/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Inference code for the text classification model. #ifndef LIBTEXTCLASSIFIER_TEXT_CLASSIFIER_H_ #define LIBTEXTCLASSIFIER_TEXT_CLASSIFIER_H_ #include #include #include #include #include "datetime/parser.h" #include "feature-processor.h" #include "model-executor.h" #include "model_generated.h" #include "strip-unpaired-brackets.h" #include "types.h" #include "util/memory/mmap.h" #include "util/utf8/unilib.h" #include "zlib-utils.h" namespace libtextclassifier2 { struct SelectionOptions { // Comma-separated list of locale specification for the input text (BCP 47 // tags). std::string locales; static SelectionOptions Default() { return SelectionOptions(); } }; struct ClassificationOptions { // For parsing relative datetimes, the reference now time against which the // relative datetimes get resolved. // UTC milliseconds since epoch. int64 reference_time_ms_utc = 0; // Timezone in which the input text was written (format as accepted by ICU). std::string reference_timezone; // Comma-separated list of locale specification for the input text (BCP 47 // tags). std::string locales; static ClassificationOptions Default() { return ClassificationOptions(); } }; struct AnnotationOptions { // For parsing relative datetimes, the reference now time against which the // relative datetimes get resolved. // UTC milliseconds since epoch. int64 reference_time_ms_utc = 0; // Timezone in which the input text was written (format as accepted by ICU). std::string reference_timezone; // Comma-separated list of locale specification for the input text (BCP 47 // tags). std::string locales; static AnnotationOptions Default() { return AnnotationOptions(); } }; // Holds TFLite interpreters for selection and classification models. // NOTE: his class is not thread-safe, thus should NOT be re-used across // threads. class InterpreterManager { public: // The constructor can be called with nullptr for any of the executors, and is // a defined behavior, as long as the corresponding *Interpreter() method is // not called when the executor is null. InterpreterManager(const ModelExecutor* selection_executor, const ModelExecutor* classification_executor) : selection_executor_(selection_executor), classification_executor_(classification_executor) {} // Gets or creates and caches an interpreter for the selection model. tflite::Interpreter* SelectionInterpreter(); // Gets or creates and caches an interpreter for the classification model. tflite::Interpreter* ClassificationInterpreter(); private: const ModelExecutor* selection_executor_; const ModelExecutor* classification_executor_; std::unique_ptr selection_interpreter_; std::unique_ptr classification_interpreter_; }; // A text processing model that provides text classification, annotation, // selection suggestion for various types. // NOTE: This class is not thread-safe. class TextClassifier { public: static std::unique_ptr FromUnownedBuffer( const char* buffer, int size, const UniLib* unilib = nullptr); // Takes ownership of the mmap. static std::unique_ptr FromScopedMmap( std::unique_ptr* mmap, const UniLib* unilib = nullptr); static std::unique_ptr FromFileDescriptor( int fd, int offset, int size, const UniLib* unilib = nullptr); static std::unique_ptr FromFileDescriptor( int fd, const UniLib* unilib = nullptr); static std::unique_ptr FromPath( const std::string& path, const UniLib* unilib = nullptr); // Returns true if the model is ready for use. bool IsInitialized() { return initialized_; } // Runs inference for given a context and current selection (i.e. index // of the first and one past last selected characters (utf8 codepoint // offsets)). Returns the indices (utf8 codepoint offsets) of the selection // beginning character and one past selection end character. // Returns the original click_indices if an error occurs. // NOTE: The selection indices are passed in and returned in terms of // UTF8 codepoints (not bytes). // Requires that the model is a smart selection model. CodepointSpan SuggestSelection( const std::string& context, CodepointSpan click_indices, const SelectionOptions& options = SelectionOptions::Default()) const; // Classifies the selected text given the context string. // Returns an empty result if an error occurs. std::vector ClassifyText( const std::string& context, CodepointSpan selection_indices, const ClassificationOptions& options = ClassificationOptions::Default()) const; // Annotates given input text. The annotations are sorted by their position // in the context string and exclude spans classified as 'other'. std::vector Annotate( const std::string& context, const AnnotationOptions& options = AnnotationOptions::Default()) const; // Exposes the feature processor for tests and evaluations. const FeatureProcessor* SelectionFeatureProcessorForTests() const; const FeatureProcessor* ClassificationFeatureProcessorForTests() const; // Exposes the date time parser for tests and evaluations. const DatetimeParser* DatetimeParserForTests() const; // String collection names for various classes. static const std::string& kOtherCollection; static const std::string& kPhoneCollection; static const std::string& kAddressCollection; static const std::string& kDateCollection; protected: struct ScoredChunk { TokenSpan token_span; float score; }; // Constructs and initializes text classifier from given model. // Takes ownership of 'mmap', and thus owns the buffer that backs 'model'. TextClassifier(std::unique_ptr* mmap, const Model* model, const UniLib* unilib) : model_(model), mmap_(std::move(*mmap)), owned_unilib_(nullptr), unilib_(internal::MaybeCreateUnilib(unilib, &owned_unilib_)) { ValidateAndInitialize(); } // Constructs, validates and initializes text classifier from given model. // Does not own the buffer that backs 'model'. explicit TextClassifier(const Model* model, const UniLib* unilib) : model_(model), owned_unilib_(nullptr), unilib_(internal::MaybeCreateUnilib(unilib, &owned_unilib_)) { ValidateAndInitialize(); } // Checks that model contains all required fields, and initializes internal // datastructures. void ValidateAndInitialize(); // Initializes regular expressions for the regex model. bool InitializeRegexModel(ZlibDecompressor* decompressor); // Resolves conflicts in the list of candidates by removing some overlapping // ones. Returns indices of the surviving ones. // NOTE: Assumes that the candidates are sorted according to their position in // the span. bool ResolveConflicts(const std::vector& candidates, const std::string& context, const std::vector& cached_tokens, InterpreterManager* interpreter_manager, std::vector* result) const; // Resolves one conflict between candidates on indices 'start_index' // (inclusive) and 'end_index' (exclusive). Assigns the winning candidate // indices to 'chosen_indices'. Returns false if a problem arises. bool ResolveConflict(const std::string& context, const std::vector& cached_tokens, const std::vector& candidates, int start_index, int end_index, InterpreterManager* interpreter_manager, std::vector* chosen_indices) const; // Gets selection candidates from the ML model. // Provides the tokens produced during tokenization of the context string for // reuse. bool ModelSuggestSelection(const UnicodeText& context_unicode, CodepointSpan click_indices, InterpreterManager* interpreter_manager, std::vector* tokens, std::vector* result) const; // Classifies the selected text given the context string with the // classification model. // Returns true if no error occurred. bool ModelClassifyText( const std::string& context, const std::vector& cached_tokens, CodepointSpan selection_indices, InterpreterManager* interpreter_manager, FeatureProcessor::EmbeddingCache* embedding_cache, std::vector* classification_results) const; bool ModelClassifyText( const std::string& context, CodepointSpan selection_indices, InterpreterManager* interpreter_manager, FeatureProcessor::EmbeddingCache* embedding_cache, std::vector* classification_results) const; // Returns a relative token span that represents how many tokens on the left // from the selection and right from the selection are needed for the // classifier input. TokenSpan ClassifyTextUpperBoundNeededTokens() const; // Classifies the selected text with the regular expressions models. // Returns true if any regular expression matched and the result was set. bool RegexClassifyText(const std::string& context, CodepointSpan selection_indices, ClassificationResult* classification_result) const; // Classifies the selected text with the date time model. // Returns true if there was a match and the result was set. bool DatetimeClassifyText(const std::string& context, CodepointSpan selection_indices, const ClassificationOptions& options, ClassificationResult* classification_result) const; // Chunks given input text with the selection model and classifies the spans // with the classification model. // The annotations are sorted by their position in the context string and // exclude spans classified as 'other'. // Provides the tokens produced during tokenization of the context string for // reuse. bool ModelAnnotate(const std::string& context, InterpreterManager* interpreter_manager, std::vector* tokens, std::vector* result) const; // Groups the tokens into chunks. A chunk is a token span that should be the // suggested selection when any of its contained tokens is clicked. The chunks // are non-overlapping and are sorted by their position in the context string. // "num_tokens" is the total number of tokens available (as this method does // not need the actual vector of tokens). // "span_of_interest" is a span of all the tokens that could be clicked. // The resulting chunks all have to overlap with it and they cover this span // completely. The first and last chunk might extend beyond it. // The chunks vector is cleared before filling. bool ModelChunk(int num_tokens, const TokenSpan& span_of_interest, tflite::Interpreter* selection_interpreter, const CachedFeatures& cached_features, std::vector* chunks) const; // A helper method for ModelChunk(). It generates scored chunk candidates for // a click context model. // NOTE: The returned chunks can (and most likely do) overlap. bool ModelClickContextScoreChunks( int num_tokens, const TokenSpan& span_of_interest, const CachedFeatures& cached_features, tflite::Interpreter* selection_interpreter, std::vector* scored_chunks) const; // A helper method for ModelChunk(). It generates scored chunk candidates for // a bounds-sensitive model. // NOTE: The returned chunks can (and most likely do) overlap. bool ModelBoundsSensitiveScoreChunks( int num_tokens, const TokenSpan& span_of_interest, const TokenSpan& inference_span, const CachedFeatures& cached_features, tflite::Interpreter* selection_interpreter, std::vector* scored_chunks) const; // Produces chunks isolated by a set of regular expressions. bool RegexChunk(const UnicodeText& context_unicode, const std::vector& rules, std::vector* result) const; // Produces chunks from the datetime parser. bool DatetimeChunk(const UnicodeText& context_unicode, int64 reference_time_ms_utc, const std::string& reference_timezone, const std::string& locales, ModeFlag mode, std::vector* result) const; // Returns whether a classification should be filtered. bool FilteredForAnnotation(const AnnotatedSpan& span) const; bool FilteredForClassification( const ClassificationResult& classification) const; bool FilteredForSelection(const AnnotatedSpan& span) const; const Model* model_; std::unique_ptr selection_executor_; std::unique_ptr classification_executor_; std::unique_ptr embedding_executor_; std::unique_ptr selection_feature_processor_; std::unique_ptr classification_feature_processor_; std::unique_ptr datetime_parser_; private: struct CompiledRegexPattern { std::string collection_name; float target_classification_score; float priority_score; std::unique_ptr pattern; }; std::unique_ptr mmap_; bool initialized_ = false; bool enabled_for_annotation_ = false; bool enabled_for_classification_ = false; bool enabled_for_selection_ = false; std::unordered_set filtered_collections_annotation_; std::unordered_set filtered_collections_classification_; std::unordered_set filtered_collections_selection_; std::vector regex_patterns_; std::unordered_set regex_approximate_match_pattern_ids_; // Indices into regex_patterns_ for the different modes. std::vector annotation_regex_patterns_, classification_regex_patterns_, selection_regex_patterns_; std::unique_ptr owned_unilib_; const UniLib* unilib_; }; namespace internal { // Helper function, which if the initial 'span' contains only white-spaces, // moves the selection to a single-codepoint selection on the left side // of this block of white-space. CodepointSpan SnapLeftIfWhitespaceSelection(CodepointSpan span, const UnicodeText& context_unicode, const UniLib& unilib); // Copies tokens from 'cached_tokens' that are // 'tokens_around_selection_to_copy' (on the left, and right) tokens distant // from the tokens that correspond to 'selection_indices'. std::vector CopyCachedTokens(const std::vector& cached_tokens, CodepointSpan selection_indices, TokenSpan tokens_around_selection_to_copy); } // namespace internal // Interprets the buffer as a Model flatbuffer and returns it for reading. const Model* ViewModel(const void* buffer, int size); } // namespace libtextclassifier2 #endif // LIBTEXTCLASSIFIER_TEXT_CLASSIFIER_H_