// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/metrics/histogram.h" #include #include #include #include #include #include #include #include "base/logging.h" #include "base/metrics/bucket_ranges.h" #include "base/metrics/histogram_macros.h" #include "base/metrics/persistent_histogram_allocator.h" #include "base/metrics/persistent_memory_allocator.h" #include "base/metrics/sample_vector.h" #include "base/metrics/statistics_recorder.h" #include "base/pickle.h" #include "base/strings/stringprintf.h" #include "base/test/gtest_util.h" #include "base/time/time.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { // Test parameter indicates if a persistent memory allocator should be used // for histogram allocation. False will allocate histograms from the process // heap. class HistogramTest : public testing::TestWithParam { protected: const int32_t kAllocatorMemorySize = 8 << 20; // 8 MiB HistogramTest() : use_persistent_histogram_allocator_(GetParam()) {} void SetUp() override { if (use_persistent_histogram_allocator_) CreatePersistentHistogramAllocator(); // Each test will have a clean state (no Histogram / BucketRanges // registered). InitializeStatisticsRecorder(); } void TearDown() override { if (allocator_) { ASSERT_FALSE(allocator_->IsFull()); ASSERT_FALSE(allocator_->IsCorrupt()); } UninitializeStatisticsRecorder(); DestroyPersistentHistogramAllocator(); } void InitializeStatisticsRecorder() { DCHECK(!statistics_recorder_); statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting(); } void UninitializeStatisticsRecorder() { statistics_recorder_.reset(); } void CreatePersistentHistogramAllocator() { // By getting the results-histogram before any persistent allocator // is attached, that histogram is guaranteed not to be stored in // any persistent memory segment (which simplifies some tests). GlobalHistogramAllocator::GetCreateHistogramResultHistogram(); GlobalHistogramAllocator::CreateWithLocalMemory( kAllocatorMemorySize, 0, "HistogramAllocatorTest"); allocator_ = GlobalHistogramAllocator::Get()->memory_allocator(); } void DestroyPersistentHistogramAllocator() { allocator_ = nullptr; GlobalHistogramAllocator::ReleaseForTesting(); } const bool use_persistent_histogram_allocator_; std::unique_ptr statistics_recorder_; std::unique_ptr allocator_memory_; PersistentMemoryAllocator* allocator_ = nullptr; private: DISALLOW_COPY_AND_ASSIGN(HistogramTest); }; // Run all HistogramTest cases with both heap and persistent memory. INSTANTIATE_TEST_CASE_P(HeapAndPersistent, HistogramTest, testing::Bool()); // Check for basic syntax and use. TEST_P(HistogramTest, BasicTest) { // Try basic construction HistogramBase* histogram = Histogram::FactoryGet( "TestHistogram", 1, 1000, 10, HistogramBase::kNoFlags); EXPECT_TRUE(histogram); HistogramBase* linear_histogram = LinearHistogram::FactoryGet( "TestLinearHistogram", 1, 1000, 10, HistogramBase::kNoFlags); EXPECT_TRUE(linear_histogram); std::vector custom_ranges; custom_ranges.push_back(1); custom_ranges.push_back(5); HistogramBase* custom_histogram = CustomHistogram::FactoryGet( "TestCustomHistogram", custom_ranges, HistogramBase::kNoFlags); EXPECT_TRUE(custom_histogram); // Macros that create hitograms have an internal static variable which will // continue to point to those from the very first run of this method even // during subsequent runs. static bool already_run = false; if (already_run) return; already_run = true; // Use standard macros (but with fixed samples) LOCAL_HISTOGRAM_TIMES("Test2Histogram", TimeDelta::FromDays(1)); LOCAL_HISTOGRAM_COUNTS("Test3Histogram", 30); LOCAL_HISTOGRAM_ENUMERATION("Test6Histogram", 129, 130); } // Check that the macro correctly matches histograms by name and records their // data together. TEST_P(HistogramTest, NameMatchTest) { // Macros that create hitograms have an internal static variable which will // continue to point to those from the very first run of this method even // during subsequent runs. static bool already_run = false; if (already_run) return; already_run = true; LOCAL_HISTOGRAM_PERCENTAGE("DuplicatedHistogram", 10); LOCAL_HISTOGRAM_PERCENTAGE("DuplicatedHistogram", 10); HistogramBase* histogram = LinearHistogram::FactoryGet( "DuplicatedHistogram", 1, 101, 102, HistogramBase::kNoFlags); std::unique_ptr samples = histogram->SnapshotSamples(); EXPECT_EQ(2, samples->TotalCount()); EXPECT_EQ(2, samples->GetCount(10)); } // Check that delta calculations work correctly. TEST_P(HistogramTest, DeltaTest) { HistogramBase* histogram = Histogram::FactoryGet("DeltaHistogram", 1, 64, 8, HistogramBase::kNoFlags); histogram->Add(1); histogram->Add(10); histogram->Add(50); std::unique_ptr samples = histogram->SnapshotDelta(); EXPECT_EQ(3, samples->TotalCount()); EXPECT_EQ(1, samples->GetCount(1)); EXPECT_EQ(1, samples->GetCount(10)); EXPECT_EQ(1, samples->GetCount(50)); EXPECT_EQ(samples->TotalCount(), samples->redundant_count()); samples = histogram->SnapshotDelta(); EXPECT_EQ(0, samples->TotalCount()); histogram->Add(10); histogram->Add(10); samples = histogram->SnapshotDelta(); EXPECT_EQ(2, samples->TotalCount()); EXPECT_EQ(2, samples->GetCount(10)); samples = histogram->SnapshotDelta(); EXPECT_EQ(0, samples->TotalCount()); } // Check that final-delta calculations work correctly. TEST_P(HistogramTest, FinalDeltaTest) { HistogramBase* histogram = Histogram::FactoryGet("FinalDeltaHistogram", 1, 64, 8, HistogramBase::kNoFlags); histogram->Add(1); histogram->Add(10); histogram->Add(50); std::unique_ptr samples = histogram->SnapshotDelta(); EXPECT_EQ(3, samples->TotalCount()); EXPECT_EQ(1, samples->GetCount(1)); EXPECT_EQ(1, samples->GetCount(10)); EXPECT_EQ(1, samples->GetCount(50)); EXPECT_EQ(samples->TotalCount(), samples->redundant_count()); histogram->Add(2); histogram->Add(50); samples = histogram->SnapshotFinalDelta(); EXPECT_EQ(2, samples->TotalCount()); EXPECT_EQ(1, samples->GetCount(2)); EXPECT_EQ(1, samples->GetCount(50)); EXPECT_EQ(samples->TotalCount(), samples->redundant_count()); } TEST_P(HistogramTest, ExponentialRangesTest) { // Check that we got a nice exponential when there was enough room. BucketRanges ranges(9); Histogram::InitializeBucketRanges(1, 64, &ranges); EXPECT_EQ(0, ranges.range(0)); int power_of_2 = 1; for (int i = 1; i < 8; i++) { EXPECT_EQ(power_of_2, ranges.range(i)); power_of_2 *= 2; } EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges.range(8)); // Check the corresponding Histogram will use the correct ranges. Histogram* histogram = static_cast( Histogram::FactoryGet("Histogram", 1, 64, 8, HistogramBase::kNoFlags)); EXPECT_TRUE(ranges.Equals(histogram->bucket_ranges())); // When bucket count is limited, exponential ranges will partially look like // linear. BucketRanges ranges2(16); Histogram::InitializeBucketRanges(1, 32, &ranges2); EXPECT_EQ(0, ranges2.range(0)); EXPECT_EQ(1, ranges2.range(1)); EXPECT_EQ(2, ranges2.range(2)); EXPECT_EQ(3, ranges2.range(3)); EXPECT_EQ(4, ranges2.range(4)); EXPECT_EQ(5, ranges2.range(5)); EXPECT_EQ(6, ranges2.range(6)); EXPECT_EQ(7, ranges2.range(7)); EXPECT_EQ(9, ranges2.range(8)); EXPECT_EQ(11, ranges2.range(9)); EXPECT_EQ(14, ranges2.range(10)); EXPECT_EQ(17, ranges2.range(11)); EXPECT_EQ(21, ranges2.range(12)); EXPECT_EQ(26, ranges2.range(13)); EXPECT_EQ(32, ranges2.range(14)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges2.range(15)); // Check the corresponding Histogram will use the correct ranges. Histogram* histogram2 = static_cast( Histogram::FactoryGet("Histogram2", 1, 32, 15, HistogramBase::kNoFlags)); EXPECT_TRUE(ranges2.Equals(histogram2->bucket_ranges())); } TEST_P(HistogramTest, LinearRangesTest) { BucketRanges ranges(9); LinearHistogram::InitializeBucketRanges(1, 7, &ranges); // Gets a nice linear set of bucket ranges. for (int i = 0; i < 8; i++) EXPECT_EQ(i, ranges.range(i)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges.range(8)); // The correspoding LinearHistogram should use the correct ranges. Histogram* histogram = static_cast( LinearHistogram::FactoryGet("Linear", 1, 7, 8, HistogramBase::kNoFlags)); EXPECT_TRUE(ranges.Equals(histogram->bucket_ranges())); // Linear ranges are not divisible. BucketRanges ranges2(6); LinearHistogram::InitializeBucketRanges(1, 6, &ranges2); EXPECT_EQ(0, ranges2.range(0)); EXPECT_EQ(1, ranges2.range(1)); EXPECT_EQ(3, ranges2.range(2)); EXPECT_EQ(4, ranges2.range(3)); EXPECT_EQ(6, ranges2.range(4)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges2.range(5)); // The correspoding LinearHistogram should use the correct ranges. Histogram* histogram2 = static_cast( LinearHistogram::FactoryGet("Linear2", 1, 6, 5, HistogramBase::kNoFlags)); EXPECT_TRUE(ranges2.Equals(histogram2->bucket_ranges())); } TEST_P(HistogramTest, ArrayToCustomRangesTest) { const HistogramBase::Sample ranges[3] = {5, 10, 20}; std::vector ranges_vec = CustomHistogram::ArrayToCustomRanges(ranges, 3); ASSERT_EQ(6u, ranges_vec.size()); EXPECT_EQ(5, ranges_vec[0]); EXPECT_EQ(6, ranges_vec[1]); EXPECT_EQ(10, ranges_vec[2]); EXPECT_EQ(11, ranges_vec[3]); EXPECT_EQ(20, ranges_vec[4]); EXPECT_EQ(21, ranges_vec[5]); } TEST_P(HistogramTest, CustomHistogramTest) { // A well prepared custom ranges. std::vector custom_ranges; custom_ranges.push_back(1); custom_ranges.push_back(2); Histogram* histogram = static_cast( CustomHistogram::FactoryGet("TestCustomHistogram1", custom_ranges, HistogramBase::kNoFlags)); const BucketRanges* ranges = histogram->bucket_ranges(); ASSERT_EQ(4u, ranges->size()); EXPECT_EQ(0, ranges->range(0)); // Auto added. EXPECT_EQ(1, ranges->range(1)); EXPECT_EQ(2, ranges->range(2)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges->range(3)); // Auto added. // A unordered custom ranges. custom_ranges.clear(); custom_ranges.push_back(2); custom_ranges.push_back(1); histogram = static_cast( CustomHistogram::FactoryGet("TestCustomHistogram2", custom_ranges, HistogramBase::kNoFlags)); ranges = histogram->bucket_ranges(); ASSERT_EQ(4u, ranges->size()); EXPECT_EQ(0, ranges->range(0)); EXPECT_EQ(1, ranges->range(1)); EXPECT_EQ(2, ranges->range(2)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges->range(3)); // A custom ranges with duplicated values. custom_ranges.clear(); custom_ranges.push_back(4); custom_ranges.push_back(1); custom_ranges.push_back(4); histogram = static_cast( CustomHistogram::FactoryGet("TestCustomHistogram3", custom_ranges, HistogramBase::kNoFlags)); ranges = histogram->bucket_ranges(); ASSERT_EQ(4u, ranges->size()); EXPECT_EQ(0, ranges->range(0)); EXPECT_EQ(1, ranges->range(1)); EXPECT_EQ(4, ranges->range(2)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges->range(3)); } TEST_P(HistogramTest, CustomHistogramWithOnly2Buckets) { // This test exploits the fact that the CustomHistogram can have 2 buckets, // while the base class Histogram is *supposed* to have at least 3 buckets. // We should probably change the restriction on the base class (or not inherit // the base class!). std::vector custom_ranges; custom_ranges.push_back(4); Histogram* histogram = static_cast( CustomHistogram::FactoryGet("2BucketsCustomHistogram", custom_ranges, HistogramBase::kNoFlags)); const BucketRanges* ranges = histogram->bucket_ranges(); ASSERT_EQ(3u, ranges->size()); EXPECT_EQ(0, ranges->range(0)); EXPECT_EQ(4, ranges->range(1)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges->range(2)); } TEST_P(HistogramTest, AddCountTest) { const size_t kBucketCount = 50; Histogram* histogram = static_cast( Histogram::FactoryGet("AddCountHistogram", 10, 100, kBucketCount, HistogramBase::kNoFlags)); histogram->AddCount(20, 15); histogram->AddCount(30, 14); std::unique_ptr samples = histogram->SnapshotSamples(); EXPECT_EQ(29, samples->TotalCount()); EXPECT_EQ(15, samples->GetCount(20)); EXPECT_EQ(14, samples->GetCount(30)); histogram->AddCount(20, 25); histogram->AddCount(30, 24); std::unique_ptr samples2 = histogram->SnapshotSamples(); EXPECT_EQ(78, samples2->TotalCount()); EXPECT_EQ(40, samples2->GetCount(20)); EXPECT_EQ(38, samples2->GetCount(30)); } TEST_P(HistogramTest, AddCount_LargeValuesDontOverflow) { const size_t kBucketCount = 50; Histogram* histogram = static_cast( Histogram::FactoryGet("AddCountHistogram", 10, 1000000000, kBucketCount, HistogramBase::kNoFlags)); histogram->AddCount(200000000, 15); histogram->AddCount(300000000, 14); std::unique_ptr samples = histogram->SnapshotSamples(); EXPECT_EQ(29, samples->TotalCount()); EXPECT_EQ(15, samples->GetCount(200000000)); EXPECT_EQ(14, samples->GetCount(300000000)); histogram->AddCount(200000000, 25); histogram->AddCount(300000000, 24); std::unique_ptr samples2 = histogram->SnapshotSamples(); EXPECT_EQ(78, samples2->TotalCount()); EXPECT_EQ(40, samples2->GetCount(200000000)); EXPECT_EQ(38, samples2->GetCount(300000000)); EXPECT_EQ(19400000000LL, samples2->sum()); } // Make sure histogram handles out-of-bounds data gracefully. TEST_P(HistogramTest, BoundsTest) { const size_t kBucketCount = 50; Histogram* histogram = static_cast( Histogram::FactoryGet("Bounded", 10, 100, kBucketCount, HistogramBase::kNoFlags)); // Put two samples "out of bounds" above and below. histogram->Add(5); histogram->Add(-50); histogram->Add(100); histogram->Add(10000); // Verify they landed in the underflow, and overflow buckets. std::unique_ptr samples = histogram->SnapshotSampleVector(); EXPECT_EQ(2, samples->GetCountAtIndex(0)); EXPECT_EQ(0, samples->GetCountAtIndex(1)); size_t array_size = histogram->bucket_count(); EXPECT_EQ(kBucketCount, array_size); EXPECT_EQ(0, samples->GetCountAtIndex(array_size - 2)); EXPECT_EQ(2, samples->GetCountAtIndex(array_size - 1)); std::vector custom_ranges; custom_ranges.push_back(10); custom_ranges.push_back(50); custom_ranges.push_back(100); Histogram* test_custom_histogram = static_cast( CustomHistogram::FactoryGet("TestCustomRangeBoundedHistogram", custom_ranges, HistogramBase::kNoFlags)); // Put two samples "out of bounds" above and below. test_custom_histogram->Add(5); test_custom_histogram->Add(-50); test_custom_histogram->Add(100); test_custom_histogram->Add(1000); test_custom_histogram->Add(INT_MAX); // Verify they landed in the underflow, and overflow buckets. std::unique_ptr custom_samples = test_custom_histogram->SnapshotSampleVector(); EXPECT_EQ(2, custom_samples->GetCountAtIndex(0)); EXPECT_EQ(0, custom_samples->GetCountAtIndex(1)); size_t bucket_count = test_custom_histogram->bucket_count(); EXPECT_EQ(0, custom_samples->GetCountAtIndex(bucket_count - 2)); EXPECT_EQ(3, custom_samples->GetCountAtIndex(bucket_count - 1)); } // Check to be sure samples land as expected is "correct" buckets. TEST_P(HistogramTest, BucketPlacementTest) { Histogram* histogram = static_cast( Histogram::FactoryGet("Histogram", 1, 64, 8, HistogramBase::kNoFlags)); // Add i+1 samples to the i'th bucket. histogram->Add(0); int power_of_2 = 1; for (int i = 1; i < 8; i++) { for (int j = 0; j <= i; j++) histogram->Add(power_of_2); power_of_2 *= 2; } // Check to see that the bucket counts reflect our additions. std::unique_ptr samples = histogram->SnapshotSampleVector(); for (int i = 0; i < 8; i++) EXPECT_EQ(i + 1, samples->GetCountAtIndex(i)); } TEST_P(HistogramTest, CorruptSampleCounts) { // The internal code creates histograms via macros and thus keeps static // pointers to them. If those pointers are to persistent memory which will // be free'd then any following calls to that code will crash with a // segmentation violation. if (use_persistent_histogram_allocator_) return; Histogram* histogram = static_cast( Histogram::FactoryGet("Histogram", 1, 64, 8, HistogramBase::kNoFlags)); // Add some samples. histogram->Add(20); histogram->Add(40); std::unique_ptr snapshot = histogram->SnapshotSampleVector(); EXPECT_EQ(HistogramBase::NO_INCONSISTENCIES, histogram->FindCorruption(*snapshot)); EXPECT_EQ(2, snapshot->redundant_count()); EXPECT_EQ(2, snapshot->TotalCount()); snapshot->counts_[3] += 100; // Sample count won't match redundant count. EXPECT_EQ(HistogramBase::COUNT_LOW_ERROR, histogram->FindCorruption(*snapshot)); snapshot->counts_[2] -= 200; EXPECT_EQ(HistogramBase::COUNT_HIGH_ERROR, histogram->FindCorruption(*snapshot)); // But we can't spot a corruption if it is compensated for. snapshot->counts_[1] += 100; EXPECT_EQ(HistogramBase::NO_INCONSISTENCIES, histogram->FindCorruption(*snapshot)); } TEST_P(HistogramTest, CorruptBucketBounds) { Histogram* histogram = static_cast( Histogram::FactoryGet("Histogram", 1, 64, 8, HistogramBase::kNoFlags)); std::unique_ptr snapshot = histogram->SnapshotSamples(); EXPECT_EQ(HistogramBase::NO_INCONSISTENCIES, histogram->FindCorruption(*snapshot)); BucketRanges* bucket_ranges = const_cast(histogram->bucket_ranges()); HistogramBase::Sample tmp = bucket_ranges->range(1); bucket_ranges->set_range(1, bucket_ranges->range(2)); bucket_ranges->set_range(2, tmp); EXPECT_EQ( HistogramBase::BUCKET_ORDER_ERROR | HistogramBase::RANGE_CHECKSUM_ERROR, histogram->FindCorruption(*snapshot)); bucket_ranges->set_range(2, bucket_ranges->range(1)); bucket_ranges->set_range(1, tmp); EXPECT_EQ(0U, histogram->FindCorruption(*snapshot)); // Show that two simple changes don't offset each other bucket_ranges->set_range(3, bucket_ranges->range(3) + 1); EXPECT_EQ(HistogramBase::RANGE_CHECKSUM_ERROR, histogram->FindCorruption(*snapshot)); bucket_ranges->set_range(4, bucket_ranges->range(4) - 1); EXPECT_EQ(HistogramBase::RANGE_CHECKSUM_ERROR, histogram->FindCorruption(*snapshot)); // Repair histogram so that destructor won't DCHECK(). bucket_ranges->set_range(3, bucket_ranges->range(3) - 1); bucket_ranges->set_range(4, bucket_ranges->range(4) + 1); } TEST_P(HistogramTest, HistogramSerializeInfo) { Histogram* histogram = static_cast( Histogram::FactoryGet("Histogram", 1, 64, 8, HistogramBase::kIPCSerializationSourceFlag)); Pickle pickle; histogram->SerializeInfo(&pickle); PickleIterator iter(pickle); int type; EXPECT_TRUE(iter.ReadInt(&type)); EXPECT_EQ(HISTOGRAM, type); std::string name; EXPECT_TRUE(iter.ReadString(&name)); EXPECT_EQ("Histogram", name); int flag; EXPECT_TRUE(iter.ReadInt(&flag)); EXPECT_EQ(HistogramBase::kIPCSerializationSourceFlag, flag & ~HistogramBase::kIsPersistent); int min; EXPECT_TRUE(iter.ReadInt(&min)); EXPECT_EQ(1, min); int max; EXPECT_TRUE(iter.ReadInt(&max)); EXPECT_EQ(64, max); uint32_t bucket_count; EXPECT_TRUE(iter.ReadUInt32(&bucket_count)); EXPECT_EQ(8u, bucket_count); uint32_t checksum; EXPECT_TRUE(iter.ReadUInt32(&checksum)); EXPECT_EQ(histogram->bucket_ranges()->checksum(), checksum); // No more data in the pickle. EXPECT_FALSE(iter.SkipBytes(1)); } TEST_P(HistogramTest, CustomHistogramSerializeInfo) { std::vector custom_ranges; custom_ranges.push_back(10); custom_ranges.push_back(100); HistogramBase* custom_histogram = CustomHistogram::FactoryGet( "TestCustomRangeBoundedHistogram", custom_ranges, HistogramBase::kNoFlags); Pickle pickle; custom_histogram->SerializeInfo(&pickle); // Validate the pickle. PickleIterator iter(pickle); int i; std::string s; uint32_t bucket_count; uint32_t ui32; EXPECT_TRUE(iter.ReadInt(&i) && iter.ReadString(&s) && iter.ReadInt(&i) && iter.ReadInt(&i) && iter.ReadInt(&i) && iter.ReadUInt32(&bucket_count) && iter.ReadUInt32(&ui32)); EXPECT_EQ(3u, bucket_count); int range; EXPECT_TRUE(iter.ReadInt(&range)); EXPECT_EQ(10, range); EXPECT_TRUE(iter.ReadInt(&range)); EXPECT_EQ(100, range); // No more data in the pickle. EXPECT_FALSE(iter.SkipBytes(1)); } TEST_P(HistogramTest, BadConstruction) { HistogramBase* histogram = Histogram::FactoryGet( "BadConstruction", 0, 100, 8, HistogramBase::kNoFlags); EXPECT_TRUE(histogram->HasConstructionArguments(1, 100, 8)); // Try to get the same histogram name with different arguments. HistogramBase* bad_histogram = Histogram::FactoryGet( "BadConstruction", 0, 100, 7, HistogramBase::kNoFlags); EXPECT_EQ(NULL, bad_histogram); bad_histogram = Histogram::FactoryGet( "BadConstruction", 0, 99, 8, HistogramBase::kNoFlags); EXPECT_EQ(NULL, bad_histogram); HistogramBase* linear_histogram = LinearHistogram::FactoryGet( "BadConstructionLinear", 0, 100, 8, HistogramBase::kNoFlags); EXPECT_TRUE(linear_histogram->HasConstructionArguments(1, 100, 8)); // Try to get the same histogram name with different arguments. bad_histogram = LinearHistogram::FactoryGet( "BadConstructionLinear", 0, 100, 7, HistogramBase::kNoFlags); EXPECT_EQ(NULL, bad_histogram); bad_histogram = LinearHistogram::FactoryGet( "BadConstructionLinear", 10, 100, 8, HistogramBase::kNoFlags); EXPECT_EQ(NULL, bad_histogram); } TEST_P(HistogramTest, FactoryTime) { const int kTestCreateCount = 1 << 14; // Must be power-of-2. const int kTestLookupCount = 100000; const int kTestAddCount = 1000000; // Create all histogram names in advance for accurate timing below. std::vector histogram_names; for (int i = 0; i < kTestCreateCount; ++i) { histogram_names.push_back( StringPrintf("TestHistogram.%d", i % kTestCreateCount)); } // Calculate cost of creating histograms. TimeTicks create_start = TimeTicks::Now(); for (int i = 0; i < kTestCreateCount; ++i) { Histogram::FactoryGet(histogram_names[i], 1, 100, 10, HistogramBase::kNoFlags); } TimeDelta create_ticks = TimeTicks::Now() - create_start; int64_t create_ms = create_ticks.InMilliseconds(); VLOG(1) << kTestCreateCount << " histogram creations took " << create_ms << "ms or about " << (create_ms * 1000000) / kTestCreateCount << "ns each."; // Calculate cost of looking up existing histograms. TimeTicks lookup_start = TimeTicks::Now(); for (int i = 0; i < kTestLookupCount; ++i) { // 6007 is co-prime with kTestCreateCount and so will do lookups in an // order less likely to be cacheable (but still hit them all) should the // underlying storage use the exact histogram name as the key. const int i_mult = 6007; static_assert(i_mult < INT_MAX / kTestCreateCount, "Multiplier too big"); int index = (i * i_mult) & (kTestCreateCount - 1); Histogram::FactoryGet(histogram_names[index], 1, 100, 10, HistogramBase::kNoFlags); } TimeDelta lookup_ticks = TimeTicks::Now() - lookup_start; int64_t lookup_ms = lookup_ticks.InMilliseconds(); VLOG(1) << kTestLookupCount << " histogram lookups took " << lookup_ms << "ms or about " << (lookup_ms * 1000000) / kTestLookupCount << "ns each."; // Calculate cost of accessing histograms. HistogramBase* histogram = Histogram::FactoryGet( histogram_names[0], 1, 100, 10, HistogramBase::kNoFlags); ASSERT_TRUE(histogram); TimeTicks add_start = TimeTicks::Now(); for (int i = 0; i < kTestAddCount; ++i) histogram->Add(i & 127); TimeDelta add_ticks = TimeTicks::Now() - add_start; int64_t add_ms = add_ticks.InMilliseconds(); VLOG(1) << kTestAddCount << " histogram adds took " << add_ms << "ms or about " << (add_ms * 1000000) / kTestAddCount << "ns each."; } // For Histogram, LinearHistogram and CustomHistogram, the minimum for a // declared range is 1, while the maximum is (HistogramBase::kSampleType_MAX - // 1). But we accept ranges exceeding those limits, and silently clamped to // those limits. This is for backwards compatibility. TEST(HistogramDeathTest, BadRangesTest) { HistogramBase* histogram = Histogram::FactoryGet( "BadRanges", 0, HistogramBase::kSampleType_MAX, 8, HistogramBase::kNoFlags); EXPECT_TRUE( histogram->HasConstructionArguments( 1, HistogramBase::kSampleType_MAX - 1, 8)); HistogramBase* linear_histogram = LinearHistogram::FactoryGet( "BadRangesLinear", 0, HistogramBase::kSampleType_MAX, 8, HistogramBase::kNoFlags); EXPECT_TRUE( linear_histogram->HasConstructionArguments( 1, HistogramBase::kSampleType_MAX - 1, 8)); std::vector custom_ranges; custom_ranges.push_back(0); custom_ranges.push_back(5); Histogram* custom_histogram = static_cast( CustomHistogram::FactoryGet( "BadRangesCustom", custom_ranges, HistogramBase::kNoFlags)); const BucketRanges* ranges = custom_histogram->bucket_ranges(); ASSERT_EQ(3u, ranges->size()); EXPECT_EQ(0, ranges->range(0)); EXPECT_EQ(5, ranges->range(1)); EXPECT_EQ(HistogramBase::kSampleType_MAX, ranges->range(2)); // CustomHistogram does not accepts kSampleType_MAX as range. custom_ranges.push_back(HistogramBase::kSampleType_MAX); EXPECT_DEATH_IF_SUPPORTED( CustomHistogram::FactoryGet("BadRangesCustom2", custom_ranges, HistogramBase::kNoFlags), ""); // CustomHistogram needs at least 1 valid range. custom_ranges.clear(); custom_ranges.push_back(0); EXPECT_DEATH_IF_SUPPORTED( CustomHistogram::FactoryGet("BadRangesCustom3", custom_ranges, HistogramBase::kNoFlags), ""); } } // namespace base