/** * f2fs_fs.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * Dual licensed under the GPL or LGPL version 2 licenses. * * The byteswap codes are copied from: * samba_3_master/lib/ccan/endian/endian.h under LGPL 2.1 */ #ifndef __F2FS_FS_H__ #define __F2FS_FS_H__ #ifdef HAVE_CONFIG_H #include #endif #ifdef __ANDROID__ #define WITH_ANDROID #endif #ifdef WITH_ANDROID #include #else #define WITH_DUMP #define WITH_DEFRAG #define WITH_RESIZE #define WITH_SLOAD #endif #include #ifdef HAVE_LINUX_TYPES_H #include #endif #include #ifdef HAVE_LINUX_BLKZONED_H #include #endif #ifdef HAVE_LIBSELINUX #include #include #endif #ifdef UNUSED #elif defined(__GNUC__) # define UNUSED(x) UNUSED_ ## x __attribute__((unused)) #elif defined(__LCLINT__) # define UNUSED(x) x #else # define UNUSED(x) x #endif #ifdef ANDROID_WINDOWS_HOST #undef HAVE_LINUX_TYPES_H typedef uint64_t u_int64_t; typedef uint32_t u_int32_t; typedef uint16_t u_int16_t; typedef uint8_t u_int8_t; #endif typedef u_int64_t u64; typedef u_int32_t u32; typedef u_int16_t u16; typedef u_int8_t u8; typedef u32 block_t; typedef u32 nid_t; #ifndef bool typedef u8 bool; #endif typedef unsigned long pgoff_t; typedef unsigned short umode_t; #ifndef HAVE_LINUX_TYPES_H typedef u8 __u8; typedef u16 __u16; typedef u32 __u32; typedef u64 __u64; typedef u16 __le16; typedef u32 __le32; typedef u64 __le64; typedef u16 __be16; typedef u32 __be32; typedef u64 __be64; #endif #if HAVE_BYTESWAP_H #include #else /** * bswap_16 - reverse bytes in a uint16_t value. * @val: value whose bytes to swap. * * Example: * // Output contains "1024 is 4 as two bytes reversed" * printf("1024 is %u as two bytes reversed\n", bswap_16(1024)); */ static inline uint16_t bswap_16(uint16_t val) { return ((val & (uint16_t)0x00ffU) << 8) | ((val & (uint16_t)0xff00U) >> 8); } /** * bswap_32 - reverse bytes in a uint32_t value. * @val: value whose bytes to swap. * * Example: * // Output contains "1024 is 262144 as four bytes reversed" * printf("1024 is %u as four bytes reversed\n", bswap_32(1024)); */ static inline uint32_t bswap_32(uint32_t val) { return ((val & (uint32_t)0x000000ffUL) << 24) | ((val & (uint32_t)0x0000ff00UL) << 8) | ((val & (uint32_t)0x00ff0000UL) >> 8) | ((val & (uint32_t)0xff000000UL) >> 24); } #endif /* !HAVE_BYTESWAP_H */ #if defined HAVE_DECL_BSWAP_64 && !HAVE_DECL_BSWAP_64 /** * bswap_64 - reverse bytes in a uint64_t value. * @val: value whose bytes to swap. * * Example: * // Output contains "1024 is 1125899906842624 as eight bytes reversed" * printf("1024 is %llu as eight bytes reversed\n", * (unsigned long long)bswap_64(1024)); */ static inline uint64_t bswap_64(uint64_t val) { return ((val & (uint64_t)0x00000000000000ffULL) << 56) | ((val & (uint64_t)0x000000000000ff00ULL) << 40) | ((val & (uint64_t)0x0000000000ff0000ULL) << 24) | ((val & (uint64_t)0x00000000ff000000ULL) << 8) | ((val & (uint64_t)0x000000ff00000000ULL) >> 8) | ((val & (uint64_t)0x0000ff0000000000ULL) >> 24) | ((val & (uint64_t)0x00ff000000000000ULL) >> 40) | ((val & (uint64_t)0xff00000000000000ULL) >> 56); } #endif #if __BYTE_ORDER == __LITTLE_ENDIAN #define le16_to_cpu(x) ((__u16)(x)) #define le32_to_cpu(x) ((__u32)(x)) #define le64_to_cpu(x) ((__u64)(x)) #define cpu_to_le16(x) ((__u16)(x)) #define cpu_to_le32(x) ((__u32)(x)) #define cpu_to_le64(x) ((__u64)(x)) #elif __BYTE_ORDER == __BIG_ENDIAN #define le16_to_cpu(x) bswap_16(x) #define le32_to_cpu(x) bswap_32(x) #define le64_to_cpu(x) bswap_64(x) #define cpu_to_le16(x) bswap_16(x) #define cpu_to_le32(x) bswap_32(x) #define cpu_to_le64(x) bswap_64(x) #endif #define typecheck(type,x) \ ({ type __dummy; \ typeof(x) __dummy2; \ (void)(&__dummy == &__dummy2); \ 1; \ }) #define NULL_SEGNO ((unsigned int)~0) /* * Debugging interfaces */ #define FIX_MSG(fmt, ...) \ do { \ printf("[FIX] (%s:%4d) ", __func__, __LINE__); \ printf(" --> "fmt"\n", ##__VA_ARGS__); \ } while (0) #define ASSERT_MSG(fmt, ...) \ do { \ printf("[ASSERT] (%s:%4d) ", __func__, __LINE__); \ printf(" --> "fmt"\n", ##__VA_ARGS__); \ c.bug_on = 1; \ } while (0) #define ASSERT(exp) \ do { \ if (!(exp)) { \ printf("[ASSERT] (%s:%4d) " #exp"\n", \ __func__, __LINE__); \ exit(-1); \ } \ } while (0) #define ERR_MSG(fmt, ...) \ do { \ printf("[%s:%d] " fmt, __func__, __LINE__, ##__VA_ARGS__); \ } while (0) #define MSG(n, fmt, ...) \ do { \ if (c.dbg_lv >= n) { \ printf(fmt, ##__VA_ARGS__); \ } \ } while (0) #define DBG(n, fmt, ...) \ do { \ if (c.dbg_lv >= n) { \ printf("[%s:%4d] " fmt, \ __func__, __LINE__, ##__VA_ARGS__); \ } \ } while (0) /* Display on console */ #define DISP(fmt, ptr, member) \ do { \ printf("%-30s" fmt, #member, ((ptr)->member)); \ } while (0) #define DISP_u16(ptr, member) \ do { \ assert(sizeof((ptr)->member) == 2); \ printf("%-30s" "\t\t[0x%8x : %u]\n", \ #member, le16_to_cpu(((ptr)->member)), \ le16_to_cpu(((ptr)->member))); \ } while (0) #define DISP_u32(ptr, member) \ do { \ assert(sizeof((ptr)->member) <= 4); \ printf("%-30s" "\t\t[0x%8x : %u]\n", \ #member, le32_to_cpu(((ptr)->member)), \ le32_to_cpu(((ptr)->member))); \ } while (0) #define DISP_u64(ptr, member) \ do { \ assert(sizeof((ptr)->member) == 8); \ printf("%-30s" "\t\t[0x%8llx : %llu]\n", \ #member, le64_to_cpu(((ptr)->member)), \ le64_to_cpu(((ptr)->member))); \ } while (0) #define DISP_utf(ptr, member) \ do { \ printf("%-30s" "\t\t[%s]\n", #member, ((ptr)->member)); \ } while (0) /* Display to buffer */ #define BUF_DISP_u32(buf, data, len, ptr, member) \ do { \ assert(sizeof((ptr)->member) <= 4); \ snprintf(buf, len, #member); \ snprintf(data, len, "0x%x : %u", ((ptr)->member), \ ((ptr)->member)); \ } while (0) #define BUF_DISP_u64(buf, data, len, ptr, member) \ do { \ assert(sizeof((ptr)->member) == 8); \ snprintf(buf, len, #member); \ snprintf(data, len, "0x%llx : %llu", ((ptr)->member), \ ((ptr)->member)); \ } while (0) #define BUF_DISP_utf(buf, data, len, ptr, member) \ snprintf(buf, len, #member) /* these are defined in kernel */ #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif #define PAGE_CACHE_SIZE 4096 #define BITS_PER_BYTE 8 #define F2FS_SUPER_MAGIC 0xF2F52010 /* F2FS Magic Number */ #define CHECKSUM_OFFSET 4092 #define MAX_PATH_LEN 64 #define MAX_DEVICES 8 #define F2FS_BYTES_TO_BLK(bytes) ((bytes) >> F2FS_BLKSIZE_BITS) #define F2FS_BLKSIZE_BITS 12 /* for mkfs */ #define F2FS_NUMBER_OF_CHECKPOINT_PACK 2 #define DEFAULT_SECTOR_SIZE 512 #define DEFAULT_SECTORS_PER_BLOCK 8 #define DEFAULT_BLOCKS_PER_SEGMENT 512 #define DEFAULT_SEGMENTS_PER_SECTION 1 #define VERSION_LEN 256 enum f2fs_config_func { MKFS, FSCK, DUMP, DEFRAG, RESIZE, SLOAD, }; struct device_info { char *path; int32_t fd; u_int32_t sector_size; u_int64_t total_sectors; /* got by get_device_info */ u_int64_t start_blkaddr; u_int64_t end_blkaddr; u_int32_t total_segments; /* to handle zone block devices */ int zoned_model; u_int32_t nr_zones; u_int32_t nr_rnd_zones; size_t zone_blocks; }; struct f2fs_configuration { u_int32_t reserved_segments; u_int32_t new_reserved_segments; int sparse_mode; int zoned_mode; int zoned_model; size_t zone_blocks; double overprovision; double new_overprovision; u_int32_t cur_seg[6]; u_int32_t segs_per_sec; u_int32_t secs_per_zone; u_int32_t segs_per_zone; u_int32_t start_sector; u_int32_t total_segments; u_int32_t sector_size; u_int64_t device_size; u_int64_t total_sectors; u_int64_t wanted_total_sectors; u_int64_t wanted_sector_size; u_int64_t target_sectors; u_int32_t sectors_per_blk; u_int32_t blks_per_seg; __u8 init_version[VERSION_LEN + 1]; __u8 sb_version[VERSION_LEN + 1]; __u8 version[VERSION_LEN + 1]; char *vol_label; int heap; int32_t kd; int32_t dump_fd; struct device_info devices[MAX_DEVICES]; int ndevs; char *extension_list; const char *rootdev_name; int dbg_lv; int show_dentry; int trim; int trimmed; int func; void *private; int dry_run; int fix_on; int bug_on; int auto_fix; int preen_mode; int ro; int preserve_limits; /* preserve quota limits */ __le32 feature; /* defined features */ /* defragmentation parameters */ int defrag_shrink; u_int64_t defrag_start; u_int64_t defrag_len; u_int64_t defrag_target; /* sload parameters */ char *from_dir; char *mount_point; char *target_out_dir; char *fs_config_file; time_t fixed_time; #ifdef HAVE_LIBSELINUX struct selinux_opt seopt_file[8]; int nr_opt; #endif /* precomputed fs UUID checksum for seeding other checksums */ u_int32_t chksum_seed; }; #ifdef CONFIG_64BIT #define BITS_PER_LONG 64 #else #define BITS_PER_LONG 32 #endif #define BIT_MASK(nr) (1 << (nr % BITS_PER_LONG)) #define BIT_WORD(nr) (nr / BITS_PER_LONG) #define set_sb_le64(member, val) (sb->member = cpu_to_le64(val)) #define set_sb_le32(member, val) (sb->member = cpu_to_le32(val)) #define set_sb_le16(member, val) (sb->member = cpu_to_le16(val)) #define get_sb_le64(member) le64_to_cpu(sb->member) #define get_sb_le32(member) le32_to_cpu(sb->member) #define get_sb_le16(member) le16_to_cpu(sb->member) #define get_newsb_le64(member) le64_to_cpu(new_sb->member) #define get_newsb_le32(member) le32_to_cpu(new_sb->member) #define get_newsb_le16(member) le16_to_cpu(new_sb->member) #define set_sb(member, val) \ do { \ typeof(sb->member) t; \ switch (sizeof(t)) { \ case 8: set_sb_le64(member, val); break; \ case 4: set_sb_le32(member, val); break; \ case 2: set_sb_le16(member, val); break; \ } \ } while(0) #define get_sb(member) \ ({ \ typeof(sb->member) t; \ switch (sizeof(t)) { \ case 8: t = get_sb_le64(member); break; \ case 4: t = get_sb_le32(member); break; \ case 2: t = get_sb_le16(member); break; \ } \ t; \ }) #define get_newsb(member) \ ({ \ typeof(new_sb->member) t; \ switch (sizeof(t)) { \ case 8: t = get_newsb_le64(member); break; \ case 4: t = get_newsb_le32(member); break; \ case 2: t = get_newsb_le16(member); break; \ } \ t; \ }) #define set_cp_le64(member, val) (cp->member = cpu_to_le64(val)) #define set_cp_le32(member, val) (cp->member = cpu_to_le32(val)) #define set_cp_le16(member, val) (cp->member = cpu_to_le16(val)) #define get_cp_le64(member) le64_to_cpu(cp->member) #define get_cp_le32(member) le32_to_cpu(cp->member) #define get_cp_le16(member) le16_to_cpu(cp->member) #define set_cp(member, val) \ do { \ typeof(cp->member) t; \ switch (sizeof(t)) { \ case 8: set_cp_le64(member, val); break; \ case 4: set_cp_le32(member, val); break; \ case 2: set_cp_le16(member, val); break; \ } \ } while(0) #define get_cp(member) \ ({ \ typeof(cp->member) t; \ switch (sizeof(t)) { \ case 8: t = get_cp_le64(member); break; \ case 4: t = get_cp_le32(member); break; \ case 2: t = get_cp_le16(member); break; \ } \ t; \ }) /* * Copied from include/linux/kernel.h */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; }) /* * Copied from fs/f2fs/f2fs.h */ #define NR_CURSEG_DATA_TYPE (3) #define NR_CURSEG_NODE_TYPE (3) #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) enum { CURSEG_HOT_DATA = 0, /* directory entry blocks */ CURSEG_WARM_DATA, /* data blocks */ CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ CURSEG_HOT_NODE, /* direct node blocks of directory files */ CURSEG_WARM_NODE, /* direct node blocks of normal files */ CURSEG_COLD_NODE, /* indirect node blocks */ NO_CHECK_TYPE }; #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ /* * Copied from fs/f2fs/segment.h */ #define GET_SUM_TYPE(footer) ((footer)->entry_type) #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) /* * Copied from include/linux/f2fs_sb.h */ #define F2FS_SUPER_OFFSET 1024 /* byte-size offset */ #define F2FS_MIN_LOG_SECTOR_SIZE 9 /* 9 bits for 512 bytes */ #define F2FS_MAX_LOG_SECTOR_SIZE 12 /* 12 bits for 4096 bytes */ #define F2FS_BLKSIZE 4096 /* support only 4KB block */ #define F2FS_MAX_EXTENSION 64 /* # of extension entries */ #define F2FS_BLK_ALIGN(x) (((x) + F2FS_BLKSIZE - 1) / F2FS_BLKSIZE) #define NULL_ADDR 0x0U #define NEW_ADDR -1U #define F2FS_ROOT_INO(sbi) (sbi->root_ino_num) #define F2FS_NODE_INO(sbi) (sbi->node_ino_num) #define F2FS_META_INO(sbi) (sbi->meta_ino_num) #define F2FS_MAX_QUOTAS 3 #define QUOTA_DATA(i) (2) #define QUOTA_INO(sb,t) (le32_to_cpu((sb)->qf_ino[t])) #define FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ /* This flag is used by node and meta inodes, and by recovery */ #define GFP_F2FS_ZERO (GFP_NOFS | __GFP_ZERO) /* * For further optimization on multi-head logs, on-disk layout supports maximum * 16 logs by default. The number, 16, is expected to cover all the cases * enoughly. The implementaion currently uses no more than 6 logs. * Half the logs are used for nodes, and the other half are used for data. */ #define MAX_ACTIVE_LOGS 16 #define MAX_ACTIVE_NODE_LOGS 8 #define MAX_ACTIVE_DATA_LOGS 8 #define F2FS_FEATURE_ENCRYPT 0x0001 #define F2FS_FEATURE_BLKZONED 0x0002 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 #define F2FS_FEATURE_PRJQUOTA 0x0010 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 #define F2FS_FEATURE_QUOTA_INO 0x0080 #define F2FS_FEATURE_INODE_CRTIME 0x0100 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ #define MAX_VOLUME_NAME 512 /* * For superblock */ #pragma pack(push, 1) struct f2fs_device { __u8 path[MAX_PATH_LEN]; __le32 total_segments; } __attribute__((packed)); struct f2fs_super_block { __le32 magic; /* Magic Number */ __le16 major_ver; /* Major Version */ __le16 minor_ver; /* Minor Version */ __le32 log_sectorsize; /* log2 sector size in bytes */ __le32 log_sectors_per_block; /* log2 # of sectors per block */ __le32 log_blocksize; /* log2 block size in bytes */ __le32 log_blocks_per_seg; /* log2 # of blocks per segment */ __le32 segs_per_sec; /* # of segments per section */ __le32 secs_per_zone; /* # of sections per zone */ __le32 checksum_offset; /* checksum offset inside super block */ __le64 block_count; /* total # of user blocks */ __le32 section_count; /* total # of sections */ __le32 segment_count; /* total # of segments */ __le32 segment_count_ckpt; /* # of segments for checkpoint */ __le32 segment_count_sit; /* # of segments for SIT */ __le32 segment_count_nat; /* # of segments for NAT */ __le32 segment_count_ssa; /* # of segments for SSA */ __le32 segment_count_main; /* # of segments for main area */ __le32 segment0_blkaddr; /* start block address of segment 0 */ __le32 cp_blkaddr; /* start block address of checkpoint */ __le32 sit_blkaddr; /* start block address of SIT */ __le32 nat_blkaddr; /* start block address of NAT */ __le32 ssa_blkaddr; /* start block address of SSA */ __le32 main_blkaddr; /* start block address of main area */ __le32 root_ino; /* root inode number */ __le32 node_ino; /* node inode number */ __le32 meta_ino; /* meta inode number */ __u8 uuid[16]; /* 128-bit uuid for volume */ __le16 volume_name[MAX_VOLUME_NAME]; /* volume name */ __le32 extension_count; /* # of extensions below */ __u8 extension_list[F2FS_MAX_EXTENSION][8]; /* extension array */ __le32 cp_payload; __u8 version[VERSION_LEN]; /* the kernel version */ __u8 init_version[VERSION_LEN]; /* the initial kernel version */ __le32 feature; /* defined features */ __u8 encryption_level; /* versioning level for encryption */ __u8 encrypt_pw_salt[16]; /* Salt used for string2key algorithm */ struct f2fs_device devs[MAX_DEVICES]; /* device list */ __le32 qf_ino[F2FS_MAX_QUOTAS]; /* quota inode numbers */ __u8 reserved[315]; /* valid reserved region */ } __attribute__((packed)); /* * For checkpoint */ #define CP_NOCRC_RECOVERY_FLAG 0x00000200 #define CP_TRIMMED_FLAG 0x00000100 #define CP_NAT_BITS_FLAG 0x00000080 #define CP_CRC_RECOVERY_FLAG 0x00000040 #define CP_FASTBOOT_FLAG 0x00000020 #define CP_FSCK_FLAG 0x00000010 #define CP_ERROR_FLAG 0x00000008 #define CP_COMPACT_SUM_FLAG 0x00000004 #define CP_ORPHAN_PRESENT_FLAG 0x00000002 #define CP_UMOUNT_FLAG 0x00000001 struct f2fs_checkpoint { __le64 checkpoint_ver; /* checkpoint block version number */ __le64 user_block_count; /* # of user blocks */ __le64 valid_block_count; /* # of valid blocks in main area */ __le32 rsvd_segment_count; /* # of reserved segments for gc */ __le32 overprov_segment_count; /* # of overprovision segments */ __le32 free_segment_count; /* # of free segments in main area */ /* information of current node segments */ __le32 cur_node_segno[MAX_ACTIVE_NODE_LOGS]; __le16 cur_node_blkoff[MAX_ACTIVE_NODE_LOGS]; /* information of current data segments */ __le32 cur_data_segno[MAX_ACTIVE_DATA_LOGS]; __le16 cur_data_blkoff[MAX_ACTIVE_DATA_LOGS]; __le32 ckpt_flags; /* Flags : umount and journal_present */ __le32 cp_pack_total_block_count; /* total # of one cp pack */ __le32 cp_pack_start_sum; /* start block number of data summary */ __le32 valid_node_count; /* Total number of valid nodes */ __le32 valid_inode_count; /* Total number of valid inodes */ __le32 next_free_nid; /* Next free node number */ __le32 sit_ver_bitmap_bytesize; /* Default value 64 */ __le32 nat_ver_bitmap_bytesize; /* Default value 256 */ __le32 checksum_offset; /* checksum offset inside cp block */ __le64 elapsed_time; /* mounted time */ /* allocation type of current segment */ unsigned char alloc_type[MAX_ACTIVE_LOGS]; /* SIT and NAT version bitmap */ unsigned char sit_nat_version_bitmap[1]; } __attribute__((packed)); #define MAX_SIT_BITMAP_SIZE_IN_CKPT \ (CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1 - 64) /* * For orphan inode management */ #define F2FS_ORPHANS_PER_BLOCK 1020 struct f2fs_orphan_block { __le32 ino[F2FS_ORPHANS_PER_BLOCK]; /* inode numbers */ __le32 reserved; /* reserved */ __le16 blk_addr; /* block index in current CP */ __le16 blk_count; /* Number of orphan inode blocks in CP */ __le32 entry_count; /* Total number of orphan nodes in current CP */ __le32 check_sum; /* CRC32 for orphan inode block */ } __attribute__((packed)); /* * For NODE structure */ struct f2fs_extent { __le32 fofs; /* start file offset of the extent */ __le32 blk_addr; /* start block address of the extent */ __le32 len; /* lengh of the extent */ } __attribute__((packed)); #define F2FS_NAME_LEN 255 /* 200 bytes for inline xattrs by default */ #define DEFAULT_INLINE_XATTR_ADDRS 50 #define DEF_ADDRS_PER_INODE 923 /* Address Pointers in an Inode */ #define CUR_ADDRS_PER_INODE(inode) (DEF_ADDRS_PER_INODE - \ __get_extra_isize(inode)) #define ADDRS_PER_INODE(i) addrs_per_inode(i) #define ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */ #define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */ #define NODE_DIR1_BLOCK (DEF_ADDRS_PER_INODE + 1) #define NODE_DIR2_BLOCK (DEF_ADDRS_PER_INODE + 2) #define NODE_IND1_BLOCK (DEF_ADDRS_PER_INODE + 3) #define NODE_IND2_BLOCK (DEF_ADDRS_PER_INODE + 4) #define NODE_DIND_BLOCK (DEF_ADDRS_PER_INODE + 5) #define F2FS_INLINE_XATTR 0x01 /* file inline xattr flag */ #define F2FS_INLINE_DATA 0x02 /* file inline data flag */ #define F2FS_INLINE_DENTRY 0x04 /* file inline dentry flag */ #define F2FS_DATA_EXIST 0x08 /* file inline data exist flag */ #define F2FS_INLINE_DOTS 0x10 /* file having implicit dot dentries */ #define F2FS_EXTRA_ATTR 0x20 /* file having extra attribute */ #if !defined(offsetof) #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) #endif #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ (offsetof(struct f2fs_inode, i_extra_end) - \ offsetof(struct f2fs_inode, i_extra_isize)) \ #define F2FS_DEF_PROJID 0 /* default project ID */ #define MAX_INLINE_DATA(node) (sizeof(__le32) * \ (DEF_ADDRS_PER_INODE - \ get_inline_xattr_addrs(&node->i) - \ get_extra_isize(node) - \ DEF_INLINE_RESERVED_SIZE)) #define DEF_MAX_INLINE_DATA (sizeof(__le32) * \ (DEF_ADDRS_PER_INODE - \ DEFAULT_INLINE_XATTR_ADDRS - \ F2FS_TOTAL_EXTRA_ATTR_SIZE - \ DEF_INLINE_RESERVED_SIZE)) #define INLINE_DATA_OFFSET (PAGE_CACHE_SIZE - sizeof(struct node_footer) \ - sizeof(__le32)*(DEF_ADDRS_PER_INODE + 5 - \ DEF_INLINE_RESERVED_SIZE)) #define DEF_DIR_LEVEL 0 /* * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. */ #define FADVISE_COLD_BIT 0x01 #define FADVISE_LOST_PINO_BIT 0x02 #define FADVISE_ENCRYPT_BIT 0x04 #define FADVISE_ENC_NAME_BIT 0x08 #define FADVISE_KEEP_SIZE_BIT 0x10 #define FADVISE_HOT_BIT 0x20 #define FADVISE_VERITY_BIT 0x40 /* reserved */ #define file_is_encrypt(fi) ((fi)->i_advise & FADVISE_ENCRYPT_BIT) #define file_enc_name(fi) ((fi)->i_advise & FADVISE_ENC_NAME_BIT) struct f2fs_inode { __le16 i_mode; /* file mode */ __u8 i_advise; /* file hints */ __u8 i_inline; /* file inline flags */ __le32 i_uid; /* user ID */ __le32 i_gid; /* group ID */ __le32 i_links; /* links count */ __le64 i_size; /* file size in bytes */ __le64 i_blocks; /* file size in blocks */ __le64 i_atime; /* access time */ __le64 i_ctime; /* change time */ __le64 i_mtime; /* modification time */ __le32 i_atime_nsec; /* access time in nano scale */ __le32 i_ctime_nsec; /* change time in nano scale */ __le32 i_mtime_nsec; /* modification time in nano scale */ __le32 i_generation; /* file version (for NFS) */ __le32 i_current_depth; /* only for directory depth */ __le32 i_xattr_nid; /* nid to save xattr */ __le32 i_flags; /* file attributes */ __le32 i_pino; /* parent inode number */ __le32 i_namelen; /* file name length */ __u8 i_name[F2FS_NAME_LEN]; /* file name for SPOR */ __u8 i_dir_level; /* dentry_level for large dir */ struct f2fs_extent i_ext; /* caching a largest extent */ union { struct { __le16 i_extra_isize; /* extra inode attribute size */ __le16 i_inline_xattr_size; /* inline xattr size, unit: 4 bytes */ __le32 i_projid; /* project id */ __le32 i_inode_checksum;/* inode meta checksum */ __le64 i_crtime; /* creation time */ __le32 i_crtime_nsec; /* creation time in nano scale */ __le32 i_extra_end[0]; /* for attribute size calculation */ } __attribute__((packed)); __le32 i_addr[DEF_ADDRS_PER_INODE]; /* Pointers to data blocks */ }; __le32 i_nid[5]; /* direct(2), indirect(2), double_indirect(1) node id */ } __attribute__((packed)); struct direct_node { __le32 addr[ADDRS_PER_BLOCK]; /* array of data block address */ } __attribute__((packed)); struct indirect_node { __le32 nid[NIDS_PER_BLOCK]; /* array of data block address */ } __attribute__((packed)); enum { COLD_BIT_SHIFT = 0, FSYNC_BIT_SHIFT, DENT_BIT_SHIFT, OFFSET_BIT_SHIFT }; #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ >> OFFSET_BIT_SHIFT) struct node_footer { __le32 nid; /* node id */ __le32 ino; /* inode nunmber */ __le32 flag; /* include cold/fsync/dentry marks and offset */ __le64 cp_ver; /* checkpoint version */ __le32 next_blkaddr; /* next node page block address */ } __attribute__((packed)); struct f2fs_node { /* can be one of three types: inode, direct, and indirect types */ union { struct f2fs_inode i; struct direct_node dn; struct indirect_node in; }; struct node_footer footer; } __attribute__((packed)); /* * For NAT entries */ #define NAT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_nat_entry)) #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) struct f2fs_nat_entry { __u8 version; /* latest version of cached nat entry */ __le32 ino; /* inode number */ __le32 block_addr; /* block address */ } __attribute__((packed)); struct f2fs_nat_block { struct f2fs_nat_entry entries[NAT_ENTRY_PER_BLOCK]; } __attribute__((packed)); /* * For SIT entries * * Each segment is 2MB in size by default so that a bitmap for validity of * there-in blocks should occupy 64 bytes, 512 bits. * Not allow to change this. */ #define SIT_VBLOCK_MAP_SIZE 64 #define SIT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_sit_entry)) /* * F2FS uses 4 bytes to represent block address. As a result, supported size of * disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments. */ #define F2FS_MAX_SEGMENT ((16 * 1024 * 1024) / 2) #define MAX_SIT_BITMAP_SIZE (SEG_ALIGN(SIZE_ALIGN(F2FS_MAX_SEGMENT, \ SIT_ENTRY_PER_BLOCK)) * \ c.blks_per_seg / 8) /* * Note that f2fs_sit_entry->vblocks has the following bit-field information. * [15:10] : allocation type such as CURSEG_XXXX_TYPE * [9:0] : valid block count */ #define SIT_VBLOCKS_SHIFT 10 #define SIT_VBLOCKS_MASK ((1 << SIT_VBLOCKS_SHIFT) - 1) #define GET_SIT_VBLOCKS(raw_sit) \ (le16_to_cpu((raw_sit)->vblocks) & SIT_VBLOCKS_MASK) #define GET_SIT_TYPE(raw_sit) \ ((le16_to_cpu((raw_sit)->vblocks) & ~SIT_VBLOCKS_MASK) \ >> SIT_VBLOCKS_SHIFT) struct f2fs_sit_entry { __le16 vblocks; /* reference above */ __u8 valid_map[SIT_VBLOCK_MAP_SIZE]; /* bitmap for valid blocks */ __le64 mtime; /* segment age for cleaning */ } __attribute__((packed)); struct f2fs_sit_block { struct f2fs_sit_entry entries[SIT_ENTRY_PER_BLOCK]; } __attribute__((packed)); /* * For segment summary * * One summary block contains exactly 512 summary entries, which represents * exactly 2MB segment by default. Not allow to change the basic units. * * NOTE: For initializing fields, you must use set_summary * * - If data page, nid represents dnode's nid * - If node page, nid represents the node page's nid. * * The ofs_in_node is used by only data page. It represents offset * from node's page's beginning to get a data block address. * ex) data_blkaddr = (block_t)(nodepage_start_address + ofs_in_node) */ #define ENTRIES_IN_SUM 512 #define SUMMARY_SIZE (7) /* sizeof(struct summary) */ #define SUM_FOOTER_SIZE (5) /* sizeof(struct summary_footer) */ #define SUM_ENTRIES_SIZE (SUMMARY_SIZE * ENTRIES_IN_SUM) /* a summary entry for a 4KB-sized block in a segment */ struct f2fs_summary { __le32 nid; /* parent node id */ union { __u8 reserved[3]; struct { __u8 version; /* node version number */ __le16 ofs_in_node; /* block index in parent node */ } __attribute__((packed)); }; } __attribute__((packed)); /* summary block type, node or data, is stored to the summary_footer */ #define SUM_TYPE_NODE (1) #define SUM_TYPE_DATA (0) struct summary_footer { unsigned char entry_type; /* SUM_TYPE_XXX */ __le32 check_sum; /* summary checksum */ } __attribute__((packed)); #define SUM_JOURNAL_SIZE (F2FS_BLKSIZE - SUM_FOOTER_SIZE -\ SUM_ENTRIES_SIZE) #define NAT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\ sizeof(struct nat_journal_entry)) #define NAT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\ sizeof(struct nat_journal_entry)) #define SIT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\ sizeof(struct sit_journal_entry)) #define SIT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\ sizeof(struct sit_journal_entry)) /* * Reserved area should make size of f2fs_extra_info equals to * that of nat_journal and sit_journal. */ #define EXTRA_INFO_RESERVED (SUM_JOURNAL_SIZE - 2 - 8) /* * frequently updated NAT/SIT entries can be stored in the spare area in * summary blocks */ enum { NAT_JOURNAL = 0, SIT_JOURNAL }; struct nat_journal_entry { __le32 nid; struct f2fs_nat_entry ne; } __attribute__((packed)); struct nat_journal { struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES]; __u8 reserved[NAT_JOURNAL_RESERVED]; } __attribute__((packed)); struct sit_journal_entry { __le32 segno; struct f2fs_sit_entry se; } __attribute__((packed)); struct sit_journal { struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES]; __u8 reserved[SIT_JOURNAL_RESERVED]; } __attribute__((packed)); struct f2fs_extra_info { __le64 kbytes_written; __u8 reserved[EXTRA_INFO_RESERVED]; } __attribute__((packed)); struct f2fs_journal { union { __le16 n_nats; __le16 n_sits; }; /* spare area is used by NAT or SIT journals or extra info */ union { struct nat_journal nat_j; struct sit_journal sit_j; struct f2fs_extra_info info; }; } __attribute__((packed)); /* 4KB-sized summary block structure */ struct f2fs_summary_block { struct f2fs_summary entries[ENTRIES_IN_SUM]; struct f2fs_journal journal; struct summary_footer footer; } __attribute__((packed)); /* * For directory operations */ #define F2FS_DOT_HASH 0 #define F2FS_DDOT_HASH F2FS_DOT_HASH #define F2FS_MAX_HASH (~((0x3ULL) << 62)) #define F2FS_HASH_COL_BIT ((0x1ULL) << 63) typedef __le32 f2fs_hash_t; /* One directory entry slot covers 8bytes-long file name */ #define F2FS_SLOT_LEN 8 #define F2FS_SLOT_LEN_BITS 3 #define GET_DENTRY_SLOTS(x) ((x + F2FS_SLOT_LEN - 1) >> F2FS_SLOT_LEN_BITS) /* the number of dentry in a block */ #define NR_DENTRY_IN_BLOCK 214 /* MAX level for dir lookup */ #define MAX_DIR_HASH_DEPTH 63 /* MAX buckets in one level of dir */ #define MAX_DIR_BUCKETS (1 << ((MAX_DIR_HASH_DEPTH / 2) - 1)) #define SIZE_OF_DIR_ENTRY 11 /* by byte */ #define SIZE_OF_DENTRY_BITMAP ((NR_DENTRY_IN_BLOCK + BITS_PER_BYTE - 1) / \ BITS_PER_BYTE) #define SIZE_OF_RESERVED (PAGE_SIZE - ((SIZE_OF_DIR_ENTRY + \ F2FS_SLOT_LEN) * \ NR_DENTRY_IN_BLOCK + SIZE_OF_DENTRY_BITMAP)) /* One directory entry slot representing F2FS_SLOT_LEN-sized file name */ struct f2fs_dir_entry { __le32 hash_code; /* hash code of file name */ __le32 ino; /* inode number */ __le16 name_len; /* lengh of file name */ __u8 file_type; /* file type */ } __attribute__((packed)); /* 4KB-sized directory entry block */ struct f2fs_dentry_block { /* validity bitmap for directory entries in each block */ __u8 dentry_bitmap[SIZE_OF_DENTRY_BITMAP]; __u8 reserved[SIZE_OF_RESERVED]; struct f2fs_dir_entry dentry[NR_DENTRY_IN_BLOCK]; __u8 filename[NR_DENTRY_IN_BLOCK][F2FS_SLOT_LEN]; } __attribute__((packed)); #pragma pack(pop) /* for inline stuff */ #define DEF_INLINE_RESERVED_SIZE 1 /* for inline dir */ #define NR_INLINE_DENTRY(node) (MAX_INLINE_DATA(node) * BITS_PER_BYTE / \ ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ BITS_PER_BYTE + 1)) #define INLINE_DENTRY_BITMAP_SIZE(node) ((NR_INLINE_DENTRY(node) + \ BITS_PER_BYTE - 1) / BITS_PER_BYTE) #define INLINE_RESERVED_SIZE(node) (MAX_INLINE_DATA(node) - \ ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ NR_INLINE_DENTRY(node) + \ INLINE_DENTRY_BITMAP_SIZE(node))) /* file types used in inode_info->flags */ enum FILE_TYPE { F2FS_FT_UNKNOWN, F2FS_FT_REG_FILE, F2FS_FT_DIR, F2FS_FT_CHRDEV, F2FS_FT_BLKDEV, F2FS_FT_FIFO, F2FS_FT_SOCK, F2FS_FT_SYMLINK, F2FS_FT_MAX, /* added for fsck */ F2FS_FT_ORPHAN, F2FS_FT_XATTR, F2FS_FT_LAST_FILE_TYPE = F2FS_FT_XATTR, }; /* from f2fs/segment.h */ enum { LFS = 0, SSR }; extern int utf8_to_utf16(u_int16_t *, const char *, size_t, size_t); extern int utf16_to_utf8(char *, const u_int16_t *, size_t, size_t); extern int log_base_2(u_int32_t); extern unsigned int addrs_per_inode(struct f2fs_inode *); extern __u32 f2fs_inode_chksum(struct f2fs_node *); extern int get_bits_in_byte(unsigned char n); extern int test_and_set_bit_le(u32, u8 *); extern int test_and_clear_bit_le(u32, u8 *); extern int test_bit_le(u32, const u8 *); extern int f2fs_test_bit(unsigned int, const char *); extern int f2fs_set_bit(unsigned int, char *); extern int f2fs_clear_bit(unsigned int, char *); extern u64 find_next_bit_le(const u8 *, u64, u64); extern u64 find_next_zero_bit_le(const u8 *, u64, u64); extern u_int32_t f2fs_cal_crc32(u_int32_t, void *, int); extern int f2fs_crc_valid(u_int32_t blk_crc, void *buf, int len); extern void f2fs_init_configuration(void); extern int f2fs_devs_are_umounted(void); extern int f2fs_dev_is_umounted(char *); extern int f2fs_get_device_info(void); extern int get_device_info(int); extern int f2fs_init_sparse_file(void); extern int f2fs_finalize_device(void); extern int f2fs_fsync_device(void); extern int dev_read(void *, __u64, size_t); extern int dev_write(void *, __u64, size_t); extern int dev_write_block(void *, __u64); extern int dev_write_dump(void *, __u64, size_t); /* All bytes in the buffer must be 0 use dev_fill(). */ extern int dev_fill(void *, __u64, size_t); extern int dev_fill_block(void *, __u64); extern int dev_read_block(void *, __u64); extern int dev_reada_block(__u64); extern int dev_read_version(void *, __u64, size_t); extern void get_kernel_version(__u8 *); extern void get_kernel_uname_version(__u8 *); f2fs_hash_t f2fs_dentry_hash(const unsigned char *, int); static inline bool f2fs_has_extra_isize(struct f2fs_inode *inode) { return (inode->i_inline & F2FS_EXTRA_ATTR); } static inline int __get_extra_isize(struct f2fs_inode *inode) { if (f2fs_has_extra_isize(inode)) return le16_to_cpu(inode->i_extra_isize) / sizeof(__le32); return 0; } extern struct f2fs_configuration c; static inline int get_inline_xattr_addrs(struct f2fs_inode *inode) { if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) return le16_to_cpu(inode->i_inline_xattr_size); else if (inode->i_inline & F2FS_INLINE_XATTR || inode->i_inline & F2FS_INLINE_DENTRY) return DEFAULT_INLINE_XATTR_ADDRS; else return 0; } #define get_extra_isize(node) __get_extra_isize(&node->i) #define F2FS_ZONED_NONE 0 #define F2FS_ZONED_HA 1 #define F2FS_ZONED_HM 2 #ifdef HAVE_LINUX_BLKZONED_H #define blk_zone_type(z) (z)->type #define blk_zone_conv(z) ((z)->type == BLK_ZONE_TYPE_CONVENTIONAL) #define blk_zone_seq_req(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_REQ) #define blk_zone_seq_pref(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_PREF) #define blk_zone_seq(z) (blk_zone_seq_req(z) || blk_zone_seq_pref(z)) static inline const char * blk_zone_type_str(struct blk_zone *blkz) { switch (blk_zone_type(blkz)) { case BLK_ZONE_TYPE_CONVENTIONAL: return( "Conventional" ); case BLK_ZONE_TYPE_SEQWRITE_REQ: return( "Sequential-write-required" ); case BLK_ZONE_TYPE_SEQWRITE_PREF: return( "Sequential-write-preferred" ); } return( "Unknown-type" ); } #define blk_zone_cond(z) (z)->cond static inline const char * blk_zone_cond_str(struct blk_zone *blkz) { switch (blk_zone_cond(blkz)) { case BLK_ZONE_COND_NOT_WP: return "Not-write-pointer"; case BLK_ZONE_COND_EMPTY: return "Empty"; case BLK_ZONE_COND_IMP_OPEN: return "Implicit-open"; case BLK_ZONE_COND_EXP_OPEN: return "Explicit-open"; case BLK_ZONE_COND_CLOSED: return "Closed"; case BLK_ZONE_COND_READONLY: return "Read-only"; case BLK_ZONE_COND_FULL: return "Full"; case BLK_ZONE_COND_OFFLINE: return "Offline"; } return "Unknown-cond"; } #define blk_zone_empty(z) (blk_zone_cond(z) == BLK_ZONE_COND_EMPTY) #define blk_zone_sector(z) (z)->start #define blk_zone_length(z) (z)->len #define blk_zone_wp_sector(z) (z)->wp #define blk_zone_need_reset(z) (int)(z)->reset #define blk_zone_non_seq(z) (int)(z)->non_seq #endif extern void f2fs_get_zoned_model(int); extern int f2fs_get_zone_blocks(int); extern int f2fs_check_zones(int); extern int f2fs_reset_zones(int); extern struct f2fs_configuration c; #define SIZE_ALIGN(val, size) ((val) + (size) - 1) / (size) #define SEG_ALIGN(blks) SIZE_ALIGN(blks, c.blks_per_seg) #define ZONE_ALIGN(blks) SIZE_ALIGN(blks, c.blks_per_seg * \ c.segs_per_zone) static inline double get_best_overprovision(struct f2fs_super_block *sb) { double reserved, ovp, candidate, end, diff, space; double max_ovp = 0, max_space = 0; if (get_sb(segment_count_main) < 256) { candidate = 10; end = 95; diff = 5; } else { candidate = 0.01; end = 10; diff = 0.01; } for (; candidate <= end; candidate += diff) { reserved = (2 * (100 / candidate + 1) + 6) * get_sb(segs_per_sec); ovp = (get_sb(segment_count_main) - reserved) * candidate / 100; space = get_sb(segment_count_main) - reserved - ovp; if (max_space < space) { max_space = space; max_ovp = candidate; } } return max_ovp; } static inline __le64 get_cp_crc(struct f2fs_checkpoint *cp) { u_int64_t cp_ver = get_cp(checkpoint_ver); size_t crc_offset = get_cp(checksum_offset); u_int32_t crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset)); cp_ver |= ((u_int64_t)crc << 32); return cpu_to_le64(cp_ver); } static inline int exist_qf_ino(struct f2fs_super_block *sb) { int i; for (i = 0; i < F2FS_MAX_QUOTAS; i++) if (sb->qf_ino[i]) return 1; return 0; } static inline int is_qf_ino(struct f2fs_super_block *sb, nid_t ino) { int i; for (i = 0; i < F2FS_MAX_QUOTAS; i++) if (sb->qf_ino[i] == ino) return 1; return 0; } #endif /*__F2FS_FS_H */