/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_LOCK_WORD_H_ #define ART_RUNTIME_LOCK_WORD_H_ #include #include #include #include "base/bit_utils.h" #include "read_barrier.h" namespace art { namespace mirror { class Object; } // namespace mirror class Monitor; /* The lock value itself as stored in mirror::Object::monitor_. The two most significant bits of * the state. The four possible states are fat locked, thin/unlocked, hash code, and forwarding * address. * * When the lock word is in the "thin" state and its bits are formatted as follows: * * |33|2|2|222222221111|1111110000000000| * |10|9|8|765432109876|5432109876543210| * |00|m|r| lock count |thread id owner | * * When the lock word is in the "fat" state and its bits are formatted as follows: * * |33|2|2|2222222211111111110000000000| * |10|9|8|7654321098765432109876543210| * |01|m|r| MonitorId | * * When the lock word is in hash state and its bits are formatted as follows: * * |33|2|2|2222222211111111110000000000| * |10|9|8|7654321098765432109876543210| * |10|m|r| HashCode | * * When the lock word is in forwarding address state and its bits are formatted as follows: * * |33|2|22222222211111111110000000000| * |10|9|87654321098765432109876543210| * |11|0| ForwardingAddress | * * The `r` bit stores the read barrier state. * The `m` bit stores the mark bit state. */ class LockWord { public: enum SizeShiftsAndMasks : uint32_t { // private marker to avoid generate-operator-out.py from processing. // Number of bits to encode the state, currently just fat or thin/unlocked or hash code. kStateSize = 2, kReadBarrierStateSize = 1, kMarkBitStateSize = 1, // Number of bits to encode the thin lock owner. kThinLockOwnerSize = 16, // Remaining bits are the recursive lock count. kThinLockCountSize = 32 - kThinLockOwnerSize - kStateSize - kReadBarrierStateSize - kMarkBitStateSize, // Thin lock bits. Owner in lowest bits. kThinLockOwnerShift = 0, kThinLockOwnerMask = (1 << kThinLockOwnerSize) - 1, kThinLockMaxOwner = kThinLockOwnerMask, // Count in higher bits. kThinLockCountShift = kThinLockOwnerSize + kThinLockOwnerShift, kThinLockCountMask = (1 << kThinLockCountSize) - 1, kThinLockMaxCount = kThinLockCountMask, kThinLockCountOne = 1 << kThinLockCountShift, // == 65536 (0x10000) // State in the highest bits. kStateShift = kReadBarrierStateSize + kThinLockCountSize + kThinLockCountShift + kMarkBitStateSize, kStateMask = (1 << kStateSize) - 1, kStateMaskShifted = kStateMask << kStateShift, kStateThinOrUnlocked = 0, kStateFat = 1, kStateHash = 2, kStateForwardingAddress = 3, kStateForwardingAddressShifted = kStateForwardingAddress << kStateShift, kStateForwardingAddressOverflow = (1 + kStateMask - kStateForwardingAddress) << kStateShift, // Read barrier bit. kReadBarrierStateShift = kThinLockCountSize + kThinLockCountShift, kReadBarrierStateMask = (1 << kReadBarrierStateSize) - 1, kReadBarrierStateMaskShifted = kReadBarrierStateMask << kReadBarrierStateShift, kReadBarrierStateMaskShiftedToggled = ~kReadBarrierStateMaskShifted, // Mark bit. kMarkBitStateShift = kReadBarrierStateSize + kReadBarrierStateShift, kMarkBitStateMask = (1 << kMarkBitStateSize) - 1, kMarkBitStateMaskShifted = kMarkBitStateMask << kMarkBitStateShift, kMarkBitStateMaskShiftedToggled = ~kMarkBitStateMaskShifted, // GC state is mark bit and read barrier state. kGCStateSize = kReadBarrierStateSize + kMarkBitStateSize, kGCStateShift = kReadBarrierStateShift, kGCStateMaskShifted = kReadBarrierStateMaskShifted | kMarkBitStateMaskShifted, kGCStateMaskShiftedToggled = ~kGCStateMaskShifted, // When the state is kHashCode, the non-state bits hold the hashcode. // Note Object.hashCode() has the hash code layout hardcoded. kHashShift = 0, kHashSize = 32 - kStateSize - kReadBarrierStateSize - kMarkBitStateSize, kHashMask = (1 << kHashSize) - 1, kMaxHash = kHashMask, // Forwarding address shift. kForwardingAddressShift = kObjectAlignmentShift, kMonitorIdShift = kHashShift, kMonitorIdSize = kHashSize, kMonitorIdMask = kHashMask, kMonitorIdAlignmentShift = 32 - kMonitorIdSize, kMonitorIdAlignment = 1 << kMonitorIdAlignmentShift, kMaxMonitorId = kMaxHash }; static LockWord FromThinLockId(uint32_t thread_id, uint32_t count, uint32_t gc_state) { CHECK_LE(thread_id, static_cast(kThinLockMaxOwner)); CHECK_LE(count, static_cast(kThinLockMaxCount)); // DCHECK_EQ(gc_bits & kGCStateMaskToggled, 0U); return LockWord((thread_id << kThinLockOwnerShift) | (count << kThinLockCountShift) | (gc_state << kGCStateShift) | (kStateThinOrUnlocked << kStateShift)); } static LockWord FromForwardingAddress(size_t target) { DCHECK_ALIGNED(target, (1 << kStateSize)); return LockWord((target >> kForwardingAddressShift) | kStateForwardingAddressShifted); } static LockWord FromHashCode(uint32_t hash_code, uint32_t gc_state) { CHECK_LE(hash_code, static_cast(kMaxHash)); // DCHECK_EQ(gc_bits & kGCStateMaskToggled, 0U); return LockWord((hash_code << kHashShift) | (gc_state << kGCStateShift) | (kStateHash << kStateShift)); } static LockWord FromDefault(uint32_t gc_state) { return LockWord(gc_state << kGCStateShift); } static bool IsDefault(LockWord lw) { return LockWord().GetValue() == lw.GetValue(); } static LockWord Default() { return LockWord(); } enum LockState { kUnlocked, // No lock owners. kThinLocked, // Single uncontended owner. kFatLocked, // See associated monitor. kHashCode, // Lock word contains an identity hash. kForwardingAddress, // Lock word contains the forwarding address of an object. }; LockState GetState() const { CheckReadBarrierState(); if ((!kUseReadBarrier && UNLIKELY(value_ == 0)) || (kUseReadBarrier && UNLIKELY((value_ & kGCStateMaskShiftedToggled) == 0))) { return kUnlocked; } else { uint32_t internal_state = (value_ >> kStateShift) & kStateMask; switch (internal_state) { case kStateThinOrUnlocked: return kThinLocked; case kStateHash: return kHashCode; case kStateForwardingAddress: return kForwardingAddress; default: DCHECK_EQ(internal_state, static_cast(kStateFat)); return kFatLocked; } } } uint32_t ReadBarrierState() const { return (value_ >> kReadBarrierStateShift) & kReadBarrierStateMask; } uint32_t GCState() const { return (value_ & kGCStateMaskShifted) >> kGCStateShift; } void SetReadBarrierState(uint32_t rb_state) { DCHECK_EQ(rb_state & ~kReadBarrierStateMask, 0U); DCHECK(rb_state == ReadBarrier::WhiteState() || rb_state == ReadBarrier::GrayState()) << rb_state; DCHECK_NE(static_cast(GetState()), static_cast(kForwardingAddress)); // Clear and or the bits. value_ &= ~(kReadBarrierStateMask << kReadBarrierStateShift); value_ |= (rb_state & kReadBarrierStateMask) << kReadBarrierStateShift; } uint32_t MarkBitState() const { return (value_ >> kMarkBitStateShift) & kMarkBitStateMask; } void SetMarkBitState(uint32_t mark_bit) { DCHECK_EQ(mark_bit & ~kMarkBitStateMask, 0U); DCHECK_NE(static_cast(GetState()), static_cast(kForwardingAddress)); // Clear and or the bits. value_ &= kMarkBitStateMaskShiftedToggled; value_ |= mark_bit << kMarkBitStateShift; } // Return the owner thin lock thread id. uint32_t ThinLockOwner() const; // Return the number of times a lock value has been locked. uint32_t ThinLockCount() const; // Return the Monitor encoded in a fat lock. Monitor* FatLockMonitor() const; // Return the forwarding address stored in the monitor. size_t ForwardingAddress() const; // Constructor a lock word for inflation to use a Monitor. LockWord(Monitor* mon, uint32_t gc_state); // Return the hash code stored in the lock word, must be kHashCode state. int32_t GetHashCode() const; template static bool Equal(LockWord lw1, LockWord lw2) { if (kIncludeReadBarrierState) { return lw1.GetValue() == lw2.GetValue(); } return lw1.GetValueWithoutGCState() == lw2.GetValueWithoutGCState(); } void Dump(std::ostream& os) { os << "LockWord:" << std::hex << value_; } private: // Default constructor with no lock ownership. LockWord(); explicit LockWord(uint32_t val) : value_(val) { // Make sure adding the overflow causes an overflow. constexpr uint64_t overflow = static_cast(kStateForwardingAddressShifted) + static_cast(kStateForwardingAddressOverflow); constexpr bool is_larger = overflow > static_cast(0xFFFFFFFF); static_assert(is_larger, "should have overflowed"); static_assert( (~kStateForwardingAddress & kStateMask) == 0, "READ_BARRIER_MARK_REG relies on the forwarding address state being only one bits"); CheckReadBarrierState(); } // Disallow this in favor of explicit Equal() with the // kIncludeReadBarrierState param to make clients be aware of the // read barrier state. bool operator==(const LockWord& rhs) = delete; void CheckReadBarrierState() const { if (kIsDebugBuild && ((value_ >> kStateShift) & kStateMask) != kStateForwardingAddress) { uint32_t rb_state = ReadBarrierState(); if (!kUseReadBarrier) { DCHECK_EQ(rb_state, 0U); } else { DCHECK(rb_state == ReadBarrier::WhiteState() || rb_state == ReadBarrier::GrayState()) << rb_state; } } } // Note GetValue() includes the read barrier bits and comparing (==) // GetValue() between two lock words to compare the lock states may // not work. Prefer Equal() or GetValueWithoutReadBarrierState(). uint32_t GetValue() const { CheckReadBarrierState(); return value_; } uint32_t GetValueWithoutGCState() const { CheckReadBarrierState(); return value_ & kGCStateMaskShiftedToggled; } // Only Object should be converting LockWords to/from uints. friend class mirror::Object; // The encoded value holding all the state. uint32_t value_; }; std::ostream& operator<<(std::ostream& os, const LockWord::LockState& code); } // namespace art #endif // ART_RUNTIME_LOCK_WORD_H_