{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"run_control": {
"frozen": false,
"read_only": false
}
},
"source": [
"# Analysis of PELT signal error due to skip last window update"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"run_control": {
"frozen": false,
"marked": false,
"read_only": false
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2017-08-02 21:50:32,729 INFO : root : Using LISA logging configuration:\n",
"2017-08-02 21:50:32,732 INFO : root : /home/joelaf/repo/lisa-aosp/external/lisa/logging.conf\n"
]
}
],
"source": [
"import logging\n",
"from conf import LisaLogging\n",
"LisaLogging.setup()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"run_control": {
"frozen": false,
"marked": false,
"read_only": false
}
},
"outputs": [],
"source": [
"# Generate plots inline\n",
"%matplotlib inline\n",
"import json\n",
"import os\n",
"from trace import Trace\n",
"import numpy\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import trappy\n",
"\n",
"path_to_dat = \"/home/joelaf/repo/lisa-aosp/external/lisa/ipynb/scratchpad/pelt-error/trace-fixed-pc.dat\""
]
},
{
"cell_type": "markdown",
"metadata": {
"run_control": {
"frozen": false,
"read_only": false
}
},
"source": [
"## Parse Trace and Profiling Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"run_control": {
"frozen": false,
"marked": false,
"read_only": false
}
},
"outputs": [],
"source": [
"trace = Trace(None, path_to_dat, events=[ 'sched_switch', 'pelt_update' ])"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"run_control": {
"frozen": false,
"read_only": false
}
},
"source": [
"## Trace visualization"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"run_control": {
"frozen": false,
"marked": false,
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"\n",
"\n",
"\n",
" \n",
"
"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trappy.plotter.plot_trace(trace.ftrace)"
]
},
{
"cell_type": "markdown",
"metadata": {
"run_control": {
"frozen": false,
"read_only": false
}
},
"source": [
"## Latency DataFrames"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index([u'__comm', u'__cpu', u'__line', u'__pid', u'__tgid', u'acc_load_avg',\n",
" u'acc_util_avg', u'cfs_rq', u'delta_us', u'load_avg', u'load_err',\n",
" u'load_sum', u'ret', u'sum_err', u'util_avg', u'util_err'],\n",
" dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = trace.data_frame.trace_event('pelt_update')\n",
"rq_df = df[df.cfs_rq == 1]\n",
"rq_df.columns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"UTIL ERROR\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
" | \n",
"
\n",
"\n",
" | \n",
"
\n",
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"LOAD ERROR\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
" | \n",
"
\n",
"\n",
" | \n",
"
\n",
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the accurate and the actual signals for the RQ\n",
"print 'UTIL ERROR'\n",
"trappy.ILinePlot(trace.ftrace,\n",
" signals = [\n",
" 'pelt_update:util_avg',\n",
" 'pelt_update:acc_util_avg',\n",
" ]).view()\n",
"\n",
"print 'LOAD ERROR'\n",
"trappy.ILinePlot(trace.ftrace,\n",
" signals = [\n",
" 'pelt_update:load_avg',\n",
" 'pelt_update:acc_load_avg',\n",
" ]).view()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Data showing highest load / util errors (> count of 2) on the RQ (cpu 1)\n",
"-------------------------------\n",
"Note that, as expected, the error exists only for cases where delta is < 1ms (now - last_update_time)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of errors: 0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/joelaf/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
" if __name__ == '__main__':\n",
"/home/joelaf/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:4: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" __comm | \n",
" acc_load_avg | \n",
" util_avg | \n",
" acc_util_avg | \n",
" util_err | \n",
" delta_us | \n",
" load_sum | \n",
" sum_err | \n",
" load_avg | \n",
" load_err | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [__comm, acc_load_avg, util_avg, acc_util_avg, util_err, delta_us, load_sum, sum_err, load_avg, load_err]\n",
"Index: []"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"err_df = rq_df[(rq_df.util_err > 10) | (rq_df.load_err > 10)][rq_df['__comm'] == 'thread0']\n",
"err_df = err_df[['__comm', 'acc_load_avg', 'util_avg', 'acc_util_avg', \\\n",
" 'util_err', 'delta_us', 'load_sum', 'sum_err', 'load_avg', 'load_err']]\n",
"\n",
"err_df = err_df.sort(columns=['delta_us'], ascending=False)\n",
"print 'number of errors: ' + str(len(err_df))\n",
"err_df.head(20)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/joelaf/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
" if __name__ == '__main__':\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAGrCAYAAACSWzXmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcZHV9L/zP15kxw06EASOLQxIiEgwEB/SJcSUa3CAa\nCXCNFzQJGpeo1xsVw2PIE8yiJGbzxl1IJIgazFUTjYgmREUUcFBhYgyKOoAwgMoiyPZ9/qhCm6F7\npmfo7uo5vN+vV7+m6tSpcz51qqerP/07S3V3AAAA2PLdb9IBAAAAmBsKHgAAwEAoeAAAAAOh4AEA\nAAyEggcAADAQCh4AAMBAKHgADEZVPaSqVlfVDVX1O5POAwALTcED2AJU1bFV9aWq+n5Vfbuq/raq\ndpx0rkXolUk+2d3bdfdfTTrMQqmqPxx/f9xeVSdO8/j/qKpvVNVNVfVPVfWACcScUVVdVlW/NOkc\nAEOg4AEsclX1iiR/muR3k+yQ5JFJHpzkrKq6/wJlWLoQ65kDD05y8VwsaLrXvKnbYTPm33VT5p/i\nvzMqt/88zTJ/Nslbkjwnya5Jvp/k/2zmegBY5BQ8gEWsqrZP8gdJXtLdH+3u27r7siS/lmRlkl8f\nz7ekql5TVZeOd0+8oKr2GD/2s1V1VlVdV1VXVdVrxtNPqaqTpqzrcVW1dsr9y6rqVVX1xSQ3VdXS\nqnpQVf1jVa2rqq9P3Q2yqk6sqvdW1d+NM1xcVaumPL5HVZ05fu61VfU3Ux57XlWtqarvVNW/VtWD\nN7BNDhsv+7tV9W9V9dDx9E8keXySv6mqG6vqZ6Z57g5V9Y6qurKqLq+qk6pqyfixY6vq01X1xqq6\nNsmJM0y7X1WdMB4Ru3r8encYL2NlVXVV/UZVfTPJJ6pqeVW9e/yav1tVn99AkTulqj5XVS/YlBHa\n7j61uz+S5IZpHn52kg919zndfWOS/zfJM6tquxm277Tv00Ze992+d8bTfjgqt6Hvjar6+yR7JvnQ\n+H175SZuMwCmUPAAFrdfSLI8yZlTJ45/Uf+XJE8cT/pfSY5O8pQk2yd5XpLvj3+J/3iSjyZ5UJKf\nTnL2Jqz/6CRPTbJjkjuTfCjJRUl2S3JIkpdV1S9Pmf+wJO8Zz//BJHeVgyVJPpzkGxkV093G86Wq\nDk/ymiTPTLIiyX8kOX26MOPSdnqSl43n/ZeMisH9u/sJ4+e+uLu37e7/mmYRpyS5fbwdfj7Jk5L8\n5pTHH5HkaxmNdL1uhmnHjr8en+Qnk2x71+uc4rFJHprkl5Mck9HI6x5JdkrygiQ3T/f6Mtp+fzR+\n3jeq6h+q6olVdW8+r382o/csSdLdlyb5QZLpCvCM71Nm97o3ZNrvje5+TpJvJnn6+H17fTZtmwEw\nhYIHsLjtnOSa7r59mseuHD+ejErKCd39lR65qLuvTfK0JN/u7j/r7lu6+4buPm8T1v9X3f2t7r45\nyUFJVnT3/9fdt3b315K8LclRU+b/VHf/S3ffkeTvk+w/nn5wRgXzd7v7pnGWT40fe0GSP+7uNePX\n+UdJDphhFO/IJP/c3Wd1921JTk6yVUZFeIPGI0BPSfKycYark7xxvfxXdPdfd/ft49c83bRnJ/nz\n7v7auGgfn+SouvvumCeO13FzktsyKik/3d13dPcF3X39dBnHI7T/1N3PSPJTST6b0e65l1XVizf2\nGmewbZLvrTft+iTTjeBt6H2azevekJm+N6Yz620GwN0peACL2zVJdp7hl+ifGD+ejEY6Lp1mnpmm\nz9a3ptx+cJIHjXeZ+25VfTejkbepu859e8rt7ydZPs6+R5JvzFBUH5zkL6cs87okldHo0foelNHo\nUpKku+8cZ5xu3unWsyzJlVPW9ZYku8zwemeadrcM49tLc/ftMPU5f5/kX5O8p6quqKrXV9WyWeS9\nNskXk6xO8uNJ9prFc6ZzY0ajulPtkOl359zQ+zSb170hM31vTGdztxnAfZ6CB7C4nZvR7nTPnDqx\nqrZN8uT8aHfLb2U04rO+b2W0O910bkqy9ZT7D5xmnl5vWV/v7h2nfG3X3U/Z+MvIt5LsOcMv9N9K\n8vz1lrtVd39mmnmvyKioJUmqqjIqJZfPMsMPkuw8ZT3bd/fPTpmnp3ne+tPuliGj48duT3LVdM8Z\nj8r9QXfvm9FI49OS/M+ZQlbV3lX1h0m+nuQvk3wpyU929ys2+gqnd3GmjJZV1U8luX+S6XZh3dD7\ntKHXfbfvpfGunis2IePdtvGmbjMAfkTBA1jEuvt7GZ1k5a+r6tCqWlZVK5O8N8najEY6kuTtSf5w\nXA6qqn6uqnbK6Hiqn6iql1XVj1XVdlX1iPFzVid5SlU9oKoemNFxbRvyuSQ31OjEK1vV6MQu+1XV\nQbN4KZ/LaJfSP6mqbcYn0XjU+LE3Jzm+Rmd7vOtEKEfMsJz3JnlqVR0yHtF5RUalbboyeDfdfWWS\njyX5s6rafnzSkJ+qqsfOIv9Upyd5eVXtNS7af5TkjBlGvVJVj6+qh41Lz/UZ7X545wzzvjOjUr9j\nkmd29/7d/cbuXrehQOPvi+UZfa4vHW/fJeOHT0vy9Kp6dFVtk+QPk5zZ3dON4G3ofdrQ6/6vjEbk\nnjp+X05I8mMbyryeqzLlDxGbss0AuDsFD2CRG5904jUZHW92fZLzMhppOaS7fzCe7c8zKj8fG8/z\njiRbjX+Jf2KSp2e0i9xXMzpJRjIqhxcluWz8vDM2kuOOjEZSDshodOmajIrlDrN4DXeMM/x0RifU\nWJvR8XTp7g9kdJzZe6rq+iRfzmh0crrlfCWjM4f+9Xj9T8/o5By3bizD2P/MaPTqkiTfSfL+jHZ1\n3RTvzGjbnZPRdrglyUs2MP8Dx+u5PsmaJP+eHxXz9b05yYO6+yXdfeEmZHpbRichOTrJ741vPydJ\nuvvijI5zPC3J1Um2SfLC6RayofcpG3jd4z9EvDCj74fLMxrRu9tZNTfij5OcMN519n9n07YZAFNU\n93R7owAAALClMYIHAAAwEAoeAADAQCh4AAAAA6HgAQAADMRMFxhdVHbeeedeuXLlpGMAAABMxAUX\nXHBNd2/0GqNbRMFbuXJlzj///EnHAAAAmIiq+sZs5rOLJgAAwEAoeAAAAAOh4AEAAAzEFnEMHgAA\nsGW67bbbsnbt2txyyy2TjrJFWL58eXbfffcsW7Zss56v4AEAAPNm7dq12W677bJy5cpU1aTjLGrd\nnWuvvTZr167NXnvttVnLsIsmAAAwb2655ZbstNNOyt0sVFV22mmnezXaqeABAADzSrmbvXu7rRQ8\nAACAgXAMHgAAsGBWvvqf53R5l/3JU+d0eVs6I3gAAMB90imnnJIrrrjih/d/8zd/M5dcckmSZOXK\nlbnmmmsmFW2zKXgAAMB90voF7+1vf3v23XffOVv+HXfcscH780HBAwAABu2yyy7Lfvvt98P7J598\ncvbbb7+cf/75efazn50DDjggN998cx73uMfl/PPPn9Uy3/3ud+fggw/OAQcckOc///k/LG/bbrtt\nXvGKV2T//ffPueeem5UrV+ZVr3pVDjzwwLzvfe+bl9c3lYIHAADc5zzrWc/KqlWrctppp2X16tXZ\naqutZv3cNWvW5IwzzsinP/3prF69OkuWLMlpp52WJLnpppvyiEc8IhdddFF+8Rd/MUmy00475cIL\nL8xRRx01L69lqnk7yUpVvTPJ05Jc3d37jae9IcnTk9ya5NIkz+3u785XBgAAgLl29tln54ILLshB\nBx2UJLn55puzyy67JEmWLFmSX/3VX73b/EceeeSCZZvPs2iekuRvkvzdlGlnJTm+u2+vqj9NcnyS\nV81jBgAA4D5u6dKlufPOO394/95cSDxJujvHHHNM/viP//gejy1fvjxLliy527RtttnmXq1vU8xb\nwevuc6pq5XrTPjbl7meTPGu+1g8AACw+k7iswa677pqrr7461157bbbddtt8+MMfzqGHHprtttsu\nN9xwwyYv75BDDsnhhx+el7/85dlll11y3XXX5YYbbsiDH/zgeUi/aSZ5HbznJTljpger6rgkxyXJ\nnnvuuVCZ7p0Td5jlfN+b3xwAAMAPLVu2LK997Wtz8MEHZ7fddss+++yTJDn22GPzghe8IFtttVXO\nPffcWS9v3333zUknnZQnPelJufPOO7Ns2bK86U1vWhQFr7p7/hY+GsH78F3H4E2Z/ntJViV5Zs8i\nwKpVq3q2Z7OZKAUPAADuZs2aNXnoQx866RhblOm2WVVd0N2rNvbcBR/Bq6pjMzr5yiGzKXcAAADM\nzoIWvKo6NMkrkzy2u7+/kOsGAADYFNdee20OOeSQe0w/++yzs9NOO00g0cbN52USTk/yuCQ7V9Xa\nJL+f0VkzfyzJWVWVJJ/t7hfMVwYAAIDNtdNOO2X16tWTjrFJ5vMsmkdPM/kd87U+AACA+7r7TToA\nAAAAc0PBAwAAGIhJXgcPAAC4r5ntpcVmvTyXIJvKCB4AADBo22677Zws58QTT8zJJ588J8uaLwoe\nAADAArn99ts3eP/esosmAABwn9DdeeUrX5mPfOQjqaqccMIJOfLII3PjjTfm8MMPz3e+853cdttt\nOemkk3L44YcnSV73utfl1FNPzS677JI99tgjD3/4w2dc/qWXXpoXvehFWbduXbbeeuu87W1vyz77\n7JNjjz02y5cvzxe+8IU86lGPyvbbb59LL700X/va17Lnnnvm9NNPn7PXqOABAAD3CWeeeWZWr16d\niy66KNdcc00OOuigPOYxj8mKFSvygQ98INtvv32uueaaPPKRj8xhhx2WCy+8MO95z3uyevXq3H77\n7TnwwAM3WPCOO+64vPnNb87ee++d8847Ly984QvziU98Ikmydu3afOYzn8mSJUty4okn5pJLLsmn\nPvWpbLXVVnP6GhU8AADgPuFTn/pUjj766CxZsiS77rprHvvYx+bzn/98nvzkJ+c1r3lNzjnnnNzv\nfvfL5Zdfnquuuir/8R//kWc84xnZeuutkySHHXbYjMu+8cYb85nPfCZHHHHED6f94Ac/+OHtI444\nIkuWLPnh/cMOO2zOy12i4AEAAPdxp512WtatW5cLLrggy5Yty8qVK3PLLbds0jLuvPPO7Ljjjlm9\nevW0j2+zzTYbvD9XFDwAAGDhTPCyBo9+9KPzlre8Jcccc0yuu+66nHPOOXnDG96QM844I7vsskuW\nLVuWT37yk/nGN76RJHnMYx6TY489Nscff3xuv/32fOhDH8rzn//8aZe9/fbbZ6+99sr73ve+HHHE\nEenufPGLX8z++++/kC9RwQMAAO4bnvGMZ+Tcc8/N/vvvn6rK61//+jzwgQ/Ms5/97Dz96U/Pwx72\nsKxatSr77LNPkuTAAw/MkUcemf333z+77LJLDjrooA0u/7TTTstv//Zv56STTsptt92Wo446asEL\nXnX3gq5wc6xatarPP//8ScfYuNletNHFGAEAuI9Ys2ZNHvrQh046xhZlum1WVRd096qNPdd18AAA\nAAbCLpoAAACb4EUvelE+/elP323aS1/60jz3uc+dUKIfUfAAAIB51d2pqknHmDNvetOb5m3Z9/YQ\nOrtoAgAA82b58uW59tpr73VxuS/o7lx77bVZvnz5Zi/DCB4AADBvdt9996xduzbr1q2bdJQtwvLl\ny7P77rtv9vMVPAAAYN4sW7Yse+2116Rj3GfYRRMAAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABg\nIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAgFDwAAICB\nUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZC\nwQMAABgIBQ8AAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgF\nDwAAYCAUPAAAgIGYt4JXVe+sqqur6stTpj2gqs6qqq+O//3x+Vo/AADAfc18juCdkuTQ9aa9OsnZ\n3b13krPH9wEAAJgD81bwuvucJNetN/nwJKeOb5+a5Ffma/0AAAD3NQt9DN6u3X3l+Pa3k+w604xV\ndVxVnV9V569bt25h0gEAAGzBJnaSle7uJL2Bx9/a3au6e9WKFSsWMBkAAMCWaaEL3lVV9RNJMv73\n6gVePwAAwGAtdMH7YJJjxrePSfJ/F3j9AAAAgzWfl0k4Pcm5SR5SVWur6jeS/EmSJ1bVV5P80vg+\nAAAAc2DpfC24u4+e4aFD5mudAAAA92UTO8kKAAAAc0vBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZC\nwQMAABgIBQ8AAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgF\nDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8\nAACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAgFDwAAICBUPAA\nAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMA\nABgIBQ8AAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAA\nYCAmUvCq6uVVdXFVfbmqTq+q5ZPIAQAAMCQLXvCqarckv5NkVXfvl2RJkqMWOgcAAMDQTGoXzaVJ\ntqqqpUm2TnLFhHIAAAAMxoIXvO6+PMnJSb6Z5Mok3+vuj60/X1UdV1XnV9X569atW+iYAAAAW5xJ\n7KL540kOT7JXkgcl2aaqfn39+br7rd29qrtXrVixYqFjAgAAbHEmsYvmLyX5enev6+7bkpyZ5Bcm\nkAMAAGBQJlHwvpnkkVW1dVVVkkOSrJlADgAAgEGZxDF45yV5f5ILk3xpnOGtC50DAABgaJZOYqXd\n/ftJfn8S6wYAABiqSV0mAQAAgDmm4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIHAAAw\nEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAKHgAAwEAoeAAAAAOh4AEAAAyEggcAADAQCh4AAMBA\nKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4AAAAA6HgAQAADMSsCl5VPWy+gwAAAHDvzHYE7/9U\n1eeq6oVVtcO8JgIAAGCzLJ3NTN396KraO8nzklxQVZ9L8q7uPmte021hVt7yD7Oa77L5jQEAANxH\nzfoYvO7+apITkrwqyWOT/FVV/WdVPXO+wgEAADB7sz0G7+eq6o1J1iR5QpKnd/dDx7ffOI/5AAAA\nmKVZ7aKZ5K+TvD3Ja7r75rsmdvcVVXXCvCQDAABgk8y24D01yc3dfUeSVNX9kizv7u9399/PWzoA\nAABmbbbH4H08yVZT7m89ngYAAMAiMduCt7y7b7zrzvj21vMTCQAAgM0x24J3U1UdeNedqnp4kps3\nMD8AAAALbLbH4L0syfuq6ookleSBSY6ct1QAAABsstle6PzzVbVPkoeMJ32lu2+bv1gAAABsqtmO\n4CXJQUlWjp9zYFWlu/9uXlIBAACwyWZV8Krq75P8VJLVSe4YT+4kCh4AAMAiMdsRvFVJ9u3uns8w\nAAAAbL7ZnkXzyxmdWAUAAIBFarYjeDsnuaSqPpfkB3dN7O7D5iUVAAAAm2y2Be/E+QwBAADAvTfb\nyyT8e1U9OMne3f3xqto6yZL5jQYAAMCmmNUxeFX1W0nen+Qt40m7Jfmn+QoFAADAppvtSVZelORR\nSa5Pku7+apJd5isUAAAAm262Be8H3X3rXXeqamlG18EDAABgkZhtwfv3qnpNkq2q6olJ3pfkQ/MX\nCwAAgE0124L36iTrknwpyfOT/EuSE+YrFAAAAJtutmfRvDPJ28ZfAAAALEKzKnhV9fVMc8xdd//k\nnCcCAABgs8z2QuerptxenuSIJA+Y+zgAAABsrlkdg9fd1075ury7/yLJU+c5GwAAAJtgtrtoHjjl\n7v0yGtGb7egfAAAAC2C2Je3Ppty+PcllSX5tztMAAACw2WZ7Fs3Hz+VKq2rHJG9Psl9GJ295Xnef\nO5frAAAAuK+Z7S6a/2tDj3f3n2/iev8yyUe7+1lVdf8kW2/i8wEAAFjPppxF86AkHxzff3qSzyX5\n6qausKp2SPKYJMcmSXffmuTWTV0OAAAAdzfbgrd7kgO7+4YkqaoTk/xzd//6ZqxzryTrkryrqvZP\nckGSl3b3TVNnqqrjkhyXJHvuuedmrAYAAOC+ZVaXSUiya+4+ynbreNrmWJrkwCR/290/n+SmJK9e\nf6bufmt3r+ruVStWrNjMVQEAANx3zHYE7++SfK6qPjC+/ytJTt3Mda5Nsra7zxvff3+mKXgAAABs\nmtmeRfN1VfWRJI8eT3pud39hc1bY3d+uqm9V1UO6+ytJDklyyeYsCwAAgB/ZlIuVb53k+u5+V1Wt\nqKq9uvvrm7nelyQ5bXwGza8lee5mLgcAAICx2V4m4fczOpPmQ5K8K8myJO9O8qjNWWl3rx4vDwAA\ngDky25OsPCPJYRmdECXdfUWS7eYrFAAAAJtutgXv1u7uJJ0kVbXN/EUCAABgc8y24L23qt6SZMeq\n+q0kH0/ytvmLBQAAwKaa7Vk0T66qJya5PqPj8F7b3WfNazIAAAA2yUYLXlUtSfLx7n58EqUOAABg\nkdroLprdfUeSO6tqhwXIAwAAwGaa7XXwbkzypao6K+MzaSZJd//OvKQCAABgk8224J05/gIAAGCR\n2mDBq6o9u/ub3X3qQgUCAABg82zsGLx/uutGVf3jPGcBAADgXthYwaspt39yPoMAAABw72ys4PUM\ntwEAAFhkNnaSlf2r6vqMRvK2Gt/O+H539/bzmg4AAIBZ22DB6+4lCxUEAACAe2ejFzoHAABgy6Dg\nAQAADISCBwAAMBAKHgAAwEAoeAAAAAOh4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIH\nAAAwEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAKHgAAwEAoeAAAAAOh4AEAAAyEggcAADAQCh4A\nAMBAKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAKHgAAwEAoeAAA\nAAOh4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4AAAAAzGxgldV\nS6rqC1X14UllAAAAGJJJjuC9NMmaCa4fAABgUCZS8Kpq9yRPTfL2SawfAABgiCY1gvcXSV6Z5M6Z\nZqiq46rq/Ko6f926dQuXDAAAYAu14AWvqp6W5OruvmBD83X3W7t7VXevWrFixQKlAwAA2HJNYgTv\nUUkOq6rLkrwnyROq6t0TyAEAADAoC17wuvv47t69u1cmOSrJJ7r71xc6BwAAwNC4Dh4AAMBALJ3k\nyrv735L82yQzAAAADIURPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAgFDwAAICBUPAAAAAGQsEDAAAY\nCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAg\nFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCCWTjoAc+TE\nHTZh3u/NXw4AAGBijOABAAAMhIIHAAAwEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAKHgAAwEAo\neAAAAAOh4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4AAAAA6Hg\nAQAADISCBwAAMBAKHgAAwEAoeAAAAAOh4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIH\nAAAwEAte8Kpqj6r6ZFVdUlUXV9VLFzoDAADAEC2dwDpvT/KK7r6wqrZLckFVndXdl0wgCwAAwGAs\n+Ahed1/Z3ReOb9+QZE2S3RY6BwAAwNBM9Bi8qlqZ5OeTnDfNY8dV1flVdf66desWOhoAAMAWZ2IF\nr6q2TfKPSV7W3dev/3h3v7W7V3X3qhUrVix8QAAAgC3MRApeVS3LqNyd1t1nTiIDAADA0EziLJqV\n5B1J1nT3ny/0+gEAAIZqEiN4j0rynCRPqKrV46+nTCAHAADAoCz4ZRK6+1NJaqHXCwAAMHQTPYsm\nAAAAc0fBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8AAGAgFDwAAICBUPAAAAAGQsED\nAAAYCAUPAABgIBQ8AACAgVDwAAAABkLBAwAAGAgFDwAAYCAUPAAAgIFQ8AAAAAZCwQMAABgIBQ8A\nAGAgFDwAAICBUPAAAAAGQsEDAAAYCAUPAABgIBQ8AACAgVDwAAAABmLppAPMyhVfSE7cYePznfi9\n+c+ySK285R9mPe9l8xcDAACYICN4AAAAA6HgAQAADISCBwAAMBAKHgAAwEAoeAAAAAOh4AEAAAyE\nggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAK\nHgAAwEAoeAAAAAOh4AEAAAyEggcAADAQCh4AAMBAKHgAAAADoeABAAAMhIIHAAAwEAoeAADAQCh4\nAAAAA6HgAQAADMRECl5VHVpVX6mq/66qV08iAwAAwNAseMGrqiVJ3pTkyUn2TXJ0Ve270DkAAACG\nZhIjeAcn+e/u/lp335rkPUkOn0AOAACAQanuXtgVVj0ryaHd/Zvj+89J8ojufvF68x2X5Ljx3f2S\nfHlBg26enZNcM+kQsyDn3NkSMiZyzjU559aWkHNLyJjIOdfknFtyzp0tIWMi51x7cHev2NhMSxci\nyebo7rcmeWuSVNX53b1qwpE2Ss65tSXk3BIyJnLONTnn1paQc0vImMg51+ScW3LOnS0hYyLnpExi\nF83Lk+wJmlelAAAJOUlEQVQx5f7u42kAAADcC5MoeJ9PsndV7VVV909yVJIPTiAHAADAoCz4Lprd\nfXtVvTjJvyZZkuSd3X3xRp721vlPNifknFtbQs4tIWMi51yTc25tCTm3hIyJnHNNzrkl59zZEjIm\nck7Egp9kBQAAgPkxkQudAwAAMPcUPAAAgIFY1AWvqg6tqq9U1X9X1asnnWcmVfXOqrq6qhbttfqq\nao+q+mRVXVJVF1fVSyedaTpVtbyqPldVF41z/sGkM21IVS2pqi9U1YcnnWUmVXVZVX2pqlZX1fmT\nzjOTqtqxqt5fVf9ZVWuq6v+ZdKb1VdVDxtvxrq/rq+plk861vqp6+fj/z5er6vSqWj7pTNOpqpeO\nM168mLbjdD/Tq+oBVXVWVX11/O+PTzLjONN0OY8Yb887q2pRnPJ7hpxvGP9f/2JVfaCqdpxkxnGm\n6XL+4Tjj6qr6WFU9aJIZx5lm/J2jql5RVV1VO08i25Qc023LE6vq8ik/P58yyYzjTNNuy6p6yfj7\n8+Kqev2k8k3JM932PGPKtrysqlZPMuM403Q5D6iqz971O0hVHTzJjONM0+Xcv6rOHf++9KGq2n6S\nGe+tRVvwqmpJkjcleXKSfZMcXVX7TjbVjE5JcuikQ2zE7Ule0d37Jnlkkhct0u35gyRP6O79kxyQ\n5NCqeuSEM23IS5OsmXSIWXh8dx+wyK/x8pdJPtrd+yTZP4twu3b3V8bb8YAkD0/y/SQfmHCsu6mq\n3ZL8TpJV3b1fRiezOmqyqe6pqvZL8ltJDs7o/X5aVf30ZFP90Cm558/0Vyc5u7v3TnL2+P6knZJ7\n5vxykmcmOWfB08zslNwz51lJ9uvun0vyX0mOX+hQ0zgl98z5hu7+ufH/+Q8nee2Cp7qnUzLN7xxV\ntUeSJyX55kIHmsYpmf73ojfe9TO0u/9lgTNN55Ssl7OqHp/k8CT7d/fPJjl5ArnWd0rWy9ndR075\nPPrHJGdOIth6Tsk93/fXJ/mDcc7Xju9P2im5Z863J3l1dz8so8/1313oUHNp0Ra8jD70/7u7v9bd\ntyZ5T0b/4Rad7j4nyXWTzrEh3X1ld184vn1DRr887zbZVPfUIzeO7y4bfy3KMwFV1e5JnprRDwXu\nharaIcljkrwjSbr71u7+7mRTbdQhSS7t7m9MOsg0libZqqqWJtk6yRUTzjOdhyY5r7u/3923J/n3\njIrJxM3wM/3wJKeOb5+a5FcWNNQ0psvZ3Wu6+ysTijStGXJ+bPy+J8lnM7om7kTNkPP6KXe3ySL4\nPNrA7xxvTPLKLO6Mi8oMOX87yZ909w/G81y94MHWs6HtWVWV5NeSnL6goaYxQ85Octdo2A5ZBJ9H\nM+T8mfzoD2NnJfnVBQ01xxZzwdstybem3F+bRVhItkRVtTLJzyc5b7JJpjfe7XF1kquTnNXdizJn\nkr/I6MP0zkkH2YhO8vGquqCqjpt0mBnslWRdkneNd3l9e1VtM+lQG3FUFsEH6vq6+/KM/uL8zSRX\nJvled39ssqmm9eUkj66qnapq6yRPSbLHhDNtyK7dfeX49reT7DrJMAPzvCQfmXSImVTV66rqW0me\nncUxgncPVXV4ksu7+6JJZ9mIl4x3eX3nYtjNeQY/k9HPpvOq6t+r6qBJB9qIRye5qru/OukgM3hZ\nkjeM/w+dnMUxWj+di/OjgaQjsrg/jzZqMRc85kFVbZvRUP7L1vvL5KLR3XeMh/J3T3LweFeuRaWq\nnpbk6u6+YNJZZuEXx9vzyRntmvuYSQeaxtIkByb52+7++SQ3ZXHsAjetqrp/ksOSvG/SWdY3/qXp\n8IxK84OSbFNVvz7ZVPfU3WuS/GmSjyX5aJLVSe6YaKhZ6tH1hSY+SjIEVfV7GR1CcNqks8yku3+v\nu/fIKOOLJ51nfeM/kLwmi7R8TvG3SX4yo8MvrkzyZ5ONM6OlSR6Q0eEsv5vkveNRssXq6CzCPzZO\n8dtJXj7+P/TyjPfUWYSel+SFVXVBku2S3DrhPPfKYi54l+fu7Xn38TQ2U1Uty6jcndbdi2Ff7Q0a\n76L3ySzO4xsfleSwqroso92Hn1BV755spOmNR3Tu2s3kAxnt/rzYrE2ydspo7fszKnyL1ZOTXNjd\nV006yDR+KcnXu3tdd9+W0XEZvzDhTNPq7nd098O7+zFJvpPRsViL1VVV9RNJMv534rttbemq6tgk\nT0vy7N4yLsp7Whbnbls/ldEfdC4afybtnuTCqnrgRFOtp7uvGv8B984kb8vi/CxKRp9HZ44PGflc\nRnvpTPSkNTMZ74b/zCRnTDrLBhyTHx0f+L4s0ve9u/+zu5/U3Q/PqDBfOulM98ZiLnifT7J3Ve01\n/mv5UUk+OOFMW6zxX5/ekWRNd//5pPPMpKpW3HU2taraKskTk/znZFPdU3cf3927d/fKjL43P9Hd\ni26UpKq2qart7rqd0QH4i+5sr9397STfqqqHjCcdkuSSCUbamMX8F9NvJnlkVW09/n9/SBbhCWuS\npKp2Gf+7Z0a/pPzDZBNt0Acz+kUl43//7wSzbPGq6tCMdnE/rLu/P+k8M6mqvafcPTyL8/PoS929\nS3evHH8mrU1y4Pjn6qJx1x9Ixp6RRfhZNPZPSR6fJFX1M0nun+SaiSaa2S8l+c/uXjvpIBtwRZLH\njm8/Icmi3JV0yufR/ZKckOTNk0107yyddICZdPftVfXiJP+a0Vng3tndF0841rSq6vQkj0uyc1Wt\nTfL73b3YhqAfleQ5Sb405VS6r1kkZ7Ga6ieSnDo+i+r9kry3uxftJQi2ALsm+cB475KlSf6huz86\n2UgzekmS08Z/0PlakudOOM+0xkX5iUmeP+ks0+nu86rq/UkuzGjXty8keetkU83oH6tqpyS3JXnR\nYjmxznQ/05P8SUa7av1Gkm9kdFKDiZoh53VJ/jrJiiT/XFWru/uXJ5dyxpzHJ/mxJGeNfz59trtf\nMLGQmTHnU8Z/eLozo/d9ohmTLeN3jhm25eOq6oCMdm++LIvgZ+gMOd+Z5J3jU+jfmuSYSY8wb+A9\nX1THgs+wPX8ryV+ORxtvSTLxcwHMkHPbqnrReJYzk7xrQvHmRG0Ze0UAAACwMYt5F00AAAA2gYIH\nAAAwEAoeAADAQCh4AAAAA6HgAQAADISCBwAAMBAKHgAAwED8/xqR87IffTrmAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df = rq_df[(rq_df.util_err > 0) | (rq_df.load_err > 0)][rq_df['__comm'] == 'thread0']\n",
"df = df[(df.util_err > 0) | (df.load_err > 0)]\n",
"df = df[['util_err', 'load_err']].plot(kind='hist', figsize=(15,7), bins=8, xlim=(0, 20), xticks=range(0,20), stacked=True, title = 'Occurence of errors > 10 counts', )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"_draft": {
"nbviewer_url": "https://gist.github.com/ec38b4edb2da1ef21e2aa9b1d6c64f65"
},
"gist": {
"data": {
"description": "TraceAnalysis_TasksLatencies.ipynb",
"public": false
},
"id": "ec38b4edb2da1ef21e2aa9b1d6c64f65"
},
"hide_input": false,
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "296px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_number_sections": true,
"toc_section_display": "block",
"toc_threshold": 6,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}