/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "util/utf8/unicodetext.h" #include #include #include "util/strings/utf8.h" namespace libtextclassifier2 { // *************** Data representation ********** // Note: the copy constructor is undefined. UnicodeText::Repr& UnicodeText::Repr::operator=(Repr&& src) { if (ours_ && data_) delete[] data_; data_ = src.data_; size_ = src.size_; capacity_ = src.capacity_; ours_ = src.ours_; src.ours_ = false; return *this; } void UnicodeText::Repr::PointTo(const char* data, int size) { if (ours_ && data_) delete[] data_; // If we owned the old buffer, free it. data_ = const_cast(data); size_ = size; capacity_ = size; ours_ = false; } void UnicodeText::Repr::Copy(const char* data, int size) { resize(size); memcpy(data_, data, size); } void UnicodeText::Repr::resize(int new_size) { if (new_size == 0) { clear(); } else { if (!ours_ || new_size > capacity_) reserve(new_size); // Clear the memory in the expanded part. if (size_ < new_size) memset(data_ + size_, 0, new_size - size_); size_ = new_size; ours_ = true; } } void UnicodeText::Repr::reserve(int new_capacity) { // If there's already enough capacity, and we're an owner, do nothing. if (capacity_ >= new_capacity && ours_) return; // Otherwise, allocate a new buffer. capacity_ = std::max(new_capacity, (3 * capacity_) / 2 + 20); char* new_data = new char[capacity_]; // If there is an old buffer, copy it into the new buffer. if (data_) { memcpy(new_data, data_, size_); if (ours_) delete[] data_; // If we owned the old buffer, free it. } data_ = new_data; ours_ = true; // We own the new buffer. // size_ is unchanged. } void UnicodeText::Repr::append(const char* bytes, int byte_length) { reserve(size_ + byte_length); memcpy(data_ + size_, bytes, byte_length); size_ += byte_length; } void UnicodeText::Repr::clear() { if (ours_) delete[] data_; data_ = nullptr; size_ = capacity_ = 0; ours_ = true; } // *************** UnicodeText ****************** UnicodeText::UnicodeText() {} UnicodeText::UnicodeText(const UnicodeText& src) { Copy(src); } UnicodeText& UnicodeText::operator=(UnicodeText&& src) { this->repr_ = std::move(src.repr_); return *this; } UnicodeText& UnicodeText::Copy(const UnicodeText& src) { repr_.Copy(src.repr_.data_, src.repr_.size_); return *this; } UnicodeText& UnicodeText::PointToUTF8(const char* buffer, int byte_length) { repr_.PointTo(buffer, byte_length); return *this; } UnicodeText& UnicodeText::CopyUTF8(const char* buffer, int byte_length) { repr_.Copy(buffer, byte_length); return *this; } UnicodeText& UnicodeText::AppendUTF8(const char* utf8, int len) { repr_.append(utf8, len); return *this; } const char* UnicodeText::data() const { return repr_.data_; } int UnicodeText::size_bytes() const { return repr_.size_; } namespace { enum { RuneError = 0xFFFD, // Decoding error in UTF. RuneMax = 0x10FFFF, // Maximum rune value. }; int runetochar(const char32 rune, char* dest) { // Convert to unsigned for range check. uint32 c; // 1 char 00-7F c = rune; if (c <= 0x7F) { dest[0] = static_cast(c); return 1; } // 2 char 0080-07FF if (c <= 0x07FF) { dest[0] = 0xC0 | static_cast(c >> 1 * 6); dest[1] = 0x80 | (c & 0x3F); return 2; } // Range check if (c > RuneMax) { c = RuneError; } // 3 char 0800-FFFF if (c <= 0xFFFF) { dest[0] = 0xE0 | static_cast(c >> 2 * 6); dest[1] = 0x80 | ((c >> 1 * 6) & 0x3F); dest[2] = 0x80 | (c & 0x3F); return 3; } // 4 char 10000-1FFFFF dest[0] = 0xF0 | static_cast(c >> 3 * 6); dest[1] = 0x80 | ((c >> 2 * 6) & 0x3F); dest[2] = 0x80 | ((c >> 1 * 6) & 0x3F); dest[3] = 0x80 | (c & 0x3F); return 4; } } // namespace UnicodeText& UnicodeText::AppendCodepoint(char32 ch) { char str[4]; int char_len = runetochar(ch, str); repr_.append(str, char_len); return *this; } void UnicodeText::clear() { repr_.clear(); } int UnicodeText::size_codepoints() const { return std::distance(begin(), end()); } bool UnicodeText::empty() const { return size_bytes() == 0; } bool UnicodeText::is_valid() const { return IsValidUTF8(repr_.data_, repr_.size_); } bool UnicodeText::operator==(const UnicodeText& other) const { if (repr_.size_ != other.repr_.size_) { return false; } return memcmp(repr_.data_, other.repr_.data_, repr_.size_) == 0; } std::string UnicodeText::ToUTF8String() const { return UTF8Substring(begin(), end()); } std::string UnicodeText::UTF8Substring(const const_iterator& first, const const_iterator& last) { return std::string(first.it_, last.it_ - first.it_); } UnicodeText::~UnicodeText() {} // ******************* UnicodeText::const_iterator ********************* // The implementation of const_iterator would be nicer if it // inherited from boost::iterator_facade // (http://boost.org/libs/iterator/doc/iterator_facade.html). UnicodeText::const_iterator::const_iterator() : it_(0) {} UnicodeText::const_iterator& UnicodeText::const_iterator::operator=( const const_iterator& other) { if (&other != this) it_ = other.it_; return *this; } UnicodeText::const_iterator UnicodeText::begin() const { return const_iterator(repr_.data_); } UnicodeText::const_iterator UnicodeText::end() const { return const_iterator(repr_.data_ + repr_.size_); } bool operator<(const UnicodeText::const_iterator& lhs, const UnicodeText::const_iterator& rhs) { return lhs.it_ < rhs.it_; } char32 UnicodeText::const_iterator::operator*() const { // (We could call chartorune here, but that does some // error-checking, and we're guaranteed that our data is valid // UTF-8. Also, we expect this routine to be called very often. So // for speed, we do the calculation ourselves.) // Convert from UTF-8 unsigned char byte1 = static_cast(it_[0]); if (byte1 < 0x80) return byte1; unsigned char byte2 = static_cast(it_[1]); if (byte1 < 0xE0) return ((byte1 & 0x1F) << 6) | (byte2 & 0x3F); unsigned char byte3 = static_cast(it_[2]); if (byte1 < 0xF0) { return ((byte1 & 0x0F) << 12) | ((byte2 & 0x3F) << 6) | (byte3 & 0x3F); } unsigned char byte4 = static_cast(it_[3]); return ((byte1 & 0x07) << 18) | ((byte2 & 0x3F) << 12) | ((byte3 & 0x3F) << 6) | (byte4 & 0x3F); } UnicodeText::const_iterator& UnicodeText::const_iterator::operator++() { it_ += GetNumBytesForNonZeroUTF8Char(it_); return *this; } UnicodeText::const_iterator& UnicodeText::const_iterator::operator--() { while (IsTrailByte(*--it_)) { } return *this; } UnicodeText UTF8ToUnicodeText(const char* utf8_buf, int len, bool do_copy) { UnicodeText t; if (do_copy) { t.CopyUTF8(utf8_buf, len); } else { t.PointToUTF8(utf8_buf, len); } return t; } UnicodeText UTF8ToUnicodeText(const char* utf8_buf, bool do_copy) { return UTF8ToUnicodeText(utf8_buf, strlen(utf8_buf), do_copy); } UnicodeText UTF8ToUnicodeText(const std::string& str, bool do_copy) { return UTF8ToUnicodeText(str.data(), str.size(), do_copy); } UnicodeText UTF8ToUnicodeText(const std::string& str) { return UTF8ToUnicodeText(str, /*do_copy=*/true); } } // namespace libtextclassifier2