitMterpTls(Thread* self) { self->SetMterpDefaultIBase(artMterpAsmInstructionStart); self->SetMterpAltIBase(artMterpAsmAltInstructionStart); self->SetMterpCurrentIBase((kTraceExecutionEnabled || kTestExportPC) ? artMterpAsmAltInstructionStart : artMterpAsmInstructionStart); } /* * Find the matching case. Returns the offset to the handler instructions. * * Returns 3 if we don't find a match (it's the size of the sparse-switch * instruction). */ extern "C" ssize_t MterpDoSparseSwitch(const uint16_t* switchData, int32_t testVal) { const int kInstrLen = 3; uint16_t size; const int32_t* keys; const int32_t* entries; /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ uint16_t signature = *switchData++; DCHECK_EQ(signature, static_cast(art::Instruction::kSparseSwitchSignature)); size = *switchData++; /* The keys are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ keys = reinterpret_cast(switchData); /* The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ entries = keys + size; /* * Binary-search through the array of keys, which are guaranteed to * be sorted low-to-high. */ int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; int32_t foundVal = keys[mid]; if (testVal < foundVal) { hi = mid - 1; } else if (testVal > foundVal) { lo = mid + 1; } else { return entries[mid]; } } return kInstrLen; } extern "C" ssize_t MterpDoPackedSwitch(const uint16_t* switchData, int32_t testVal) { const int kInstrLen = 3; /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ uint16_t signature = *switchData++; DCHECK_EQ(signature, static_cast(art::Instruction::kPackedSwitchSignature)); uint16_t size = *switchData++; int32_t firstKey = *switchData++; firstKey |= (*switchData++) << 16; int index = testVal - firstKey; if (index < 0 || index >= size) { return kInstrLen; } /* * The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ const int32_t* entries = reinterpret_cast(switchData); return entries[index]; } extern "C" size_t MterpShouldSwitchInterpreters() REQUIRES_SHARED(Locks::mutator_lock_) { const Runtime* const runtime = Runtime::Current(); const instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation(); return instrumentation->NonJitProfilingActive() || Dbg::IsDebuggerActive() || // An async exception has been thrown. We need to go to the switch interpreter. MTerp doesn't // know how to deal with these so we could end up never dealing with it if we are in an // infinite loop. Since this can be called in a tight loop and getting the current thread // requires a TLS read we instead first check a short-circuit runtime flag that will only be // set if something tries to set an async exception. This will make this function faster in // the common case where no async exception has ever been sent. We don't need to worry about // synchronization on the runtime flag since it is only set in a checkpoint which will either // take place on the current thread or act as a synchronization point. (UNLIKELY(runtime->AreAsyncExceptionsThrown()) && Thread::Current()->IsAsyncExceptionPending()); } extern "C" size_t MterpInvokeVirtual(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFastInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeSuper(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeInterface(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeDirect(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFastInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeStatic(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFastInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeCustom(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokeCustom( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokePolymorphic(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokePolymorphic( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeVirtualRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeSuperRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeInterfaceRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeDirectRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeStaticRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvoke( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeCustomRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokeCustom(self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokePolymorphicRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokePolymorphic( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeVirtualQuick(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); const uint32_t vregC = inst->VRegC_35c(); const uint32_t vtable_idx = inst->VRegB_35c(); ObjPtr const receiver = shadow_frame->GetVRegReference(vregC); if (receiver != nullptr) { ArtMethod* const called_method = receiver->GetClass()->GetEmbeddedVTableEntry( vtable_idx, kRuntimePointerSize); if ((called_method != nullptr) && called_method->IsIntrinsic()) { if (MterpHandleIntrinsic(shadow_frame, called_method, inst, inst_data, result_register)) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->InvokeVirtualOrInterface( receiver, shadow_frame->GetMethod(), shadow_frame->GetDexPC(), called_method); } return !self->IsExceptionPending(); } } } return DoInvokeVirtualQuick( self, *shadow_frame, inst, inst_data, result_register); } extern "C" size_t MterpInvokeVirtualQuickRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokeVirtualQuick( self, *shadow_frame, inst, inst_data, result_register); } extern "C" void MterpThreadFenceForConstructor() { QuasiAtomic::ThreadFenceForConstructor(); } extern "C" size_t MterpConstString(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr s = ResolveString(self, *shadow_frame, dex::StringIndex(index)); if (UNLIKELY(s == nullptr)) { return true; } shadow_frame->SetVRegReference(tgt_vreg, s.Ptr()); return false; } extern "C" size_t MterpConstClass(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), shadow_frame->GetMethod(), self, /* can_run_clinit */ false, /* verify_access */ false); if (UNLIKELY(c == nullptr)) { return true; } shadow_frame->SetVRegReference(tgt_vreg, c.Ptr()); return false; } extern "C" size_t MterpConstMethodHandle(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr mh = ResolveMethodHandle(self, index, shadow_frame->GetMethod()); if (UNLIKELY(mh == nullptr)) { return true; } shadow_frame->SetVRegReference(tgt_vreg, mh.Ptr()); return false; } extern "C" size_t MterpConstMethodType(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr mt = ResolveMethodType(self, index, shadow_frame->GetMethod()); if (UNLIKELY(mt == nullptr)) { return true; } shadow_frame->SetVRegReference(tgt_vreg, mt.Ptr()); return false; } extern "C" size_t MterpCheckCast(uint32_t index, StackReference* vreg_addr, art::ArtMethod* method, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), method, self, false, false); if (UNLIKELY(c == nullptr)) { return true; } // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc. mirror::Object* obj = vreg_addr->AsMirrorPtr(); if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) { ThrowClassCastException(c, obj->GetClass()); return true; } return false; } extern "C" size_t MterpInstanceOf(uint32_t index, StackReference* vreg_addr, art::ArtMethod* method, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), method, self, false, false); if (UNLIKELY(c == nullptr)) { return false; // Caller will check for pending exception. Return value unimportant. } // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc. mirror::Object* obj = vreg_addr->AsMirrorPtr(); return (obj != nullptr) && obj->InstanceOf(c); } extern "C" size_t MterpFillArrayData(mirror::Object* obj, const Instruction::ArrayDataPayload* payload) REQUIRES_SHARED(Locks::mutator_lock_) { return FillArrayData(obj, payload); } extern "C" size_t MterpNewInstance(ShadowFrame* shadow_frame, Thread* self, uint32_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); mirror::Object* obj = nullptr; ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(inst->VRegB_21c()), shadow_frame->GetMethod(), self, /* can_run_clinit */ false, /* verify_access */ false); if (LIKELY(c != nullptr)) { if (UNLIKELY(c->IsStringClass())) { gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); obj = mirror::String::AllocEmptyString(self, allocator_type); } else { obj = AllocObjectFromCode(c.Ptr(), self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } } if (UNLIKELY(obj == nullptr)) { return false; } obj->GetClass()->AssertInitializedOrInitializingInThread(self); shadow_frame->SetVRegReference(inst->VRegA_21c(inst_data), obj); return true; } extern "C" size_t MterpSputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFieldPut (self, *shadow_frame, inst, inst_data); } extern "C" size_t MterpIputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFieldPut (self, *shadow_frame, inst, inst_data); } extern "C" size_t MterpIputObjectQuick(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); return DoIPutQuick(*shadow_frame, inst, inst_data); } extern "C" size_t MterpAputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); mirror::Object* a = shadow_frame->GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == nullptr)) { return false; } int32_t index = shadow_frame->GetVReg(inst->VRegC_23x()); mirror::Object* val = shadow_frame->GetVRegReference(inst->VRegA_23x(inst_data)); mirror::ObjectArray* array = a->AsObjectArray(); if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) { array->SetWithoutChecks(index, val); return true; } return false; } extern "C" size_t MterpFilledNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFilledNewArray(inst, *shadow_frame, self, shadow_frame->GetResultRegister()); } extern "C" size_t MterpFilledNewArrayRange(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); return DoFilledNewArray(inst, *shadow_frame, self, shadow_frame->GetResultRegister()); } extern "C" size_t MterpNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); int32_t length = shadow_frame->GetVReg(inst->VRegB_22c(inst_data)); mirror::Object* obj = AllocArrayFromCode( dex::TypeIndex(inst->VRegC_22c()), length, shadow_frame->GetMethod(), self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); if (UNLIKELY(obj == nullptr)) { return false; } shadow_frame->SetVRegReference(inst->VRegA_22c(inst_data), obj); return true; } extern "C" size_t MterpHandleException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(self->IsExceptionPending()); const instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); return MoveToExceptionHandler(self, *shadow_frame, instrumentation); } extern "C" void MterpCheckBefore(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); uint16_t inst_data = inst->Fetch16(0); if (inst->Opcode(inst_data) == Instruction::MOVE_EXCEPTION) { self->AssertPendingException(); } else { self->AssertNoPendingException(); } if (kTraceExecutionEnabled) { uint32_t dex_pc = dex_pc_ptr - shadow_frame->GetDexInstructions(); TraceExecution(*shadow_frame, inst, dex_pc); } if (kTestExportPC) { // Save invalid dex pc to force segfault if improperly used. shadow_frame->SetDexPCPtr(reinterpret_cast(kExportPCPoison)); } } extern "C" void MterpLogDivideByZeroException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "DivideByZero: " << inst->Opcode(inst_data); } extern "C" void MterpLogArrayIndexException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "ArrayIndex: " << inst->Opcode(inst_data); } extern "C" void MterpLogNegativeArraySizeException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NegativeArraySize: " << inst->Opcode(inst_data); } extern "C" void MterpLogNoSuchMethodException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NoSuchMethod: " << inst->Opcode(inst_data); } extern "C" void MterpLogExceptionThrownException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "ExceptionThrown: " << inst->Opcode(inst_data); } extern "C" void MterpLogNullObjectException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NullObject: " << inst->Opcode(inst_data); } extern "C" void MterpLogFallback(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "Fallback: " << inst->Opcode(inst_data) << ", Suspend Pending?: " << self->IsExceptionPending(); } extern "C" void MterpLogOSR(Thread* self, ShadowFrame* shadow_frame, int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "OSR: " << inst->Opcode(inst_data) << ", offset = " << offset; } extern "C" void MterpLogSuspendFallback(Thread* self, ShadowFrame* shadow_frame, uint32_t flags) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); if (flags & kCheckpointRequest) { LOG(INFO) << "Checkpoint fallback: " << inst->Opcode(inst_data); } else if (flags & kSuspendRequest) { LOG(INFO) << "Suspend fallback: " << inst->Opcode(inst_data); } else if (flags & kEmptyCheckpointRequest) { LOG(INFO) << "Empty checkpoint fallback: " << inst->Opcode(inst_data); } } extern "C" size_t MterpSuspendCheck(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { self->AllowThreadSuspension(); return MterpShouldSwitchInterpreters(); } extern "C" ssize_t artSet8InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint8_t new_value, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite, sizeof(int8_t)); if (LIKELY(field != nullptr && obj != nullptr)) { Primitive::Type type = field->GetTypeAsPrimitiveType(); if (type == Primitive::kPrimBoolean) { field->SetBoolean(obj, new_value); } else { DCHECK_EQ(Primitive::kPrimByte, type); field->SetByte(obj, new_value); } return 0; // success } return -1; // failure } extern "C" ssize_t artSet16InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint16_t new_value, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite, sizeof(int16_t)); if (LIKELY(field != nullptr && obj != nullptr)) { Primitive::Type type = field->GetTypeAsPrimitiveType(); if (type == Primitive::kPrimChar) { field->SetChar(obj, new_value); } else { DCHECK_EQ(Primitive::kPrimShort, type); field->SetShort(obj, new_value); } return 0; // success } return -1; // failure } extern "C" ssize_t artSet32InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint32_t new_value, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite, sizeof(int32_t)); if (LIKELY(field != nullptr && obj != nullptr)) { field->Set32(obj, new_value); return 0; // success } return -1; // failure } extern "C" ssize_t artSet64InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint64_t* new_value, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite, sizeof(int64_t)); if (LIKELY(field != nullptr && obj != nullptr)) { field->Set64(obj, *new_value); return 0; // success } return -1; // failure } extern "C" ssize_t artSetObjInstanceFromMterp(uint32_t field_idx, mirror::Object* obj, mirror::Object* new_value, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* field = FindFieldFast(field_idx, referrer, InstanceObjectWrite, sizeof(mirror::HeapReference)); if (LIKELY(field != nullptr && obj != nullptr)) { field->SetObj(obj, new_value); return 0; // success } return -1; // failure } template ALWAYS_INLINE return_type MterpGetStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self, return_type (ArtField::*func)(ObjPtr)) REQUIRES_SHARED(Locks::mutator_lock_) { return_type res = 0; // On exception, the result will be ignored. ArtField* f = FindFieldFromCode(field_idx, referrer, self, primitive_type); if (LIKELY(f != nullptr)) { ObjPtr obj = f->GetDeclaringClass(); res = (f->*func)(obj); } return res; } extern "C" int32_t MterpGetBooleanStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetBoolean); } extern "C" int32_t MterpGetByteStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetByte); } extern "C" uint32_t MterpGetCharStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetChar); } extern "C" int32_t MterpGetShortStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetShort); } extern "C" mirror::Object* MterpGetObjStatic(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic, Primitive::kPrimNot>(field_idx, referrer, self, &ArtField::GetObject).Ptr(); } extern "C" int32_t MterpGet32Static(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetInt); } extern "C" int64_t MterpGet64Static(uint32_t field_idx, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpGetStatic(field_idx, referrer, self, &ArtField::GetLong); } template int MterpSetStatic(uint32_t field_idx, field_type new_value, ArtMethod* referrer, Thread* self, void (ArtField::*func)(ObjPtr, field_type val)) REQUIRES_SHARED(Locks::mutator_lock_) { int res = 0; // Assume success (following quick_field_entrypoints conventions) ArtField* f = FindFieldFromCode(field_idx, referrer, self, primitive_type); if (LIKELY(f != nullptr)) { ObjPtr obj = f->GetDeclaringClass(); (f->*func)(obj, new_value); } else { res = -1; // Failure } return res; } extern "C" int MterpSetBooleanStatic(uint32_t field_idx, uint8_t new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, new_value, referrer, self, &ArtField::SetBoolean); } extern "C" int MterpSetByteStatic(uint32_t field_idx, int8_t new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, new_value, referrer, self, &ArtField::SetByte); } extern "C" int MterpSetCharStatic(uint32_t field_idx, uint16_t new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, new_value, referrer, self, &ArtField::SetChar); } extern "C" int MterpSetShortStatic(uint32_t field_idx, int16_t new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, new_value, referrer, self, &ArtField::SetShort); } extern "C" int MterpSet32Static(uint32_t field_idx, int32_t new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, new_value, referrer, self, &ArtField::SetInt); } extern "C" int MterpSet64Static(uint32_t field_idx, int64_t* new_value, ArtMethod* referrer, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { return MterpSetStatic(field_idx, *new_value, referrer, self, &ArtField::SetLong); } extern "C" mirror::Object* artAGetObjectFromMterp(mirror::Object* arr, int32_t index) REQUIRES_SHARED(Locks::mutator_lock_) { if (UNLIKELY(arr == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return nullptr; } mirror::ObjectArray* array = arr->AsObjectArray(); if (LIKELY(array->CheckIsValidIndex(index))) { return array->GetWithoutChecks(index); } else { return nullptr; } } extern "C" mirror::Object* artIGetObjectFromMterp(mirror::Object* obj, uint32_t field_offset) REQUIRES_SHARED(Locks::mutator_lock_) { if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return nullptr; } return obj->GetFieldObject(MemberOffset(field_offset)); } /* * Create a hotness_countdown based on the current method hotness_count and profiling * mode. In short, determine how many hotness events we hit before reporting back * to the full instrumentation via MterpAddHotnessBatch. Called once on entry to the method, * and regenerated following batch updates. */ extern "C" ssize_t MterpSetUpHotnessCountdown(ArtMethod* method, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { uint16_t hotness_count = method->GetCounter(); int32_t countdown_value = jit::kJitHotnessDisabled; jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { int32_t warm_threshold = jit->WarmMethodThreshold(); int32_t hot_threshold = jit->HotMethodThreshold(); int32_t osr_threshold = jit->OSRMethodThreshold(); if (hotness_count < warm_threshold) { countdown_value = warm_threshold - hotness_count; } else if (hotness_count < hot_threshold) { countdown_value = hot_threshold - hotness_count; } else if (hotness_count < osr_threshold) { countdown_value = osr_threshold - hotness_count; } else { countdown_value = jit::kJitCheckForOSR; } if (jit::Jit::ShouldUsePriorityThreadWeight(self)) { int32_t priority_thread_weight = jit->PriorityThreadWeight(); countdown_value = std::min(countdown_value, countdown_value / priority_thread_weight); } } /* * The actual hotness threshold may exceed the range of our int16_t countdown value. This is * not a problem, though. We can just break it down into smaller chunks. */ countdown_value = std::min(countdown_value, static_cast(std::numeric_limits::max())); shadow_frame->SetCachedHotnessCountdown(countdown_value); shadow_frame->SetHotnessCountdown(countdown_value); return countdown_value; } /* * Report a batch of hotness events to the instrumentation and then return the new * countdown value to the next time we should report. */ extern "C" ssize_t MterpAddHotnessBatch(ArtMethod* method, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { int16_t count = shadow_frame->GetCachedHotnessCountdown() - shadow_frame->GetHotnessCountdown(); jit->AddSamples(self, method, count, /*with_backedges*/ true); } return MterpSetUpHotnessCountdown(method, shadow_frame, self); } extern "C" size_t MterpMaybeDoOnStackReplacement(Thread* self, ShadowFrame* shadow_frame, int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) { int16_t osr_countdown = shadow_frame->GetCachedHotnessCountdown() - 1; bool did_osr = false; /* * To reduce the cost of polling the compiler to determine whether the requested OSR * compilation has completed, only check every Nth time. NOTE: the "osr_countdown <= 0" * condition is satisfied either by the decrement below or the initial setting of * the cached countdown field to kJitCheckForOSR, which elsewhere is asserted to be -1. */ if (osr_countdown <= 0) { ArtMethod* method = shadow_frame->GetMethod(); JValue* result = shadow_frame->GetResultRegister(); uint32_t dex_pc = shadow_frame->GetDexPC(); jit::Jit* jit = Runtime::Current()->GetJit(); osr_countdown = jit::Jit::kJitRecheckOSRThreshold; if (offset <= 0) { // Keep updating hotness in case a compilation request was dropped. Eventually it will retry. jit->AddSamples(self, method, osr_countdown, /*with_backedges*/ true); } did_osr = jit::Jit::MaybeDoOnStackReplacement(self, method, dex_pc, offset, result); } shadow_frame->SetCachedHotnessCountdown(osr_countdown); return did_osr; } } // namespace interpreter } // namespace art