/* * lib/prio_tree.c - priority search tree * * Copyright (C) 2004, Rajesh Venkatasubramanian * * This file is released under the GPL v2. * * Based on the radix priority search tree proposed by Edward M. McCreight * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 * * 02Feb2004 Initial version */ #include #include #include "../compiler/compiler.h" #include "prio_tree.h" #define ARRAY_SIZE(x) (sizeof((x)) / (sizeof((x)[0]))) /* * A clever mix of heap and radix trees forms a radix priority search tree (PST) * which is useful for storing intervals, e.g, we can consider a vma as a closed * interval of file pages [offset_begin, offset_end], and store all vmas that * map a file in a PST. Then, using the PST, we can answer a stabbing query, * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a * given input interval X (a set of consecutive file pages), in "O(log n + m)" * time where 'log n' is the height of the PST, and 'm' is the number of stored * intervals (vmas) that overlap (map) with the input interval X (the set of * consecutive file pages). * * In our implementation, we store closed intervals of the form [radix_index, * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST * is designed for storing intervals with unique radix indices, i.e., each * interval have different radix_index. However, this limitation can be easily * overcome by using the size, i.e., heap_index - radix_index, as part of the * index, so we index the tree using [(radix_index,size), heap_index]. * * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit * machine, the maximum height of a PST can be 64. We can use a balanced version * of the priority search tree to optimize the tree height, but the balanced * tree proposed by McCreight is too complex and memory-hungry for our purpose. */ static void get_index(const struct prio_tree_node *node, unsigned long *radix, unsigned long *heap) { *radix = node->start; *heap = node->last; } static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; static void fio_init prio_tree_init(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; } /* * Maximum heap_index that can be stored in a PST with index_bits bits */ static inline unsigned long prio_tree_maxindex(unsigned int bits) { return index_bits_to_maxindex[bits - 1]; } /* * Extend a priority search tree so that it can store a node with heap_index * max_heap_index. In the worst case, this algorithm takes O((log n)^2). * However, this function is used rarely and the common case performance is * not bad. */ static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, struct prio_tree_node *node, unsigned long max_heap_index) { struct prio_tree_node *first = NULL, *prev, *last = NULL; if (max_heap_index > prio_tree_maxindex(root->index_bits)) root->index_bits++; while (max_heap_index > prio_tree_maxindex(root->index_bits)) { root->index_bits++; if (prio_tree_empty(root)) continue; if (first == NULL) { first = root->prio_tree_node; prio_tree_remove(root, root->prio_tree_node); INIT_PRIO_TREE_NODE(first); last = first; } else { prev = last; last = root->prio_tree_node; prio_tree_remove(root, root->prio_tree_node); INIT_PRIO_TREE_NODE(last); prev->left = last; last->parent = prev; } } INIT_PRIO_TREE_NODE(node); if (first) { node->left = first; first->parent = node; } else last = node; if (!prio_tree_empty(root)) { last->left = root->prio_tree_node; last->left->parent = last; } root->prio_tree_node = node; return node; } /* * Replace a prio_tree_node with a new node and return the old node */ struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, struct prio_tree_node *old, struct prio_tree_node *node) { INIT_PRIO_TREE_NODE(node); if (prio_tree_root(old)) { assert(root->prio_tree_node == old); /* * We can reduce root->index_bits here. However, it is complex * and does not help much to improve performance (IMO). */ node->parent = node; root->prio_tree_node = node; } else { node->parent = old->parent; if (old->parent->left == old) old->parent->left = node; else old->parent->right = node; } if (!prio_tree_left_empty(old)) { node->left = old->left; old->left->parent = node; } if (!prio_tree_right_empty(old)) { node->right = old->right; old->right->parent = node; } return old; } /* * Insert a prio_tree_node @node into a radix priority search tree @root. The * algorithm typically takes O(log n) time where 'log n' is the number of bits * required to represent the maximum heap_index. In the worst case, the algo * can take O((log n)^2) - check prio_tree_expand. * * If a prior node with same radix_index and heap_index is already found in * the tree, then returns the address of the prior node. Otherwise, inserts * @node into the tree and returns @node. */ struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, struct prio_tree_node *node) { struct prio_tree_node *cur, *res = node; unsigned long radix_index, heap_index; unsigned long r_index, h_index, index, mask; int size_flag = 0; get_index(node, &radix_index, &heap_index); if (prio_tree_empty(root) || heap_index > prio_tree_maxindex(root->index_bits)) return prio_tree_expand(root, node, heap_index); cur = root->prio_tree_node; mask = 1UL << (root->index_bits - 1); while (mask) { get_index(cur, &r_index, &h_index); if (r_index == radix_index && h_index == heap_index) return cur; if (h_index < heap_index || (h_index == heap_index && r_index > radix_index)) { struct prio_tree_node *tmp = node; node = prio_tree_replace(root, cur, node); cur = tmp; /* swap indices */ index = r_index; r_index = radix_index; radix_index = index; index = h_index; h_index = heap_index; heap_index = index; } if (size_flag) index = heap_index - radix_index; else index = radix_index; if (index & mask) { if (prio_tree_right_empty(cur)) { INIT_PRIO_TREE_NODE(node); cur->right = node; node->parent = cur; return res; } else cur = cur->right; } else { if (prio_tree_left_empty(cur)) { INIT_PRIO_TREE_NODE(node); cur->left = node; node->parent = cur; return res; } else cur = cur->left; } mask >>= 1; if (!mask) { mask = 1UL << (BITS_PER_LONG - 1); size_flag = 1; } } /* Should not reach here */ assert(0); return NULL; } /* * Remove a prio_tree_node @node from a radix priority search tree @root. The * algorithm takes O(log n) time where 'log n' is the number of bits required * to represent the maximum heap_index. */ void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) { struct prio_tree_node *cur; unsigned long r_index, h_index_right, h_index_left; cur = node; while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { if (!prio_tree_left_empty(cur)) get_index(cur->left, &r_index, &h_index_left); else { cur = cur->right; continue; } if (!prio_tree_right_empty(cur)) get_index(cur->right, &r_index, &h_index_right); else { cur = cur->left; continue; } /* both h_index_left and h_index_right cannot be 0 */ if (h_index_left >= h_index_right) cur = cur->left; else cur = cur->right; } if (prio_tree_root(cur)) { assert(root->prio_tree_node == cur); INIT_PRIO_TREE_ROOT(root); return; } if (cur->parent->right == cur) cur->parent->right = cur->parent; else cur->parent->left = cur->parent; while (cur != node) cur = prio_tree_replace(root, cur->parent, cur); } /* * Following functions help to enumerate all prio_tree_nodes in the tree that * overlap with the input interval X [radix_index, heap_index]. The enumeration * takes O(log n + m) time where 'log n' is the height of the tree (which is * proportional to # of bits required to represent the maximum heap_index) and * 'm' is the number of prio_tree_nodes that overlap the interval X. */ static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, unsigned long *r_index, unsigned long *h_index) { if (prio_tree_left_empty(iter->cur)) return NULL; get_index(iter->cur->left, r_index, h_index); if (iter->r_index <= *h_index) { iter->cur = iter->cur->left; iter->mask >>= 1; if (iter->mask) { if (iter->size_level) iter->size_level++; } else { if (iter->size_level) { assert(prio_tree_left_empty(iter->cur)); assert(prio_tree_right_empty(iter->cur)); iter->size_level++; iter->mask = ULONG_MAX; } else { iter->size_level = 1; iter->mask = 1UL << (BITS_PER_LONG - 1); } } return iter->cur; } return NULL; } static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, unsigned long *r_index, unsigned long *h_index) { unsigned long value; if (prio_tree_right_empty(iter->cur)) return NULL; if (iter->size_level) value = iter->value; else value = iter->value | iter->mask; if (iter->h_index < value) return NULL; get_index(iter->cur->right, r_index, h_index); if (iter->r_index <= *h_index) { iter->cur = iter->cur->right; iter->mask >>= 1; iter->value = value; if (iter->mask) { if (iter->size_level) iter->size_level++; } else { if (iter->size_level) { assert(prio_tree_left_empty(iter->cur)); assert(prio_tree_right_empty(iter->cur)); iter->size_level++; iter->mask = ULONG_MAX; } else { iter->size_level = 1; iter->mask = 1UL << (BITS_PER_LONG - 1); } } return iter->cur; } return NULL; } static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) { iter->cur = iter->cur->parent; if (iter->mask == ULONG_MAX) iter->mask = 1UL; else if (iter->size_level == 1) iter->mask = 1UL; else iter->mask <<= 1; if (iter->size_level) iter->size_level--; if (!iter->size_level && (iter->value & iter->mask)) iter->value ^= iter->mask; return iter->cur; } static inline int overlap(struct prio_tree_iter *iter, unsigned long r_index, unsigned long h_index) { return iter->h_index >= r_index && iter->r_index <= h_index; } /* * prio_tree_first: * * Get the first prio_tree_node that overlaps with the interval [radix_index, * heap_index]. Note that always radix_index <= heap_index. We do a pre-order * traversal of the tree. */ static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) { struct prio_tree_root *root; unsigned long r_index, h_index; INIT_PRIO_TREE_ITER(iter); root = iter->root; if (prio_tree_empty(root)) return NULL; get_index(root->prio_tree_node, &r_index, &h_index); if (iter->r_index > h_index) return NULL; iter->mask = 1UL << (root->index_bits - 1); iter->cur = root->prio_tree_node; while (1) { if (overlap(iter, r_index, h_index)) return iter->cur; if (prio_tree_left(iter, &r_index, &h_index)) continue; if (prio_tree_right(iter, &r_index, &h_index)) continue; break; } return NULL; } /* * prio_tree_next: * * Get the next prio_tree_node that overlaps with the input interval in iter */ struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) { unsigned long r_index, h_index; if (iter->cur == NULL) return prio_tree_first(iter); repeat: while (prio_tree_left(iter, &r_index, &h_index)) if (overlap(iter, r_index, h_index)) return iter->cur; while (!prio_tree_right(iter, &r_index, &h_index)) { while (!prio_tree_root(iter->cur) && iter->cur->parent->right == iter->cur) prio_tree_parent(iter); if (prio_tree_root(iter->cur)) return NULL; prio_tree_parent(iter); } if (overlap(iter, r_index, h_index)) return iter->cur; goto repeat; }