//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "x86-instr-info" #define GET_INSTRINFO_CTOR_DTOR #include "X86GenInstrInfo.inc" static cl::opt NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions")); static cl::opt PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); static cl::opt ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden); static cl::opt PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden); static cl::opt UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(64), cl::Hidden); enum { // Select which memory operand is being unfolded. // (stored in bits 0 - 3) TB_INDEX_0 = 0, TB_INDEX_1 = 1, TB_INDEX_2 = 2, TB_INDEX_3 = 3, TB_INDEX_4 = 4, TB_INDEX_MASK = 0xf, // Do not insert the reverse map (MemOp -> RegOp) into the table. // This may be needed because there is a many -> one mapping. TB_NO_REVERSE = 1 << 4, // Do not insert the forward map (RegOp -> MemOp) into the table. // This is needed for Native Client, which prohibits branch // instructions from using a memory operand. TB_NO_FORWARD = 1 << 5, TB_FOLDED_LOAD = 1 << 6, TB_FOLDED_STORE = 1 << 7, // Minimum alignment required for load/store. // Used for RegOp->MemOp conversion. // (stored in bits 8 - 15) TB_ALIGN_SHIFT = 8, TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT, TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT }; struct X86MemoryFoldTableEntry { uint16_t RegOp; uint16_t MemOp; uint16_t Flags; }; // Pin the vtable to this file. void X86InstrInfo::anchor() {} X86InstrInfo::X86InstrInfo(X86Subtarget &STI) : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), X86::CATCHRET, (STI.is64Bit() ? X86::RETQ : X86::RETL)), Subtarget(STI), RI(STI.getTargetTriple()) { static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = { { X86::ADC32ri, X86::ADC32mi, 0 }, { X86::ADC32ri8, X86::ADC32mi8, 0 }, { X86::ADC32rr, X86::ADC32mr, 0 }, { X86::ADC64ri32, X86::ADC64mi32, 0 }, { X86::ADC64ri8, X86::ADC64mi8, 0 }, { X86::ADC64rr, X86::ADC64mr, 0 }, { X86::ADD16ri, X86::ADD16mi, 0 }, { X86::ADD16ri8, X86::ADD16mi8, 0 }, { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, { X86::ADD16rr, X86::ADD16mr, 0 }, { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, { X86::ADD32ri, X86::ADD32mi, 0 }, { X86::ADD32ri8, X86::ADD32mi8, 0 }, { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, { X86::ADD32rr, X86::ADD32mr, 0 }, { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, { X86::ADD64ri32, X86::ADD64mi32, 0 }, { X86::ADD64ri8, X86::ADD64mi8, 0 }, { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, { X86::ADD64rr, X86::ADD64mr, 0 }, { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, { X86::ADD8ri, X86::ADD8mi, 0 }, { X86::ADD8rr, X86::ADD8mr, 0 }, { X86::AND16ri, X86::AND16mi, 0 }, { X86::AND16ri8, X86::AND16mi8, 0 }, { X86::AND16rr, X86::AND16mr, 0 }, { X86::AND32ri, X86::AND32mi, 0 }, { X86::AND32ri8, X86::AND32mi8, 0 }, { X86::AND32rr, X86::AND32mr, 0 }, { X86::AND64ri32, X86::AND64mi32, 0 }, { X86::AND64ri8, X86::AND64mi8, 0 }, { X86::AND64rr, X86::AND64mr, 0 }, { X86::AND8ri, X86::AND8mi, 0 }, { X86::AND8rr, X86::AND8mr, 0 }, { X86::DEC16r, X86::DEC16m, 0 }, { X86::DEC32r, X86::DEC32m, 0 }, { X86::DEC64r, X86::DEC64m, 0 }, { X86::DEC8r, X86::DEC8m, 0 }, { X86::INC16r, X86::INC16m, 0 }, { X86::INC32r, X86::INC32m, 0 }, { X86::INC64r, X86::INC64m, 0 }, { X86::INC8r, X86::INC8m, 0 }, { X86::NEG16r, X86::NEG16m, 0 }, { X86::NEG32r, X86::NEG32m, 0 }, { X86::NEG64r, X86::NEG64m, 0 }, { X86::NEG8r, X86::NEG8m, 0 }, { X86::NOT16r, X86::NOT16m, 0 }, { X86::NOT32r, X86::NOT32m, 0 }, { X86::NOT64r, X86::NOT64m, 0 }, { X86::NOT8r, X86::NOT8m, 0 }, { X86::OR16ri, X86::OR16mi, 0 }, { X86::OR16ri8, X86::OR16mi8, 0 }, { X86::OR16rr, X86::OR16mr, 0 }, { X86::OR32ri, X86::OR32mi, 0 }, { X86::OR32ri8, X86::OR32mi8, 0 }, { X86::OR32rr, X86::OR32mr, 0 }, { X86::OR64ri32, X86::OR64mi32, 0 }, { X86::OR64ri8, X86::OR64mi8, 0 }, { X86::OR64rr, X86::OR64mr, 0 }, { X86::OR8ri, X86::OR8mi, 0 }, { X86::OR8rr, X86::OR8mr, 0 }, { X86::ROL16r1, X86::ROL16m1, 0 }, { X86::ROL16rCL, X86::ROL16mCL, 0 }, { X86::ROL16ri, X86::ROL16mi, 0 }, { X86::ROL32r1, X86::ROL32m1, 0 }, { X86::ROL32rCL, X86::ROL32mCL, 0 }, { X86::ROL32ri, X86::ROL32mi, 0 }, { X86::ROL64r1, X86::ROL64m1, 0 }, { X86::ROL64rCL, X86::ROL64mCL, 0 }, { X86::ROL64ri, X86::ROL64mi, 0 }, { X86::ROL8r1, X86::ROL8m1, 0 }, { X86::ROL8rCL, X86::ROL8mCL, 0 }, { X86::ROL8ri, X86::ROL8mi, 0 }, { X86::ROR16r1, X86::ROR16m1, 0 }, { X86::ROR16rCL, X86::ROR16mCL, 0 }, { X86::ROR16ri, X86::ROR16mi, 0 }, { X86::ROR32r1, X86::ROR32m1, 0 }, { X86::ROR32rCL, X86::ROR32mCL, 0 }, { X86::ROR32ri, X86::ROR32mi, 0 }, { X86::ROR64r1, X86::ROR64m1, 0 }, { X86::ROR64rCL, X86::ROR64mCL, 0 }, { X86::ROR64ri, X86::ROR64mi, 0 }, { X86::ROR8r1, X86::ROR8m1, 0 }, { X86::ROR8rCL, X86::ROR8mCL, 0 }, { X86::ROR8ri, X86::ROR8mi, 0 }, { X86::SAR16r1, X86::SAR16m1, 0 }, { X86::SAR16rCL, X86::SAR16mCL, 0 }, { X86::SAR16ri, X86::SAR16mi, 0 }, { X86::SAR32r1, X86::SAR32m1, 0 }, { X86::SAR32rCL, X86::SAR32mCL, 0 }, { X86::SAR32ri, X86::SAR32mi, 0 }, { X86::SAR64r1, X86::SAR64m1, 0 }, { X86::SAR64rCL, X86::SAR64mCL, 0 }, { X86::SAR64ri, X86::SAR64mi, 0 }, { X86::SAR8r1, X86::SAR8m1, 0 }, { X86::SAR8rCL, X86::SAR8mCL, 0 }, { X86::SAR8ri, X86::SAR8mi, 0 }, { X86::SBB32ri, X86::SBB32mi, 0 }, { X86::SBB32ri8, X86::SBB32mi8, 0 }, { X86::SBB32rr, X86::SBB32mr, 0 }, { X86::SBB64ri32, X86::SBB64mi32, 0 }, { X86::SBB64ri8, X86::SBB64mi8, 0 }, { X86::SBB64rr, X86::SBB64mr, 0 }, { X86::SHL16rCL, X86::SHL16mCL, 0 }, { X86::SHL16ri, X86::SHL16mi, 0 }, { X86::SHL32rCL, X86::SHL32mCL, 0 }, { X86::SHL32ri, X86::SHL32mi, 0 }, { X86::SHL64rCL, X86::SHL64mCL, 0 }, { X86::SHL64ri, X86::SHL64mi, 0 }, { X86::SHL8rCL, X86::SHL8mCL, 0 }, { X86::SHL8ri, X86::SHL8mi, 0 }, { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, { X86::SHR16r1, X86::SHR16m1, 0 }, { X86::SHR16rCL, X86::SHR16mCL, 0 }, { X86::SHR16ri, X86::SHR16mi, 0 }, { X86::SHR32r1, X86::SHR32m1, 0 }, { X86::SHR32rCL, X86::SHR32mCL, 0 }, { X86::SHR32ri, X86::SHR32mi, 0 }, { X86::SHR64r1, X86::SHR64m1, 0 }, { X86::SHR64rCL, X86::SHR64mCL, 0 }, { X86::SHR64ri, X86::SHR64mi, 0 }, { X86::SHR8r1, X86::SHR8m1, 0 }, { X86::SHR8rCL, X86::SHR8mCL, 0 }, { X86::SHR8ri, X86::SHR8mi, 0 }, { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, { X86::SUB16ri, X86::SUB16mi, 0 }, { X86::SUB16ri8, X86::SUB16mi8, 0 }, { X86::SUB16rr, X86::SUB16mr, 0 }, { X86::SUB32ri, X86::SUB32mi, 0 }, { X86::SUB32ri8, X86::SUB32mi8, 0 }, { X86::SUB32rr, X86::SUB32mr, 0 }, { X86::SUB64ri32, X86::SUB64mi32, 0 }, { X86::SUB64ri8, X86::SUB64mi8, 0 }, { X86::SUB64rr, X86::SUB64mr, 0 }, { X86::SUB8ri, X86::SUB8mi, 0 }, { X86::SUB8rr, X86::SUB8mr, 0 }, { X86::XOR16ri, X86::XOR16mi, 0 }, { X86::XOR16ri8, X86::XOR16mi8, 0 }, { X86::XOR16rr, X86::XOR16mr, 0 }, { X86::XOR32ri, X86::XOR32mi, 0 }, { X86::XOR32ri8, X86::XOR32mi8, 0 }, { X86::XOR32rr, X86::XOR32mr, 0 }, { X86::XOR64ri32, X86::XOR64mi32, 0 }, { X86::XOR64ri8, X86::XOR64mi8, 0 }, { X86::XOR64rr, X86::XOR64mr, 0 }, { X86::XOR8ri, X86::XOR8mi, 0 }, { X86::XOR8rr, X86::XOR8mr, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) { AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 0, folded load and store, no alignment requirement. Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); } static const X86MemoryFoldTableEntry MemoryFoldTable0[] = { { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE }, { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE }, { X86::PUSH16r, X86::PUSH16rmm, TB_FOLDED_LOAD }, { X86::PUSH32r, X86::PUSH32rmm, TB_FOLDED_LOAD }, { X86::PUSH64r, X86::PUSH64rmm, TB_FOLDED_LOAD }, { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD }, { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, // AVX 128-bit versions of foldable instructions { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE }, { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE }, // AVX 256-bit foldable instructions { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, // AVX-512 foldable instructions { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE }, { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE }, { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE }, // AVX-512 foldable instructions (256-bit versions) { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE }, { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE }, { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE }, // AVX-512 foldable instructions (128-bit versions) { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE }, { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE }, { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE }, // F16C foldable instructions { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE }, { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) { AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags); } static const X86MemoryFoldTableEntry MemoryFoldTable1[] = { { X86::BSF16rr, X86::BSF16rm, 0 }, { X86::BSF32rr, X86::BSF32rm, 0 }, { X86::BSF64rr, X86::BSF64rm, 0 }, { X86::BSR16rr, X86::BSR16rm, 0 }, { X86::BSR32rr, X86::BSR32rm, 0 }, { X86::BSR64rr, X86::BSR64rm, 0 }, { X86::CMP16rr, X86::CMP16rm, 0 }, { X86::CMP32rr, X86::CMP32rm, 0 }, { X86::CMP64rr, X86::CMP64rm, 0 }, { X86::CMP8rr, X86::CMP8rm, 0 }, { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, { X86::IMUL16rri, X86::IMUL16rmi, 0 }, { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, { X86::IMUL32rri, X86::IMUL32rmi, 0 }, { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 }, { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 }, { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 }, { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 }, { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 }, { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 }, { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 }, { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 }, { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, { X86::MOV16rr, X86::MOV16rm, 0 }, { X86::MOV32rr, X86::MOV32rm, 0 }, { X86::MOV64rr, X86::MOV64rm, 0 }, { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, { X86::MOV8rr, X86::MOV8rm, 0 }, { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 }, { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 }, { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 }, { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 }, { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 }, { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 }, { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 }, { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 }, { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 }, { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 }, { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 }, { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 }, { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 }, { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 }, { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 }, { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 }, { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 }, { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 }, { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, { X86::RCPSSr, X86::RCPSSm, 0 }, { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 }, { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 }, { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 }, { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, { X86::SQRTSDr, X86::SQRTSDm, 0 }, { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, { X86::SQRTSSr, X86::SQRTSSm, 0 }, { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, { X86::TEST16rr, X86::TEST16rm, 0 }, { X86::TEST32rr, X86::TEST32rm, 0 }, { X86::TEST64rr, X86::TEST64rm, 0 }, { X86::TEST8rr, X86::TEST8rm, 0 }, // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, // MMX version of foldable instructions { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 }, { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 }, { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 }, { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 }, { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 }, { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 }, { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 }, { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 }, { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 }, { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 }, // 3DNow! version of foldable instructions { X86::PF2IDrr, X86::PF2IDrm, 0 }, { X86::PF2IWrr, X86::PF2IWrm, 0 }, { X86::PFRCPrr, X86::PFRCPrm, 0 }, { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 }, { X86::PI2FDrr, X86::PI2FDrm, 0 }, { X86::PI2FWrr, X86::PI2FWrm, 0 }, { X86::PSWAPDrr, X86::PSWAPDrm, 0 }, // AVX 128-bit versions of foldable instructions { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 }, { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 }, { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 }, { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 }, { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 }, { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 }, { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 }, { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 }, { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 }, { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 }, { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 }, { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 }, { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 }, { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, { X86::VPABSBrr128, X86::VPABSBrm128, 0 }, { X86::VPABSDrr128, X86::VPABSDrm128, 0 }, { X86::VPABSWrr128, X86::VPABSWrm128, 0 }, { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 }, { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 }, { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 }, { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 }, { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 }, { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 }, { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 }, { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 }, { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 }, { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 }, { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 }, { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 }, { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 }, { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 }, { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 }, { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 }, { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 }, { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, { X86::VPTESTrr, X86::VPTESTrm, 0 }, { X86::VRCPPSr, X86::VRCPPSm, 0 }, { X86::VROUNDPDr, X86::VROUNDPDm, 0 }, { X86::VROUNDPSr, X86::VROUNDPSm, 0 }, { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, { X86::VTESTPDrr, X86::VTESTPDrm, 0 }, { X86::VTESTPSrr, X86::VTESTPSrm, 0 }, { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, // AVX 256-bit foldable instructions { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 }, { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 }, { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 }, { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 }, { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 }, { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 }, { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 }, { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 }, { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 }, { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 }, { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 }, { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, { X86::VPTESTYrr, X86::VPTESTYrm, 0 }, { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 }, { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 }, { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 }, { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 }, // AVX2 foldable instructions // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the // VBROADCASTS{SD}rm memory instructions were available from AVX1. // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions // so they don't need an equivalent limitation. { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 }, { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 }, { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 }, { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 }, { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 }, { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 }, { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 }, { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 }, { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, { X86::VPERMQYri, X86::VPERMQYmi, 0 }, { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 }, { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 }, { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 }, { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 }, { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 }, { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 }, { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 }, { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 }, { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 }, { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 }, { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 }, { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 }, { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, // XOP foldable instructions { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 }, { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 }, { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 }, { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 }, { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 }, { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 }, { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 }, { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 }, { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 }, { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 }, { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 }, { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 }, { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 }, { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 }, { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 }, { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 }, { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 }, { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 }, { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 }, { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 }, { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 }, { X86::VPROTBri, X86::VPROTBmi, 0 }, { X86::VPROTBrr, X86::VPROTBmr, 0 }, { X86::VPROTDri, X86::VPROTDmi, 0 }, { X86::VPROTDrr, X86::VPROTDmr, 0 }, { X86::VPROTQri, X86::VPROTQmi, 0 }, { X86::VPROTQrr, X86::VPROTQmr, 0 }, { X86::VPROTWri, X86::VPROTWmi, 0 }, { X86::VPROTWrr, X86::VPROTWmr, 0 }, { X86::VPSHABrr, X86::VPSHABmr, 0 }, { X86::VPSHADrr, X86::VPSHADmr, 0 }, { X86::VPSHAQrr, X86::VPSHAQmr, 0 }, { X86::VPSHAWrr, X86::VPSHAWmr, 0 }, { X86::VPSHLBrr, X86::VPSHLBmr, 0 }, { X86::VPSHLDrr, X86::VPSHLDmr, 0 }, { X86::VPSHLQrr, X86::VPSHLQmr, 0 }, { X86::VPSHLWrr, X86::VPSHLWmr, 0 }, // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 }, { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 }, { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 }, { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 }, { X86::BLCI32rr, X86::BLCI32rm, 0 }, { X86::BLCI64rr, X86::BLCI64rm, 0 }, { X86::BLCIC32rr, X86::BLCIC32rm, 0 }, { X86::BLCIC64rr, X86::BLCIC64rm, 0 }, { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 }, { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 }, { X86::BLCS32rr, X86::BLCS32rm, 0 }, { X86::BLCS64rr, X86::BLCS64rm, 0 }, { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 }, { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 }, { X86::BLSI32rr, X86::BLSI32rm, 0 }, { X86::BLSI64rr, X86::BLSI64rm, 0 }, { X86::BLSIC32rr, X86::BLSIC32rm, 0 }, { X86::BLSIC64rr, X86::BLSIC64rm, 0 }, { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, { X86::BLSR32rr, X86::BLSR32rm, 0 }, { X86::BLSR64rr, X86::BLSR64rm, 0 }, { X86::BZHI32rr, X86::BZHI32rm, 0 }, { X86::BZHI64rr, X86::BZHI64rm, 0 }, { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, { X86::RORX32ri, X86::RORX32mi, 0 }, { X86::RORX64ri, X86::RORX64mi, 0 }, { X86::SARX32rr, X86::SARX32rm, 0 }, { X86::SARX64rr, X86::SARX64rm, 0 }, { X86::SHRX32rr, X86::SHRX32rm, 0 }, { X86::SHRX64rr, X86::SHRX64rm, 0 }, { X86::SHLX32rr, X86::SHLX32rm, 0 }, { X86::SHLX64rr, X86::SHLX64rm, 0 }, { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 }, { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 }, { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, { X86::TZMSK32rr, X86::TZMSK32rm, 0 }, { X86::TZMSK64rr, X86::TZMSK64rm, 0 }, // AVX-512 foldable instructions { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 }, { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 }, { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 }, { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 }, { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 }, { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 }, { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 }, { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 }, { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 }, { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 }, { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 }, { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 }, { X86::VPABSDZrr, X86::VPABSDZrm, 0 }, { X86::VPABSQZrr, X86::VPABSQZrm, 0 }, { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE }, { X86::VBROADCASTSSZr_s, X86::VBROADCASTSSZm, TB_NO_REVERSE }, { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE }, { X86::VBROADCASTSDZr_s, X86::VBROADCASTSDZm, TB_NO_REVERSE }, // AVX-512 foldable instructions (256-bit versions) { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 }, { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 }, { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 }, { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 }, { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 }, { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 }, { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 }, { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 }, { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 }, { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE }, { X86::VBROADCASTSSZ256r_s, X86::VBROADCASTSSZ256m, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256r_s, X86::VBROADCASTSDZ256m, TB_NO_REVERSE }, // AVX-512 foldable instructions (128-bit versions) { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 }, { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 }, { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 }, { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 }, { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 }, { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 }, { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 }, { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 }, { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 }, { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE }, { X86::VBROADCASTSSZ128r_s, X86::VBROADCASTSSZ128m, TB_NO_REVERSE }, // F16C foldable instructions { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 }, { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 }, // AES foldable instructions { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, { X86::VAESIMCrr, X86::VAESIMCrm, 0 }, { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) { AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 1, folded load Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD); } static const X86MemoryFoldTableEntry MemoryFoldTable2[] = { { X86::ADC32rr, X86::ADC32rm, 0 }, { X86::ADC64rr, X86::ADC64rm, 0 }, { X86::ADD16rr, X86::ADD16rm, 0 }, { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, { X86::ADD32rr, X86::ADD32rm, 0 }, { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, { X86::ADD64rr, X86::ADD64rm, 0 }, { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, { X86::ADD8rr, X86::ADD8rm, 0 }, { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, { X86::ADDSDrr, X86::ADDSDrm, 0 }, { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 }, { X86::ADDSSrr, X86::ADDSSrm, 0 }, { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 }, { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, { X86::AND16rr, X86::AND16rm, 0 }, { X86::AND32rr, X86::AND32rm, 0 }, { X86::AND64rr, X86::AND64rm, 0 }, { X86::AND8rr, X86::AND8rm, 0 }, { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, { X86::CMPSDrr, X86::CMPSDrm, 0 }, { X86::CMPSSrr, X86::CMPSSrm, 0 }, { X86::CRC32r32r32, X86::CRC32r32m32, 0 }, { X86::CRC32r64r64, X86::CRC32r64m64, 0 }, { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, { X86::DIVSDrr, X86::DIVSDrm, 0 }, { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 }, { X86::DIVSSrr, X86::DIVSSrm, 0 }, { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 }, { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 }, { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 }, // Do not fold Fs* scalar logical op loads because there are no scalar // load variants for these instructions. When folded, the load is required // to be 128-bits, so the load size would not match. { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 }, { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 }, { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 }, { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 }, { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 }, { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 }, { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 }, { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 }, { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, { X86::IMUL16rr, X86::IMUL16rm, 0 }, { X86::IMUL32rr, X86::IMUL32rm, 0 }, { X86::IMUL64rr, X86::IMUL64rm, 0 }, { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, { X86::MAXSDrr, X86::MAXSDrm, 0 }, { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, { X86::MAXSSrr, X86::MAXSSrm, 0 }, { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, { X86::MINSDrr, X86::MINSDrm, 0 }, { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, { X86::MINSSrr, X86::MINSSrm, 0 }, { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, { X86::MOVLHPSrr, X86::MOVHPSrm, TB_NO_REVERSE }, { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, { X86::MULSDrr, X86::MULSDrm, 0 }, { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 }, { X86::MULSSrr, X86::MULSSrm, 0 }, { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 }, { X86::OR16rr, X86::OR16rm, 0 }, { X86::OR32rr, X86::OR32rm, 0 }, { X86::OR64rr, X86::OR64rm, 0 }, { X86::OR8rr, X86::OR8rm, 0 }, { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, { X86::PALIGNRrri, X86::PALIGNRrmi, TB_ALIGN_16 }, { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 }, { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 }, { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, { X86::PINSRBrr, X86::PINSRBrm, 0 }, { X86::PINSRDrr, X86::PINSRDrm, 0 }, { X86::PINSRQrr, X86::PINSRQrm, 0 }, { X86::PINSRWrri, X86::PINSRWrmi, 0 }, { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, { X86::PSIGNBrr128, X86::PSIGNBrm128, TB_ALIGN_16 }, { X86::PSIGNWrr128, X86::PSIGNWrm128, TB_ALIGN_16 }, { X86::PSIGNDrr128, X86::PSIGNDrm128, TB_ALIGN_16 }, { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 }, { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 }, { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 }, { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, { X86::ROUNDSDr, X86::ROUNDSDm, 0 }, { X86::ROUNDSSr, X86::ROUNDSSm, 0 }, { X86::SBB32rr, X86::SBB32rm, 0 }, { X86::SBB64rr, X86::SBB64rm, 0 }, { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, { X86::SUB16rr, X86::SUB16rm, 0 }, { X86::SUB32rr, X86::SUB32rm, 0 }, { X86::SUB64rr, X86::SUB64rm, 0 }, { X86::SUB8rr, X86::SUB8rm, 0 }, { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, { X86::SUBSDrr, X86::SUBSDrm, 0 }, { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 }, { X86::SUBSSrr, X86::SUBSSrm, 0 }, { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 }, // FIXME: TEST*rr -> swapped operand of TEST*mr. { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, { X86::XOR16rr, X86::XOR16rm, 0 }, { X86::XOR32rr, X86::XOR32rm, 0 }, { X86::XOR64rr, X86::XOR64rm, 0 }, { X86::XOR8rr, X86::XOR8rm, 0 }, { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, // MMX version of foldable instructions { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 }, { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 }, { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 }, { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 }, { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 }, { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 }, { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 }, { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 }, { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 }, { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 }, { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 }, { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 }, { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 }, { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 }, { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 }, { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 }, { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 }, { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 }, { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 }, { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 }, { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 }, { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 }, { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 }, { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 }, { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 }, { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 }, { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 }, { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 }, { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 }, { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 }, { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 }, { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 }, { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 }, { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 }, { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 }, { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 }, { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 }, { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 }, { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 }, { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 }, { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 }, { X86::MMX_PORirr, X86::MMX_PORirm, 0 }, { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 }, { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 }, { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 }, { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 }, { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 }, { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 }, { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 }, { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 }, { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 }, { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 }, { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 }, { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 }, { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 }, { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 }, { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 }, { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 }, { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 }, { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 }, { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 }, { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 }, { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 }, { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 }, { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 }, { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 }, { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 }, { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 }, { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 }, { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 }, // 3DNow! version of foldable instructions { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 }, { X86::PFACCrr, X86::PFACCrm, 0 }, { X86::PFADDrr, X86::PFADDrm, 0 }, { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 }, { X86::PFCMPGErr, X86::PFCMPGErm, 0 }, { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 }, { X86::PFMAXrr, X86::PFMAXrm, 0 }, { X86::PFMINrr, X86::PFMINrm, 0 }, { X86::PFMULrr, X86::PFMULrm, 0 }, { X86::PFNACCrr, X86::PFNACCrm, 0 }, { X86::PFPNACCrr, X86::PFPNACCrm, 0 }, { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 }, { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 }, { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 }, { X86::PFSUBrr, X86::PFSUBrm, 0 }, { X86::PFSUBRrr, X86::PFSUBRrm, 0 }, { X86::PMULHRWrr, X86::PMULHRWrm, 0 }, // AVX 128-bit versions of foldable instructions { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, { X86::VRCPSSr, X86::VRCPSSm, 0 }, { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 }, { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 }, { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 }, { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 }, { X86::VADDPDrr, X86::VADDPDrm, 0 }, { X86::VADDPSrr, X86::VADDPSrm, 0 }, { X86::VADDSDrr, X86::VADDSDrm, 0 }, { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 }, { X86::VADDSSrr, X86::VADDSSrm, 0 }, { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 }, { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, { X86::VANDPDrr, X86::VANDPDrm, 0 }, { X86::VANDPSrr, X86::VANDPSrm, 0 }, { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 }, { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 }, { X86::VDPPDrri, X86::VDPPDrmi, 0 }, { X86::VDPPSrri, X86::VDPPSrmi, 0 }, // Do not fold VFs* loads because there are no scalar load variants for // these instructions. When folded, the load is required to be 128-bits, so // the load size would not match. { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 }, { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 }, { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 }, { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 }, { X86::VFvORPDrr, X86::VFvORPDrm, 0 }, { X86::VFvORPSrr, X86::VFvORPSrm, 0 }, { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 }, { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 }, { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, { X86::VMINPDrr, X86::VMINPDrm, 0 }, { X86::VMINPSrr, X86::VMINPSrm, 0 }, { X86::VMINSDrr, X86::VMINSDrm, 0 }, { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, { X86::VMINSSrr, X86::VMINSSrm, 0 }, { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, { X86::VMOVLHPSrr, X86::VMOVHPSrm, TB_NO_REVERSE }, { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, { X86::VMULPDrr, X86::VMULPDrm, 0 }, { X86::VMULPSrr, X86::VMULPSrm, 0 }, { X86::VMULSDrr, X86::VMULSDrm, 0 }, { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 }, { X86::VMULSSrr, X86::VMULSSrm, 0 }, { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 }, { X86::VORPDrr, X86::VORPDrm, 0 }, { X86::VORPSrr, X86::VORPSrm, 0 }, { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, { X86::VPADDBrr, X86::VPADDBrm, 0 }, { X86::VPADDDrr, X86::VPADDDrm, 0 }, { X86::VPADDQrr, X86::VPADDQrm, 0 }, { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, { X86::VPADDWrr, X86::VPADDWrm, 0 }, { X86::VPALIGNRrri, X86::VPALIGNRrmi, 0 }, { X86::VPANDNrr, X86::VPANDNrm, 0 }, { X86::VPANDrr, X86::VPANDrm, 0 }, { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 }, { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 }, { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, { X86::VPINSRBrr, X86::VPINSRBrm, 0 }, { X86::VPINSRDrr, X86::VPINSRDrm, 0 }, { X86::VPINSRQrr, X86::VPINSRQrm, 0 }, { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 }, { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 }, { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, { X86::VPORrr, X86::VPORrm, 0 }, { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, { X86::VPSIGNBrr128, X86::VPSIGNBrm128, 0 }, { X86::VPSIGNWrr128, X86::VPSIGNWrm128, 0 }, { X86::VPSIGNDrr128, X86::VPSIGNDrm128, 0 }, { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, { X86::VPSRADrr, X86::VPSRADrm, 0 }, { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, { X86::VPSUBQrr, X86::VPSUBQrm, 0 }, { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 }, { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 }, { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, { X86::VPXORrr, X86::VPXORrm, 0 }, { X86::VROUNDSDr, X86::VROUNDSDm, 0 }, { X86::VROUNDSSr, X86::VROUNDSSm, 0 }, { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 }, { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 }, { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, { X86::VXORPDrr, X86::VXORPDrm, 0 }, { X86::VXORPSrr, X86::VXORPSrm, 0 }, // AVX 256-bit foldable instructions { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, { X86::VDPPSYrri, X86::VDPPSYrmi, 0 }, { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, { X86::VORPDYrr, X86::VORPDYrm, 0 }, { X86::VORPSYrr, X86::VORPSYrm, 0 }, { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, // AVX2 foldable instructions { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, { X86::VPALIGNRYrri, X86::VPALIGNRYrmi, 0 }, { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, { X86::VPANDYrr, X86::VPANDYrm, 0 }, { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 }, { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 }, { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 }, { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, { X86::VPORYrr, X86::VPORYrm, 0 }, { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, { X86::VPSIGNBYrr256, X86::VPSIGNBYrm256, 0 }, { X86::VPSIGNWYrr256, X86::VPSIGNWYrm256, 0 }, { X86::VPSIGNDYrr256, X86::VPSIGNDYrm256, 0 }, { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, { X86::VPSRAVD_Intrr, X86::VPSRAVD_Intrm, 0 }, { X86::VPSRAVD_IntYrr, X86::VPSRAVD_IntYrm, 0 }, { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 }, { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 }, { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 }, { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, { X86::VPXORYrr, X86::VPXORYrm, 0 }, // FMA4 foldable patterns { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE }, { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE }, { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE }, { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE }, { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_NONE }, { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE }, { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE }, { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE }, { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE }, { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_NONE }, { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE }, { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE }, { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE }, { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE }, { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_NONE }, { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE }, { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE }, { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE }, { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_NONE }, // XOP foldable instructions { X86::VPCMOVrrr, X86::VPCMOVrmr, 0 }, { X86::VPCMOVrrrY, X86::VPCMOVrmrY, 0 }, { X86::VPCOMBri, X86::VPCOMBmi, 0 }, { X86::VPCOMDri, X86::VPCOMDmi, 0 }, { X86::VPCOMQri, X86::VPCOMQmi, 0 }, { X86::VPCOMWri, X86::VPCOMWmi, 0 }, { X86::VPCOMUBri, X86::VPCOMUBmi, 0 }, { X86::VPCOMUDri, X86::VPCOMUDmi, 0 }, { X86::VPCOMUQri, X86::VPCOMUQmi, 0 }, { X86::VPCOMUWri, X86::VPCOMUWmi, 0 }, { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 }, { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 }, { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 }, { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 }, { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 }, { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 }, { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 }, { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 }, { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 }, { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 }, { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 }, { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 }, { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 }, { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 }, { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 }, { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 }, { X86::VPPERMrrr, X86::VPPERMrmr, 0 }, { X86::VPROTBrr, X86::VPROTBrm, 0 }, { X86::VPROTDrr, X86::VPROTDrm, 0 }, { X86::VPROTQrr, X86::VPROTQrm, 0 }, { X86::VPROTWrr, X86::VPROTWrm, 0 }, { X86::VPSHABrr, X86::VPSHABrm, 0 }, { X86::VPSHADrr, X86::VPSHADrm, 0 }, { X86::VPSHAQrr, X86::VPSHAQrm, 0 }, { X86::VPSHAWrr, X86::VPSHAWrm, 0 }, { X86::VPSHLBrr, X86::VPSHLBrm, 0 }, { X86::VPSHLDrr, X86::VPSHLDrm, 0 }, { X86::VPSHLQrr, X86::VPSHLQrm, 0 }, { X86::VPSHLWrr, X86::VPSHLWrm, 0 }, // BMI/BMI2 foldable instructions { X86::ANDN32rr, X86::ANDN32rm, 0 }, { X86::ANDN64rr, X86::ANDN64rm, 0 }, { X86::MULX32rr, X86::MULX32rm, 0 }, { X86::MULX64rr, X86::MULX64rm, 0 }, { X86::PDEP32rr, X86::PDEP32rm, 0 }, { X86::PDEP64rr, X86::PDEP64rm, 0 }, { X86::PEXT32rr, X86::PEXT32rm, 0 }, { X86::PEXT64rr, X86::PEXT64rm, 0 }, // ADX foldable instructions { X86::ADCX32rr, X86::ADCX32rm, 0 }, { X86::ADCX64rr, X86::ADCX64rm, 0 }, { X86::ADOX32rr, X86::ADOX32rm, 0 }, { X86::ADOX64rr, X86::ADOX64rm, 0 }, // AVX-512 foldable instructions { X86::VADDPSZrr, X86::VADDPSZrm, 0 }, { X86::VADDPDZrr, X86::VADDPDZrm, 0 }, { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 }, { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 }, { X86::VMULPSZrr, X86::VMULPSZrm, 0 }, { X86::VMULPDZrr, X86::VMULPDZrm, 0 }, { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 }, { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 }, { X86::VMINPSZrr, X86::VMINPSZrm, 0 }, { X86::VMINPDZrr, X86::VMINPDZrm, 0 }, { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 }, { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 }, { X86::VPADDDZrr, X86::VPADDDZrm, 0 }, { X86::VPADDQZrr, X86::VPADDQZrm, 0 }, { X86::VPERMPDZri, X86::VPERMPDZmi, 0 }, { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 }, { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 }, { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 }, { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 }, { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 }, { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 }, { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 }, { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 }, { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 }, { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 }, { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 }, { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 }, { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 }, { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 }, { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 }, { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 }, { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 }, { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, { X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 }, { X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 }, { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 }, { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE }, { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE }, // AVX-512{F,VL} foldable instructions { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE }, { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE }, // AVX-512{F,VL} foldable instructions { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 }, { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 }, { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 }, { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 }, // AES foldable instructions { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 }, { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 }, { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 }, { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 }, { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 }, { X86::VAESDECrr, X86::VAESDECrm, 0 }, { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 }, { X86::VAESENCrr, X86::VAESENCrm, 0 }, // SHA foldable instructions { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 }, { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 }, { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 }, { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) { AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 2, folded load Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD); } static const X86MemoryFoldTableEntry MemoryFoldTable3[] = { // FMA foldable instructions { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE }, { X86::VFMADDSSr231r_Int, X86::VFMADDSSr231m_Int, TB_ALIGN_NONE }, { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE }, { X86::VFMADDSDr231r_Int, X86::VFMADDSDr231m_Int, TB_ALIGN_NONE }, { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE }, { X86::VFMADDSSr132r_Int, X86::VFMADDSSr132m_Int, TB_ALIGN_NONE }, { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE }, { X86::VFMADDSDr132r_Int, X86::VFMADDSDr132m_Int, TB_ALIGN_NONE }, { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE }, { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, TB_ALIGN_NONE }, { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE }, { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, TB_ALIGN_NONE }, { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE }, { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE }, { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE }, { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE }, { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE }, { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE }, { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE }, { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE }, { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE }, { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE }, { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE }, { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE }, { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE }, { X86::VFNMADDSSr231r_Int, X86::VFNMADDSSr231m_Int, TB_ALIGN_NONE }, { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE }, { X86::VFNMADDSDr231r_Int, X86::VFNMADDSDr231m_Int, TB_ALIGN_NONE }, { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE }, { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr132m_Int, TB_ALIGN_NONE }, { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE }, { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr132m_Int, TB_ALIGN_NONE }, { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE }, { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, TB_ALIGN_NONE }, { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE }, { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, TB_ALIGN_NONE }, { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE }, { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE }, { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE }, { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE }, { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE }, { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE }, { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE }, { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE }, { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE }, { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE }, { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE }, { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE }, { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE }, { X86::VFMSUBSSr231r_Int, X86::VFMSUBSSr231m_Int, TB_ALIGN_NONE }, { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE }, { X86::VFMSUBSDr231r_Int, X86::VFMSUBSDr231m_Int, TB_ALIGN_NONE }, { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE }, { X86::VFMSUBSSr132r_Int, X86::VFMSUBSSr132m_Int, TB_ALIGN_NONE }, { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE }, { X86::VFMSUBSDr132r_Int, X86::VFMSUBSDr132m_Int, TB_ALIGN_NONE }, { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE }, { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, TB_ALIGN_NONE }, { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE }, { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, TB_ALIGN_NONE }, { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE }, { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE }, { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE }, { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE }, { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE }, { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE }, { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE }, { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE }, { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE }, { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE }, { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE }, { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE }, { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE }, { X86::VFNMSUBSSr231r_Int, X86::VFNMSUBSSr231m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE }, { X86::VFNMSUBSDr231r_Int, X86::VFNMSUBSDr231m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE }, { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr132m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE }, { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr132m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE }, { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE }, { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, TB_ALIGN_NONE }, { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE }, { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE }, { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE }, { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE }, { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE }, { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE }, { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE }, { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE }, { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE }, { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE }, { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE }, { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE }, { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE }, { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE }, // FMA4 foldable patterns { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE }, { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE }, { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE }, { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE }, { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_NONE }, { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE }, { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE }, { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE }, { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE }, { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_NONE }, { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE }, { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE }, { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE }, { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE }, { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_NONE }, { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE }, { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE }, { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE }, { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_NONE }, // XOP foldable instructions { X86::VPCMOVrrr, X86::VPCMOVrrm, 0 }, { X86::VPCMOVrrrY, X86::VPCMOVrrmY, 0 }, { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 }, { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 }, { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 }, { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 }, { X86::VPPERMrrr, X86::VPPERMrrm, 0 }, // AVX-512 VPERMI instructions with 3 source operands. { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 }, { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 }, { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 }, { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 }, { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 }, { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 }, { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE }, { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE }, { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE }, { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE }, // AVX-512 arithmetic instructions { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 }, { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 }, { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 }, { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 }, { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 }, { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 }, { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 }, { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 }, { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 }, { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 }, { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 }, { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 }, // AVX-512{F,VL} arithmetic instructions 256-bit { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 }, { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 }, { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 }, { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 }, { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 }, { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 }, { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 }, { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 }, { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 }, { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 }, { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 }, { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 }, // AVX-512{F,VL} arithmetic instructions 128-bit { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 }, { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 }, { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 }, { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 }, { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 }, { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 }, { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 }, { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 }, { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 }, { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 }, { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 }, { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) { AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 3, folded load Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD); } static const X86MemoryFoldTableEntry MemoryFoldTable4[] = { // AVX-512 foldable instructions { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 }, { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 }, { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 }, { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 }, { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 }, { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 }, { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 }, { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 }, { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 }, { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 }, { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 }, { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 }, // AVX-512{F,VL} foldable instructions 256-bit { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 }, { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 }, { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 }, { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 }, { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 }, { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 }, { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 }, { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 }, { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 }, { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 }, { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 }, { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 }, // AVX-512{F,VL} foldable instructions 128-bit { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 }, { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 }, { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 }, { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 }, { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 }, { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 }, { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 }, { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 }, { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 }, { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 }, { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 }, { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) { AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 4, folded load Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD); } } void X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, MemOp2RegOpTableType &M2RTable, uint16_t RegOp, uint16_t MemOp, uint16_t Flags) { if ((Flags & TB_NO_FORWARD) == 0) { assert(!R2MTable.count(RegOp) && "Duplicate entry!"); R2MTable[RegOp] = std::make_pair(MemOp, Flags); } if ((Flags & TB_NO_REVERSE) == 0) { assert(!M2RTable.count(MemOp) && "Duplicated entries in unfolding maps?"); M2RTable[MemOp] = std::make_pair(RegOp, Flags); } } bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: if (!Subtarget.is64Bit()) // It's not always legal to reference the low 8-bit of the larger // register in 32-bit mode. return false; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVSX64rr32: { if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) // Be conservative. return false; SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: SubIdx = X86::sub_8bit; break; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: SubIdx = X86::sub_16bit; break; case X86::MOVSX64rr32: SubIdx = X86::sub_32bit; break; } return true; } } return false; } int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); if (MI.getOpcode() == getCallFrameSetupOpcode() || MI.getOpcode() == getCallFrameDestroyOpcode()) { unsigned StackAlign = TFI->getStackAlignment(); int SPAdj = (MI.getOperand(0).getImm() + StackAlign - 1) / StackAlign * StackAlign; SPAdj -= MI.getOperand(1).getImm(); if (MI.getOpcode() == getCallFrameSetupOpcode()) return SPAdj; else return -SPAdj; } // To know whether a call adjusts the stack, we need information // that is bound to the following ADJCALLSTACKUP pseudo. // Look for the next ADJCALLSTACKUP that follows the call. if (MI.isCall()) { const MachineBasicBlock *MBB = MI.getParent(); auto I = ++MachineBasicBlock::const_iterator(MI); for (auto E = MBB->end(); I != E; ++I) { if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) break; } // If we could not find a frame destroy opcode, then it has already // been simplified, so we don't care. if (I->getOpcode() != getCallFrameDestroyOpcode()) return 0; return -(I->getOperand(1).getImm()); } // Currently handle only PUSHes we can reasonably expect to see // in call sequences switch (MI.getOpcode()) { default: return 0; case X86::PUSH32i8: case X86::PUSH32r: case X86::PUSH32rmm: case X86::PUSH32rmr: case X86::PUSHi32: return 4; case X86::PUSH64i8: case X86::PUSH64r: case X86::PUSH64rmm: case X86::PUSH64rmr: case X86::PUSH64i32: return 8; } } /// Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, int &FrameIndex) const { if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && MI.getOperand(Op + X86::AddrScaleAmt).isImm() && MI.getOperand(Op + X86::AddrIndexReg).isReg() && MI.getOperand(Op + X86::AddrDisp).isImm() && MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); return true; } return false; } static bool isFrameLoadOpcode(int Opcode) { switch (Opcode) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVAPDrm: case X86::VMOVDQArm: case X86::VMOVUPSYrm: case X86::VMOVAPSYrm: case X86::VMOVUPDYrm: case X86::VMOVAPDYrm: case X86::VMOVDQUYrm: case X86::VMOVDQAYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: return true; } } static bool isFrameStoreOpcode(int Opcode) { switch (Opcode) { default: break; case X86::MOV8mr: case X86::MOV16mr: case X86::MOV32mr: case X86::MOV64mr: case X86::ST_FpP64m: case X86::MOVSSmr: case X86::MOVSDmr: case X86::MOVAPSmr: case X86::MOVAPDmr: case X86::MOVDQAmr: case X86::VMOVSSmr: case X86::VMOVSDmr: case X86::VMOVAPSmr: case X86::VMOVAPDmr: case X86::VMOVDQAmr: case X86::VMOVUPSYmr: case X86::VMOVAPSYmr: case X86::VMOVUPDYmr: case X86::VMOVAPDYmr: case X86::VMOVDQUYmr: case X86::VMOVDQAYmr: case X86::VMOVUPSZmr: case X86::VMOVAPSZmr: case X86::MMX_MOVD64mr: case X86::MMX_MOVQ64mr: case X86::MMX_MOVNTQmr: return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI.getOpcode())) if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) return MI.getOperand(0).getReg(); return 0; } unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI.getOpcode())) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasLoadFromStackSlot(MI, Dummy, FrameIndex); } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI.getOpcode())) if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && isFrameOperand(MI, 0, FrameIndex)) return MI.getOperand(X86::AddrNumOperands).getReg(); return 0; } unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI.getOpcode())) { unsigned Reg; if ((Reg = isStoreToStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasStoreToStackSlot(MI, Dummy, FrameIndex); } return 0; } /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { // Don't waste compile time scanning use-def chains of physregs. if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) return false; bool isPICBase = false; for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), E = MRI.def_instr_end(); I != E; ++I) { MachineInstr *DefMI = &*I; if (DefMI->getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA) const { switch (MI.getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsVMOVAPSrm: case X86::FsVMOVAPDrm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: // AVX-512 case X86::VMOVAPDZ128rm: case X86::VMOVAPDZ256rm: case X86::VMOVAPDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVAPSZ256rm: case X86::VMOVAPSZrm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQU16Zrm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Z128rm: case X86::VMOVDQU64Z256rm: case X86::VMOVDQU64Zrm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU8Zrm: case X86::VMOVUPSZ128rm: case X86::VMOVUPSZ256rm: case X86::VMOVUPSZrm: { // Loads from constant pools are trivially rematerializable. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && MI.isInvariantLoad(AA)) { unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) return false; const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } case X86::LEA32r: case X86::LEA64r: { if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && !MI.getOperand(1 + X86::AddrDisp).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) return true; unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } } // All other instructions marked M_REMATERIALIZABLE are always trivially // rematerializable. return true; } bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineBasicBlock::iterator E = MBB.end(); // For compile time consideration, if we are not able to determine the // safety after visiting 4 instructions in each direction, we will assume // it's not safe. MachineBasicBlock::iterator Iter = I; for (unsigned i = 0; Iter != E && i < 4; ++i) { bool SeenDef = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SeenDef = true; if (!MO.isReg()) continue; if (MO.getReg() == X86::EFLAGS) { if (MO.isUse()) return false; SeenDef = true; } } if (SeenDef) // This instruction defines EFLAGS, no need to look any further. return true; ++Iter; // Skip over DBG_VALUE. while (Iter != E && Iter->isDebugValue()) ++Iter; } // It is safe to clobber EFLAGS at the end of a block of no successor has it // live in. if (Iter == E) { for (MachineBasicBlock *S : MBB.successors()) if (S->isLiveIn(X86::EFLAGS)) return false; return true; } MachineBasicBlock::iterator B = MBB.begin(); Iter = I; for (unsigned i = 0; i < 4; ++i) { // If we make it to the beginning of the block, it's safe to clobber // EFLAGS iff EFLAGS is not live-in. if (Iter == B) return !MBB.isLiveIn(X86::EFLAGS); --Iter; // Skip over DBG_VALUE. while (Iter != B && Iter->isDebugValue()) --Iter; bool SawKill = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); // A register mask may clobber EFLAGS, but we should still look for a // live EFLAGS def. if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SawKill = true; if (MO.isReg() && MO.getReg() == X86::EFLAGS) { if (MO.isDef()) return MO.isDead(); if (MO.isKill()) SawKill = true; } } if (SawKill) // This instruction kills EFLAGS and doesn't redefine it, so // there's no need to look further. return true; } // Conservative answer. return false; } void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { bool ClobbersEFLAGS = false; for (const MachineOperand &MO : Orig.operands()) { if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { ClobbersEFLAGS = true; break; } } if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side // effects. int Value; switch (Orig.getOpcode()) { case X86::MOV32r0: Value = 0; break; case X86::MOV32r1: Value = 1; break; case X86::MOV32r_1: Value = -1; break; default: llvm_unreachable("Unexpected instruction!"); } const DebugLoc &DL = Orig.getDebugLoc(); BuildMI(MBB, I, DL, get(X86::MOV32ri)) .addOperand(Orig.getOperand(0)) .addImm(Value); } else { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MBB.insert(I, MI); } MachineInstr &NewMI = *std::prev(I); NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && !MO.isDead()) { return true; } } return false; } /// Check whether the shift count for a machine operand is non-zero. inline static unsigned getTruncatedShiftCount(MachineInstr &MI, unsigned ShiftAmtOperandIdx) { // The shift count is six bits with the REX.W prefix and five bits without. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); return Imm & ShiftCountMask; } /// Check whether the given shift count is appropriate /// can be represented by a LEA instruction. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { // Left shift instructions can be transformed into load-effective-address // instructions if we can encode them appropriately. // A LEA instruction utilizes a SIB byte to encode its scale factor. // The SIB.scale field is two bits wide which means that we can encode any // shift amount less than 4. return ShAmt < 4 && ShAmt > 0; } bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned Opc, bool AllowSP, unsigned &NewSrc, bool &isKill, bool &isUndef, MachineOperand &ImplicitOp) const { MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterClass *RC; if (AllowSP) { RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; } else { RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; } unsigned SrcReg = Src.getReg(); // For both LEA64 and LEA32 the register already has essentially the right // type (32-bit or 64-bit) we may just need to forbid SP. if (Opc != X86::LEA64_32r) { NewSrc = SrcReg; isKill = Src.isKill(); isUndef = Src.isUndef(); if (TargetRegisterInfo::isVirtualRegister(NewSrc) && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) return false; return true; } // This is for an LEA64_32r and incoming registers are 32-bit. One way or // another we need to add 64-bit registers to the final MI. if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { ImplicitOp = Src; ImplicitOp.setImplicit(); NewSrc = getX86SubSuperRegister(Src.getReg(), 64); MachineBasicBlock::LivenessQueryResult LQR = MI.getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI); switch (LQR) { case MachineBasicBlock::LQR_Unknown: // We can't give sane liveness flags to the instruction, abandon LEA // formation. return false; case MachineBasicBlock::LQR_Live: isKill = MI.killsRegister(SrcReg); isUndef = false; break; default: // The physreg itself is dead, so we have to use it as an . isKill = false; isUndef = true; break; } } else { // Virtual register of the wrong class, we have to create a temporary 64-bit // vreg to feed into the LEA. NewSrc = MF.getRegInfo().createVirtualRegister(RC); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) .addOperand(Src); // Which is obviously going to be dead after we're done with it. isKill = true; isUndef = false; } // We've set all the parameters without issue. return true; } /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit /// LEA to form 3-address code by promoting to a 32-bit superregister and then /// truncating back down to a 16-bit subregister. MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { MachineBasicBlock::iterator MBBI = MI.getIterator(); unsigned Dest = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); bool isDead = MI.getOperand(0).isDead(); bool isKill = MI.getOperand(1).isKill(); MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); unsigned Opc, leaInReg; if (Subtarget.is64Bit()) { Opc = X86::LEA64_32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); } else { Opc = X86::LEA32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); } // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. // This has the potential to cause partial register stall. e.g. // movw (%rbp,%rcx,2), %dx // leal -65(%rdx), %esi // But testing has shown this *does* help performance in 64-bit mode (at // least on modern x86 machines). BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); MachineInstr *InsMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg, RegState::Define, X86::sub_16bit) .addReg(Src, getKillRegState(isKill)); MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg); switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::SHL16ri: { unsigned ShAmt = MI.getOperand(2).getImm(); MIB.addReg(0).addImm(1ULL << ShAmt) .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); break; } case X86::INC16r: addRegOffset(MIB, leaInReg, true, 1); break; case X86::DEC16r: addRegOffset(MIB, leaInReg, true, -1); break; case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm()); break; case X86::ADD16rr: case X86::ADD16rr_DB: { unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); unsigned leaInReg2 = 0; MachineInstr *InsMI2 = nullptr; if (Src == Src2) { // ADD16rr %reg1028, %reg1028 // just a single insert_subreg. addRegReg(MIB, leaInReg, true, leaInReg, false); } else { if (Subtarget.is64Bit()) leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); else leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg2, RegState::Define, X86::sub_16bit) .addReg(Src2, getKillRegState(isKill2)); addRegReg(MIB, leaInReg, true, leaInReg2, true); } if (LV && isKill2 && InsMI2) LV->replaceKillInstruction(Src2, MI, *InsMI2); break; } } MachineInstr *NewMI = MIB; MachineInstr *ExtMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); if (LV) { // Update live variables LV->getVarInfo(leaInReg).Kills.push_back(NewMI); LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); if (isKill) LV->replaceKillInstruction(Src, MI, *InsMI); if (isDead) LV->replaceKillInstruction(Dest, MI, *ExtMI); } return ExtMI; } /// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr * X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { // The following opcodes also sets the condition code register(s). Only // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) return nullptr; MachineFunction &MF = *MI.getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. const MachineOperand &Dest = MI.getOperand(0); const MachineOperand &Src = MI.getOperand(1); MachineInstr *NewMI = nullptr; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have better subtarget support, enable the 16-bit LEA generation here. // 16-bit LEA is also slow on Core2. bool DisableLEA16 = true; bool is64Bit = Subtarget.is64Bit(); unsigned MIOpc = MI.getOpcode(); switch (MIOpc) { default: return nullptr; case X86::SHL64ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && !MF.getRegInfo().constrainRegClass(Src.getReg(), &X86::GR64_NOSPRegClass)) return nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) .addOperand(Dest) .addReg(0) .addImm(1ULL << ShAmt) .addOperand(Src) .addImm(0) .addReg(0); break; } case X86::SHL32ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; // LEA can't handle ESP. bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .addOperand(Dest) .addReg(0) .addImm(1ULL << ShAmt) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addImm(0) .addReg(0); if (ImplicitOp.getReg() != 0) MIB.addOperand(ImplicitOp); NewMI = MIB; break; } case X86::SHL16ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest) .addReg(0) .addImm(1ULL << ShAmt) .addOperand(Src) .addImm(0) .addReg(0); break; } case X86::INC64r: case X86::INC32r: { assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .addOperand(Dest) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); if (ImplicitOp.getReg() != 0) MIB.addOperand(ImplicitOp); NewMI = addOffset(MIB, 1); break; } case X86::INC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest) .addOperand(Src), 1); break; case X86::DEC64r: case X86::DEC32r: { assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .addOperand(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.addOperand(ImplicitOp); NewMI = addOffset(MIB, -1); break; } case X86::DEC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest) .addOperand(Src), -1); break; case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD32rr: case X86::ADD32rr_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc; if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) Opc = X86::LEA64r; else Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp)) return nullptr; const MachineOperand &Src2 = MI.getOperand(2); bool isKill2, isUndef2; unsigned SrcReg2; MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, SrcReg2, isKill2, isUndef2, ImplicitOp2)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).addOperand(Dest); if (ImplicitOp.getReg() != 0) MIB.addOperand(ImplicitOp); if (ImplicitOp2.getReg() != 0) MIB.addOperand(ImplicitOp2); NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); // Preserve undefness of the operands. NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && Src2.isKill()) LV->replaceKillInstruction(SrcReg2, MI, *NewMI); break; } case X86::ADD16rr: case X86::ADD16rr_DB: { if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); NewMI = addRegReg( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).addOperand(Dest), Src.getReg(), Src.isKill(), Src2, isKill2); // Preserve undefness of the operands. bool isUndef = MI.getOperand(1).isUndef(); bool isUndef2 = MI.getOperand(2).isUndef(); NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && isKill2) LV->replaceKillInstruction(Src2, MI, *NewMI); break; } case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64ri32_DB: case X86::ADD64ri8_DB: assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) .addOperand(Dest) .addOperand(Src), MI.getOperand(2).getImm()); break; case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri_DB: case X86::ADD32ri8_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .addOperand(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.addOperand(ImplicitOp); NewMI = addOffset(MIB, MI.getOperand(2).getImm()); break; } case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest) .addOperand(Src), MI.getOperand(2).getImm()); break; } if (!NewMI) return nullptr; if (LV) { // Update live variables if (Src.isKill()) LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); if (Dest.isDead()) LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); } MFI->insert(MI.getIterator(), NewMI); // Insert the new inst return NewMI; } /// Returns true if the given instruction opcode is FMA3. /// Otherwise, returns false. /// The second parameter is optional and is used as the second return from /// the function. It is set to true if the given instruction has FMA3 opcode /// that is used for lowering of scalar FMA intrinsics, and it is set to false /// otherwise. static bool isFMA3(unsigned Opcode, bool *IsIntrinsic = nullptr) { if (IsIntrinsic) *IsIntrinsic = false; switch (Opcode) { case X86::VFMADDSDr132r: case X86::VFMADDSDr132m: case X86::VFMADDSSr132r: case X86::VFMADDSSr132m: case X86::VFMSUBSDr132r: case X86::VFMSUBSDr132m: case X86::VFMSUBSSr132r: case X86::VFMSUBSSr132m: case X86::VFNMADDSDr132r: case X86::VFNMADDSDr132m: case X86::VFNMADDSSr132r: case X86::VFNMADDSSr132m: case X86::VFNMSUBSDr132r: case X86::VFNMSUBSDr132m: case X86::VFNMSUBSSr132r: case X86::VFNMSUBSSr132m: case X86::VFMADDSDr213r: case X86::VFMADDSDr213m: case X86::VFMADDSSr213r: case X86::VFMADDSSr213m: case X86::VFMSUBSDr213r: case X86::VFMSUBSDr213m: case X86::VFMSUBSSr213r: case X86::VFMSUBSSr213m: case X86::VFNMADDSDr213r: case X86::VFNMADDSDr213m: case X86::VFNMADDSSr213r: case X86::VFNMADDSSr213m: case X86::VFNMSUBSDr213r: case X86::VFNMSUBSDr213m: case X86::VFNMSUBSSr213r: case X86::VFNMSUBSSr213m: case X86::VFMADDSDr231r: case X86::VFMADDSDr231m: case X86::VFMADDSSr231r: case X86::VFMADDSSr231m: case X86::VFMSUBSDr231r: case X86::VFMSUBSDr231m: case X86::VFMSUBSSr231r: case X86::VFMSUBSSr231m: case X86::VFNMADDSDr231r: case X86::VFNMADDSDr231m: case X86::VFNMADDSSr231r: case X86::VFNMADDSSr231m: case X86::VFNMSUBSDr231r: case X86::VFNMSUBSDr231m: case X86::VFNMSUBSSr231r: case X86::VFNMSUBSSr231m: case X86::VFMADDSUBPDr132r: case X86::VFMADDSUBPDr132m: case X86::VFMADDSUBPSr132r: case X86::VFMADDSUBPSr132m: case X86::VFMSUBADDPDr132r: case X86::VFMSUBADDPDr132m: case X86::VFMSUBADDPSr132r: case X86::VFMSUBADDPSr132m: case X86::VFMADDSUBPDr132rY: case X86::VFMADDSUBPDr132mY: case X86::VFMADDSUBPSr132rY: case X86::VFMADDSUBPSr132mY: case X86::VFMSUBADDPDr132rY: case X86::VFMSUBADDPDr132mY: case X86::VFMSUBADDPSr132rY: case X86::VFMSUBADDPSr132mY: case X86::VFMADDPDr132r: case X86::VFMADDPDr132m: case X86::VFMADDPSr132r: case X86::VFMADDPSr132m: case X86::VFMSUBPDr132r: case X86::VFMSUBPDr132m: case X86::VFMSUBPSr132r: case X86::VFMSUBPSr132m: case X86::VFNMADDPDr132r: case X86::VFNMADDPDr132m: case X86::VFNMADDPSr132r: case X86::VFNMADDPSr132m: case X86::VFNMSUBPDr132r: case X86::VFNMSUBPDr132m: case X86::VFNMSUBPSr132r: case X86::VFNMSUBPSr132m: case X86::VFMADDPDr132rY: case X86::VFMADDPDr132mY: case X86::VFMADDPSr132rY: case X86::VFMADDPSr132mY: case X86::VFMSUBPDr132rY: case X86::VFMSUBPDr132mY: case X86::VFMSUBPSr132rY: case X86::VFMSUBPSr132mY: case X86::VFNMADDPDr132rY: case X86::VFNMADDPDr132mY: case X86::VFNMADDPSr132rY: case X86::VFNMADDPSr132mY: case X86::VFNMSUBPDr132rY: case X86::VFNMSUBPDr132mY: case X86::VFNMSUBPSr132rY: case X86::VFNMSUBPSr132mY: case X86::VFMADDSUBPDr213r: case X86::VFMADDSUBPDr213m: case X86::VFMADDSUBPSr213r: case X86::VFMADDSUBPSr213m: case X86::VFMSUBADDPDr213r: case X86::VFMSUBADDPDr213m: case X86::VFMSUBADDPSr213r: case X86::VFMSUBADDPSr213m: case X86::VFMADDSUBPDr213rY: case X86::VFMADDSUBPDr213mY: case X86::VFMADDSUBPSr213rY: case X86::VFMADDSUBPSr213mY: case X86::VFMSUBADDPDr213rY: case X86::VFMSUBADDPDr213mY: case X86::VFMSUBADDPSr213rY: case X86::VFMSUBADDPSr213mY: case X86::VFMADDPDr213r: case X86::VFMADDPDr213m: case X86::VFMADDPSr213r: case X86::VFMADDPSr213m: case X86::VFMSUBPDr213r: case X86::VFMSUBPDr213m: case X86::VFMSUBPSr213r: case X86::VFMSUBPSr213m: case X86::VFNMADDPDr213r: case X86::VFNMADDPDr213m: case X86::VFNMADDPSr213r: case X86::VFNMADDPSr213m: case X86::VFNMSUBPDr213r: case X86::VFNMSUBPDr213m: case X86::VFNMSUBPSr213r: case X86::VFNMSUBPSr213m: case X86::VFMADDPDr213rY: case X86::VFMADDPDr213mY: case X86::VFMADDPSr213rY: case X86::VFMADDPSr213mY: case X86::VFMSUBPDr213rY: case X86::VFMSUBPDr213mY: case X86::VFMSUBPSr213rY: case X86::VFMSUBPSr213mY: case X86::VFNMADDPDr213rY: case X86::VFNMADDPDr213mY: case X86::VFNMADDPSr213rY: case X86::VFNMADDPSr213mY: case X86::VFNMSUBPDr213rY: case X86::VFNMSUBPDr213mY: case X86::VFNMSUBPSr213rY: case X86::VFNMSUBPSr213mY: case X86::VFMADDSUBPDr231r: case X86::VFMADDSUBPDr231m: case X86::VFMADDSUBPSr231r: case X86::VFMADDSUBPSr231m: case X86::VFMSUBADDPDr231r: case X86::VFMSUBADDPDr231m: case X86::VFMSUBADDPSr231r: case X86::VFMSUBADDPSr231m: case X86::VFMADDSUBPDr231rY: case X86::VFMADDSUBPDr231mY: case X86::VFMADDSUBPSr231rY: case X86::VFMADDSUBPSr231mY: case X86::VFMSUBADDPDr231rY: case X86::VFMSUBADDPDr231mY: case X86::VFMSUBADDPSr231rY: case X86::VFMSUBADDPSr231mY: case X86::VFMADDPDr231r: case X86::VFMADDPDr231m: case X86::VFMADDPSr231r: case X86::VFMADDPSr231m: case X86::VFMSUBPDr231r: case X86::VFMSUBPDr231m: case X86::VFMSUBPSr231r: case X86::VFMSUBPSr231m: case X86::VFNMADDPDr231r: case X86::VFNMADDPDr231m: case X86::VFNMADDPSr231r: case X86::VFNMADDPSr231m: case X86::VFNMSUBPDr231r: case X86::VFNMSUBPDr231m: case X86::VFNMSUBPSr231r: case X86::VFNMSUBPSr231m: case X86::VFMADDPDr231rY: case X86::VFMADDPDr231mY: case X86::VFMADDPSr231rY: case X86::VFMADDPSr231mY: case X86::VFMSUBPDr231rY: case X86::VFMSUBPDr231mY: case X86::VFMSUBPSr231rY: case X86::VFMSUBPSr231mY: case X86::VFNMADDPDr231rY: case X86::VFNMADDPDr231mY: case X86::VFNMADDPSr231rY: case X86::VFNMADDPSr231mY: case X86::VFNMSUBPDr231rY: case X86::VFNMSUBPDr231mY: case X86::VFNMSUBPSr231rY: case X86::VFNMSUBPSr231mY: return true; case X86::VFMADDSDr132r_Int: case X86::VFMADDSDr132m_Int: case X86::VFMADDSSr132r_Int: case X86::VFMADDSSr132m_Int: case X86::VFMSUBSDr132r_Int: case X86::VFMSUBSDr132m_Int: case X86::VFMSUBSSr132r_Int: case X86::VFMSUBSSr132m_Int: case X86::VFNMADDSDr132r_Int: case X86::VFNMADDSDr132m_Int: case X86::VFNMADDSSr132r_Int: case X86::VFNMADDSSr132m_Int: case X86::VFNMSUBSDr132r_Int: case X86::VFNMSUBSDr132m_Int: case X86::VFNMSUBSSr132r_Int: case X86::VFNMSUBSSr132m_Int: case X86::VFMADDSDr213r_Int: case X86::VFMADDSDr213m_Int: case X86::VFMADDSSr213r_Int: case X86::VFMADDSSr213m_Int: case X86::VFMSUBSDr213r_Int: case X86::VFMSUBSDr213m_Int: case X86::VFMSUBSSr213r_Int: case X86::VFMSUBSSr213m_Int: case X86::VFNMADDSDr213r_Int: case X86::VFNMADDSDr213m_Int: case X86::VFNMADDSSr213r_Int: case X86::VFNMADDSSr213m_Int: case X86::VFNMSUBSDr213r_Int: case X86::VFNMSUBSDr213m_Int: case X86::VFNMSUBSSr213r_Int: case X86::VFNMSUBSSr213m_Int: case X86::VFMADDSDr231r_Int: case X86::VFMADDSDr231m_Int: case X86::VFMADDSSr231r_Int: case X86::VFMADDSSr231m_Int: case X86::VFMSUBSDr231r_Int: case X86::VFMSUBSDr231m_Int: case X86::VFMSUBSSr231r_Int: case X86::VFMSUBSSr231m_Int: case X86::VFNMADDSDr231r_Int: case X86::VFNMADDSDr231m_Int: case X86::VFNMADDSSr231r_Int: case X86::VFNMADDSSr231m_Int: case X86::VFNMSUBSDr231r_Int: case X86::VFNMSUBSDr231m_Int: case X86::VFNMSUBSSr231r_Int: case X86::VFNMSUBSSr231m_Int: if (IsIntrinsic) *IsIntrinsic = true; return true; default: return false; } llvm_unreachable("Opcode not handled by the switch"); } MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { if (NewMI) return *MI.getParent()->getParent()->CloneMachineInstr(&MI); return MI; }; switch (MI.getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) unsigned Opc; unsigned Size; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; } unsigned Amt = MI.getOperand(3).getImm(); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.getOperand(3).setImm(Size - Amt); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::BLENDPDrri: case X86::BLENDPSrri: case X86::PBLENDWrri: case X86::VBLENDPDrri: case X86::VBLENDPSrri: case X86::VBLENDPDYrri: case X86::VBLENDPSYrri: case X86::VPBLENDDrri: case X86::VPBLENDWrri: case X86::VPBLENDDYrri: case X86::VPBLENDWYrri:{ unsigned Mask; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::BLENDPDrri: Mask = 0x03; break; case X86::BLENDPSrri: Mask = 0x0F; break; case X86::PBLENDWrri: Mask = 0xFF; break; case X86::VBLENDPDrri: Mask = 0x03; break; case X86::VBLENDPSrri: Mask = 0x0F; break; case X86::VBLENDPDYrri: Mask = 0x0F; break; case X86::VBLENDPSYrri: Mask = 0xFF; break; case X86::VPBLENDDrri: Mask = 0x0F; break; case X86::VPBLENDWrri: Mask = 0xFF; break; case X86::VPBLENDDYrri: Mask = 0xFF; break; case X86::VPBLENDWYrri: Mask = 0xFF; break; } // Only the least significant bits of Imm are used. unsigned Imm = MI.getOperand(3).getImm() & Mask; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Mask ^ Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::PCLMULQDQrr: case X86::VPCLMULQDQrr:{ // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] unsigned Imm = MI.getOperand(3).getImm(); unsigned Src1Hi = Imm & 0x01; unsigned Src2Hi = Imm & 0x10; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: { // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); default: return nullptr; } } case X86::VPCOMBri: case X86::VPCOMUBri: case X86::VPCOMDri: case X86::VPCOMUDri: case X86::VPCOMQri: case X86::VPCOMUQri: case X86::VPCOMWri: case X86::VPCOMUWri: { // Flip comparison mode immediate (if necessary). unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: Imm = 0x02; break; // LT -> GT case 0x01: Imm = 0x03; break; // LE -> GE case 0x02: Imm = 0x00; break; // GT -> LT case 0x03: Imm = 0x01; break; // GE -> LE case 0x04: // EQ case 0x05: // NE case 0x06: // FALSE case 0x07: // TRUE default: break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPERM2F128rr: case X86::VPERM2I128rr: { // Flip permute source immediate. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. unsigned Imm = MI.getOperand(3).getImm() & 0xFF; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm ^ 0x22); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { unsigned Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } default: if (isFMA3(MI.getOpcode())) { unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2); if (Opc == 0) return nullptr; auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } } bool X86InstrInfo::findFMA3CommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { unsigned RegOpsNum = isMem(MI, 3) ? 2 : 3; // Only the first RegOpsNum operands are commutable. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means // that the operand is not specified/fixed. if (SrcOpIdx1 != CommuteAnyOperandIndex && (SrcOpIdx1 < 1 || SrcOpIdx1 > RegOpsNum)) return false; if (SrcOpIdx2 != CommuteAnyOperandIndex && (SrcOpIdx2 < 1 || SrcOpIdx2 > RegOpsNum)) return false; // Look for two different register operands assumed to be commutable // regardless of the FMA opcode. The FMA opcode is adjusted later. if (SrcOpIdx1 == CommuteAnyOperandIndex || SrcOpIdx2 == CommuteAnyOperandIndex) { unsigned CommutableOpIdx1 = SrcOpIdx1; unsigned CommutableOpIdx2 = SrcOpIdx2; // At least one of operands to be commuted is not specified and // this method is free to choose appropriate commutable operands. if (SrcOpIdx1 == SrcOpIdx2) // Both of operands are not fixed. By default set one of commutable // operands to the last register operand of the instruction. CommutableOpIdx2 = RegOpsNum; else if (SrcOpIdx2 == CommuteAnyOperandIndex) // Only one of operands is not fixed. CommutableOpIdx2 = SrcOpIdx1; // CommutableOpIdx2 is well defined now. Let's choose another commutable // operand and assign its index to CommutableOpIdx1. unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); for (CommutableOpIdx1 = RegOpsNum; CommutableOpIdx1 > 0; CommutableOpIdx1--) { // The commuted operands must have different registers. // Otherwise, the commute transformation does not change anything and // is useless then. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) break; } // No appropriate commutable operands were found. if (CommutableOpIdx1 == 0) return false; // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 // to return those values. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; } // Check if we can adjust the opcode to preserve the semantics when // commute the register operands. return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2) != 0; } unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2) const { unsigned Opc = MI.getOpcode(); // Define the array that holds FMA opcodes in groups // of 3 opcodes(132, 213, 231) in each group. static const uint16_t RegularOpcodeGroups[][3] = { { X86::VFMADDSSr132r, X86::VFMADDSSr213r, X86::VFMADDSSr231r }, { X86::VFMADDSDr132r, X86::VFMADDSDr213r, X86::VFMADDSDr231r }, { X86::VFMADDPSr132r, X86::VFMADDPSr213r, X86::VFMADDPSr231r }, { X86::VFMADDPDr132r, X86::VFMADDPDr213r, X86::VFMADDPDr231r }, { X86::VFMADDPSr132rY, X86::VFMADDPSr213rY, X86::VFMADDPSr231rY }, { X86::VFMADDPDr132rY, X86::VFMADDPDr213rY, X86::VFMADDPDr231rY }, { X86::VFMADDSSr132m, X86::VFMADDSSr213m, X86::VFMADDSSr231m }, { X86::VFMADDSDr132m, X86::VFMADDSDr213m, X86::VFMADDSDr231m }, { X86::VFMADDPSr132m, X86::VFMADDPSr213m, X86::VFMADDPSr231m }, { X86::VFMADDPDr132m, X86::VFMADDPDr213m, X86::VFMADDPDr231m }, { X86::VFMADDPSr132mY, X86::VFMADDPSr213mY, X86::VFMADDPSr231mY }, { X86::VFMADDPDr132mY, X86::VFMADDPDr213mY, X86::VFMADDPDr231mY }, { X86::VFMSUBSSr132r, X86::VFMSUBSSr213r, X86::VFMSUBSSr231r }, { X86::VFMSUBSDr132r, X86::VFMSUBSDr213r, X86::VFMSUBSDr231r }, { X86::VFMSUBPSr132r, X86::VFMSUBPSr213r, X86::VFMSUBPSr231r }, { X86::VFMSUBPDr132r, X86::VFMSUBPDr213r, X86::VFMSUBPDr231r }, { X86::VFMSUBPSr132rY, X86::VFMSUBPSr213rY, X86::VFMSUBPSr231rY }, { X86::VFMSUBPDr132rY, X86::VFMSUBPDr213rY, X86::VFMSUBPDr231rY }, { X86::VFMSUBSSr132m, X86::VFMSUBSSr213m, X86::VFMSUBSSr231m }, { X86::VFMSUBSDr132m, X86::VFMSUBSDr213m, X86::VFMSUBSDr231m }, { X86::VFMSUBPSr132m, X86::VFMSUBPSr213m, X86::VFMSUBPSr231m }, { X86::VFMSUBPDr132m, X86::VFMSUBPDr213m, X86::VFMSUBPDr231m }, { X86::VFMSUBPSr132mY, X86::VFMSUBPSr213mY, X86::VFMSUBPSr231mY }, { X86::VFMSUBPDr132mY, X86::VFMSUBPDr213mY, X86::VFMSUBPDr231mY }, { X86::VFNMADDSSr132r, X86::VFNMADDSSr213r, X86::VFNMADDSSr231r }, { X86::VFNMADDSDr132r, X86::VFNMADDSDr213r, X86::VFNMADDSDr231r }, { X86::VFNMADDPSr132r, X86::VFNMADDPSr213r, X86::VFNMADDPSr231r }, { X86::VFNMADDPDr132r, X86::VFNMADDPDr213r, X86::VFNMADDPDr231r }, { X86::VFNMADDPSr132rY, X86::VFNMADDPSr213rY, X86::VFNMADDPSr231rY }, { X86::VFNMADDPDr132rY, X86::VFNMADDPDr213rY, X86::VFNMADDPDr231rY }, { X86::VFNMADDSSr132m, X86::VFNMADDSSr213m, X86::VFNMADDSSr231m }, { X86::VFNMADDSDr132m, X86::VFNMADDSDr213m, X86::VFNMADDSDr231m }, { X86::VFNMADDPSr132m, X86::VFNMADDPSr213m, X86::VFNMADDPSr231m }, { X86::VFNMADDPDr132m, X86::VFNMADDPDr213m, X86::VFNMADDPDr231m }, { X86::VFNMADDPSr132mY, X86::VFNMADDPSr213mY, X86::VFNMADDPSr231mY }, { X86::VFNMADDPDr132mY, X86::VFNMADDPDr213mY, X86::VFNMADDPDr231mY }, { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr213r, X86::VFNMSUBSSr231r }, { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr213r, X86::VFNMSUBSDr231r }, { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr213r, X86::VFNMSUBPSr231r }, { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr213r, X86::VFNMSUBPDr231r }, { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr231rY }, { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr231rY }, { X86::VFNMSUBSSr132m, X86::VFNMSUBSSr213m, X86::VFNMSUBSSr231m }, { X86::VFNMSUBSDr132m, X86::VFNMSUBSDr213m, X86::VFNMSUBSDr231m }, { X86::VFNMSUBPSr132m, X86::VFNMSUBPSr213m, X86::VFNMSUBPSr231m }, { X86::VFNMSUBPDr132m, X86::VFNMSUBPDr213m, X86::VFNMSUBPDr231m }, { X86::VFNMSUBPSr132mY, X86::VFNMSUBPSr213mY, X86::VFNMSUBPSr231mY }, { X86::VFNMSUBPDr132mY, X86::VFNMSUBPDr213mY, X86::VFNMSUBPDr231mY }, { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr231r }, { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr231r }, { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr231rY }, { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr231rY }, { X86::VFMADDSUBPSr132m, X86::VFMADDSUBPSr213m, X86::VFMADDSUBPSr231m }, { X86::VFMADDSUBPDr132m, X86::VFMADDSUBPDr213m, X86::VFMADDSUBPDr231m }, { X86::VFMADDSUBPSr132mY, X86::VFMADDSUBPSr213mY, X86::VFMADDSUBPSr231mY }, { X86::VFMADDSUBPDr132mY, X86::VFMADDSUBPDr213mY, X86::VFMADDSUBPDr231mY }, { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr231r }, { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr231r }, { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr231rY }, { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr231rY }, { X86::VFMSUBADDPSr132m, X86::VFMSUBADDPSr213m, X86::VFMSUBADDPSr231m }, { X86::VFMSUBADDPDr132m, X86::VFMSUBADDPDr213m, X86::VFMSUBADDPDr231m }, { X86::VFMSUBADDPSr132mY, X86::VFMSUBADDPSr213mY, X86::VFMSUBADDPSr231mY }, { X86::VFMSUBADDPDr132mY, X86::VFMSUBADDPDr213mY, X86::VFMSUBADDPDr231mY } }; // Define the array that holds FMA*_Int opcodes in groups // of 3 opcodes(132, 213, 231) in each group. static const uint16_t IntrinOpcodeGroups[][3] = { { X86::VFMADDSSr132r_Int, X86::VFMADDSSr213r_Int, X86::VFMADDSSr231r_Int }, { X86::VFMADDSDr132r_Int, X86::VFMADDSDr213r_Int, X86::VFMADDSDr231r_Int }, { X86::VFMADDSSr132m_Int, X86::VFMADDSSr213m_Int, X86::VFMADDSSr231m_Int }, { X86::VFMADDSDr132m_Int, X86::VFMADDSDr213m_Int, X86::VFMADDSDr231m_Int }, { X86::VFMSUBSSr132r_Int, X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr231r_Int }, { X86::VFMSUBSDr132r_Int, X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr231r_Int }, { X86::VFMSUBSSr132m_Int, X86::VFMSUBSSr213m_Int, X86::VFMSUBSSr231m_Int }, { X86::VFMSUBSDr132m_Int, X86::VFMSUBSDr213m_Int, X86::VFMSUBSDr231m_Int }, { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr231r_Int }, { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr231r_Int }, { X86::VFNMADDSSr132m_Int, X86::VFNMADDSSr213m_Int, X86::VFNMADDSSr231m_Int }, { X86::VFNMADDSDr132m_Int, X86::VFNMADDSDr213m_Int, X86::VFNMADDSDr231m_Int }, { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr231r_Int }, { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr231r_Int }, { X86::VFNMSUBSSr132m_Int, X86::VFNMSUBSSr213m_Int, X86::VFNMSUBSSr231m_Int }, { X86::VFNMSUBSDr132m_Int, X86::VFNMSUBSDr213m_Int, X86::VFNMSUBSDr231m_Int }, }; const unsigned Form132Index = 0; const unsigned Form213Index = 1; const unsigned Form231Index = 2; const unsigned FormsNum = 3; bool IsIntrinOpcode; isFMA3(Opc, &IsIntrinOpcode); size_t GroupsNum; const uint16_t (*OpcodeGroups)[3]; if (IsIntrinOpcode) { GroupsNum = array_lengthof(IntrinOpcodeGroups); OpcodeGroups = IntrinOpcodeGroups; } else { GroupsNum = array_lengthof(RegularOpcodeGroups); OpcodeGroups = RegularOpcodeGroups; } const uint16_t *FoundOpcodesGroup = nullptr; size_t FormIndex; // Look for the input opcode in the corresponding opcodes table. for (size_t GroupIndex = 0; GroupIndex < GroupsNum && !FoundOpcodesGroup; ++GroupIndex) { for (FormIndex = 0; FormIndex < FormsNum; ++FormIndex) { if (OpcodeGroups[GroupIndex][FormIndex] == Opc) { FoundOpcodesGroup = OpcodeGroups[GroupIndex]; break; } } } // The input opcode does not match with any of the opcodes from the tables. // The unsupported FMA opcode must be added to one of the two opcode groups // defined above. assert(FoundOpcodesGroup != nullptr && "Unexpected FMA3 opcode"); // Put the lowest index to SrcOpIdx1 to simplify the checks below. if (SrcOpIdx1 > SrcOpIdx2) std::swap(SrcOpIdx1, SrcOpIdx2); // TODO: Commuting the 1st operand of FMA*_Int requires some additional // analysis. The commute optimization is legal only if all users of FMA*_Int // use only the lowest element of the FMA*_Int instruction. Such analysis are // not implemented yet. So, just return 0 in that case. // When such analysis are available this place will be the right place for // calling it. if (IsIntrinOpcode && SrcOpIdx1 == 1) return 0; unsigned Case; if (SrcOpIdx1 == 1 && SrcOpIdx2 == 2) Case = 0; else if (SrcOpIdx1 == 1 && SrcOpIdx2 == 3) Case = 1; else if (SrcOpIdx1 == 2 && SrcOpIdx2 == 3) Case = 2; else return 0; // Define the FMA forms mapping array that helps to map input FMA form // to output FMA form to preserve the operation semantics after // commuting the operands. static const unsigned FormMapping[][3] = { // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; // FMA132 A, C, b; ==> FMA231 C, A, b; // FMA213 B, A, c; ==> FMA213 A, B, c; // FMA231 C, A, b; ==> FMA132 A, C, b; { Form231Index, Form213Index, Form132Index }, // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; // FMA132 A, c, B; ==> FMA132 B, c, A; // FMA213 B, a, C; ==> FMA231 C, a, B; // FMA231 C, a, B; ==> FMA213 B, a, C; { Form132Index, Form231Index, Form213Index }, // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; // FMA132 a, C, B; ==> FMA213 a, B, C; // FMA213 b, A, C; ==> FMA132 b, C, A; // FMA231 c, A, B; ==> FMA231 c, B, A; { Form213Index, Form132Index, Form231Index } }; // Everything is ready, just adjust the FMA opcode and return it. FormIndex = FormMapping[Case][FormIndex]; return FoundOpcodesGroup[FormIndex]; } bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { switch (MI.getOpcode()) { case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: { // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED // The indices of the commutable operands are 1 and 2. // Assign them to the returned operand indices here. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); } return false; } default: if (isFMA3(MI.getOpcode())) return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); } return false; } static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return X86::COND_INVALID; case X86::JE_1: return X86::COND_E; case X86::JNE_1: return X86::COND_NE; case X86::JL_1: return X86::COND_L; case X86::JLE_1: return X86::COND_LE; case X86::JG_1: return X86::COND_G; case X86::JGE_1: return X86::COND_GE; case X86::JB_1: return X86::COND_B; case X86::JBE_1: return X86::COND_BE; case X86::JA_1: return X86::COND_A; case X86::JAE_1: return X86::COND_AE; case X86::JS_1: return X86::COND_S; case X86::JNS_1: return X86::COND_NS; case X86::JP_1: return X86::COND_P; case X86::JNP_1: return X86::COND_NP; case X86::JO_1: return X86::COND_O; case X86::JNO_1: return X86::COND_NO; } } /// Return condition code of a SET opcode. static X86::CondCode getCondFromSETOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::SETAr: case X86::SETAm: return X86::COND_A; case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; case X86::SETBr: case X86::SETBm: return X86::COND_B; case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; case X86::SETEr: case X86::SETEm: return X86::COND_E; case X86::SETGr: case X86::SETGm: return X86::COND_G; case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; case X86::SETLr: case X86::SETLm: return X86::COND_L; case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; case X86::SETOr: case X86::SETOm: return X86::COND_O; case X86::SETPr: case X86::SETPm: return X86::COND_P; case X86::SETSr: case X86::SETSm: return X86::COND_S; } } /// Return condition code of a CMov opcode. X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: return X86::COND_A; case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: return X86::COND_AE; case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: return X86::COND_B; case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: return X86::COND_BE; case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: return X86::COND_E; case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: return X86::COND_G; case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: return X86::COND_GE; case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: return X86::COND_L; case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: return X86::COND_LE; case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: return X86::COND_NE; case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: return X86::COND_NO; case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: return X86::COND_NP; case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: return X86::COND_NS; case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: return X86::COND_O; case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: return X86::COND_P; case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: return X86::COND_S; } } unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::JE_1; case X86::COND_NE: return X86::JNE_1; case X86::COND_L: return X86::JL_1; case X86::COND_LE: return X86::JLE_1; case X86::COND_G: return X86::JG_1; case X86::COND_GE: return X86::JGE_1; case X86::COND_B: return X86::JB_1; case X86::COND_BE: return X86::JBE_1; case X86::COND_A: return X86::JA_1; case X86::COND_AE: return X86::JAE_1; case X86::COND_S: return X86::JS_1; case X86::COND_NS: return X86::JNS_1; case X86::COND_P: return X86::JP_1; case X86::COND_NP: return X86::JNP_1; case X86::COND_O: return X86::JO_1; case X86::COND_NO: return X86::JNO_1; } } /// Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; } } /// Assuming the flags are set by MI(a,b), return the condition code if we /// modify the instructions such that flags are set by MI(b,a). static X86::CondCode getSwappedCondition(X86::CondCode CC) { switch (CC) { default: return X86::COND_INVALID; case X86::COND_E: return X86::COND_E; case X86::COND_NE: return X86::COND_NE; case X86::COND_L: return X86::COND_G; case X86::COND_LE: return X86::COND_GE; case X86::COND_G: return X86::COND_L; case X86::COND_GE: return X86::COND_LE; case X86::COND_B: return X86::COND_A; case X86::COND_BE: return X86::COND_AE; case X86::COND_A: return X86::COND_B; case X86::COND_AE: return X86::COND_BE; } } /// Return a set opcode for the given condition and /// whether it has memory operand. unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { static const uint16_t Opc[16][2] = { { X86::SETAr, X86::SETAm }, { X86::SETAEr, X86::SETAEm }, { X86::SETBr, X86::SETBm }, { X86::SETBEr, X86::SETBEm }, { X86::SETEr, X86::SETEm }, { X86::SETGr, X86::SETGm }, { X86::SETGEr, X86::SETGEm }, { X86::SETLr, X86::SETLm }, { X86::SETLEr, X86::SETLEm }, { X86::SETNEr, X86::SETNEm }, { X86::SETNOr, X86::SETNOm }, { X86::SETNPr, X86::SETNPm }, { X86::SETNSr, X86::SETNSm }, { X86::SETOr, X86::SETOm }, { X86::SETPr, X86::SETPm }, { X86::SETSr, X86::SETSm } }; assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); return Opc[CC][HasMemoryOperand ? 1 : 0]; } /// Return a cmov opcode for the given condition, /// register size in bytes, and operand type. unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, bool HasMemoryOperand) { static const uint16_t Opc[32][3] = { { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } }; assert(CC < 16 && "Can only handle standard cond codes"); unsigned Idx = HasMemoryOperand ? 16+CC : CC; switch(RegBytes) { default: llvm_unreachable("Illegal register size!"); case 2: return Opc[Idx][0]; case 4: return Opc[Idx][1]; case 8: return Opc[Idx][2]; } } bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; if (!MI.isPredicable()) return true; return !isPredicated(MI); } // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may // not be a fallthrough MBB now due to layout changes). Return nullptr if the // fallthrough MBB cannot be identified. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB) { // Look for non-EHPad successors other than TBB. If we find exactly one, it // is the fallthrough MBB. If we find zero, then TBB is both the target MBB // and fallthrough MBB. If we find more than one, we cannot identify the // fallthrough MBB and should return nullptr. MachineBasicBlock *FallthroughBB = nullptr; for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) continue; // Return a nullptr if we found more than one fallthrough successor. if (FallthroughBB && FallthroughBB != TBB) return nullptr; FallthroughBB = *SI; } return FallthroughBB; } bool X86InstrInfo::AnalyzeBranchImpl( MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, SmallVectorImpl &CondBranches, bool AllowModify) const { // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); MachineBasicBlock::iterator UnCondBrIter = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(*I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Handle unconditional branches. if (I->getOpcode() == X86::JMP_1) { UnCondBrIter = I; if (!AllowModify) { TBB = I->getOperand(0).getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (std::next(I) != MBB.end()) std::next(I)->eraseFromParent(); Cond.clear(); FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { TBB = nullptr; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); continue; } // TBB is used to indicate the unconditional destination. TBB = I->getOperand(0).getMBB(); continue; } // Handle conditional branches. X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); if (AllowModify && UnCondBrIter != MBB.end() && MBB.isLayoutSuccessor(TargetBB)) { // If we can modify the code and it ends in something like: // // jCC L1 // jmp L2 // L1: // ... // L2: // // Then we can change this to: // // jnCC L2 // L1: // ... // L2: // // Which is a bit more efficient. // We conditionally jump to the fall-through block. BranchCode = GetOppositeBranchCondition(BranchCode); unsigned JNCC = GetCondBranchFromCond(BranchCode); MachineBasicBlock::iterator OldInst = I; BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) .addMBB(UnCondBrIter->getOperand(0).getMBB()); BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) .addMBB(TargetBB); OldInst->eraseFromParent(); UnCondBrIter->eraseFromParent(); // Restart the analysis. UnCondBrIter = MBB.end(); I = MBB.end(); continue; } FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); CondBranches.push_back(&*I); continue; } // Handle subsequent conditional branches. Only handle the case where all // conditional branches branch to the same destination and their condition // opcodes fit one of the special multi-branch idioms. assert(Cond.size() == 1); assert(TBB); // If the conditions are the same, we can leave them alone. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); auto NewTBB = I->getOperand(0).getMBB(); if (OldBranchCode == BranchCode && TBB == NewTBB) continue; // If they differ, see if they fit one of the known patterns. Theoretically, // we could handle more patterns here, but we shouldn't expect to see them // if instruction selection has done a reasonable job. if (TBB == NewTBB && ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { BranchCode = X86::COND_NE_OR_P; } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) return true; // X86::COND_E_AND_NP usually has two different branch destinations. // // JP B1 // JE B2 // JMP B1 // B1: // B2: // // Here this condition branches to B2 only if NP && E. It has another // equivalent form: // // JNE B1 // JNP B2 // JMP B1 // B1: // B2: // // Similarly it branches to B2 only if E && NP. That is why this condition // is named with COND_E_AND_NP. BranchCode = X86::COND_E_AND_NP; } else return true; // Update the MachineOperand. Cond[0].setImm(BranchCode); CondBranches.push_back(&*I); } return false; } bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { SmallVector CondBranches; return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); } bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify) const { using namespace std::placeholders; SmallVector Cond; SmallVector CondBranches; if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, AllowModify)) return true; if (Cond.size() != 1) return true; assert(MBP.TrueDest && "expected!"); if (!MBP.FalseDest) MBP.FalseDest = MBB.getNextNode(); const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineInstr *ConditionDef = nullptr; bool SingleUseCondition = true; for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { if (I->modifiesRegister(X86::EFLAGS, TRI)) { ConditionDef = &*I; break; } if (I->readsRegister(X86::EFLAGS, TRI)) SingleUseCondition = false; } if (!ConditionDef) return true; if (SingleUseCondition) { for (auto *Succ : MBB.successors()) if (Succ->isLiveIn(X86::EFLAGS)) SingleUseCondition = false; } MBP.ConditionDef = ConditionDef; MBP.SingleUseCondition = SingleUseCondition; // Currently we only recognize the simple pattern: // // test %reg, %reg // je %label // const unsigned TestOpcode = Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; if (ConditionDef->getOpcode() == TestOpcode && ConditionDef->getNumOperands() == 3 && ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { MBP.LHS = ConditionDef->getOperand(0); MBP.RHS = MachineOperand::CreateImm(0); MBP.Predicate = Cond[0].getImm() == X86::COND_NE ? MachineBranchPredicate::PRED_NE : MachineBranchPredicate::PRED_EQ; return false; } return true; } unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (I->getOpcode() != X86::JMP_1 && getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); return 1; } // If FBB is null, it is implied to be a fall-through block. bool FallThru = FBB == nullptr; // Conditional branch. unsigned Count = 0; X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); switch (CC) { case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); ++Count; BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); ++Count; break; case X86::COND_E_AND_NP: // Use the next block of MBB as FBB if it is null. if (FBB == nullptr) { FBB = getFallThroughMBB(&MBB, TBB); assert(FBB && "MBB cannot be the last block in function when the false " "body is a fall-through."); } // Synthesize COND_E_AND_NP with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB); ++Count; BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); ++Count; break; default: { unsigned Opc = GetCondBranchFromCond(CC); BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); ++Count; } } if (!FallThru) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); ++Count; } return Count; } bool X86InstrInfo:: canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have cmov instructions. if (!Subtarget.hasCMov()) return false; if (Cond.size() != 1) return false; // We cannot do the composite conditions, at least not in SSA form. if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // We have cmov instructions for 16, 32, and 64 bit general purpose registers. if (X86::GR16RegClass.hasSubClassEq(RC) || X86::GR32RegClass.hasSubClassEq(RC) || X86::GR64RegClass.hasSubClassEq(RC)) { // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy // Bridge. Probably Ivy Bridge as well. CondCycles = 2; TrueCycles = 2; FalseCycles = 2; return true; } // Can't do vectors. return false; } void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); assert(Cond.size() == 1 && "Invalid Cond array"); unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), MRI.getRegClass(DstReg)->getSize(), false /*HasMemoryOperand*/); BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); } /// Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } // Try and copy between VR128/VR64 and GR64 registers. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, const X86Subtarget &Subtarget) { // SrcReg(VR128) -> DestReg(GR64) // SrcReg(VR64) -> DestReg(GR64) // SrcReg(GR64) -> DestReg(VR128) // SrcReg(GR64) -> DestReg(VR64) bool HasAVX = Subtarget.hasAVX(); bool HasAVX512 = Subtarget.hasAVX512(); if (X86::GR64RegClass.contains(DestReg)) { if (X86::VR128XRegClass.contains(SrcReg)) // Copy from a VR128 register to a GR64 register. return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr); if (X86::VR64RegClass.contains(SrcReg)) // Copy from a VR64 register to a GR64 register. return X86::MMX_MOVD64from64rr; } else if (X86::GR64RegClass.contains(SrcReg)) { // Copy from a GR64 register to a VR128 register. if (X86::VR128XRegClass.contains(DestReg)) return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr); // Copy from a GR64 register to a VR64 register. if (X86::VR64RegClass.contains(DestReg)) return X86::MMX_MOVD64to64rr; } // SrcReg(FR32) -> DestReg(GR32) // SrcReg(GR32) -> DestReg(FR32) if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) // Copy from a FR32 register to a GR32 register. return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr); if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) // Copy from a GR32 register to a FR32 register. return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr); return 0; } static bool isMaskRegClass(const TargetRegisterClass *RC) { // All KMASK RegClasses hold the same k registers, can be tested against anyone. return X86::VK16RegClass.hasSubClassEq(RC); } static bool MaskRegClassContains(unsigned Reg) { // All KMASK RegClasses hold the same k registers, can be tested against anyone. return X86::VK16RegClass.contains(Reg); } static bool GRRegClassContains(unsigned Reg) { return X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg) || X86::GR16RegClass.contains(Reg) || X86::GR8RegClass.contains(Reg); } static unsigned copyPhysRegOpcode_AVX512_DQ(unsigned& DestReg, unsigned& SrcReg) { if (MaskRegClassContains(SrcReg) && X86::GR8RegClass.contains(DestReg)) { DestReg = getX86SubSuperRegister(DestReg, 32); return X86::KMOVBrk; } if (MaskRegClassContains(DestReg) && X86::GR8RegClass.contains(SrcReg)) { SrcReg = getX86SubSuperRegister(SrcReg, 32); return X86::KMOVBkr; } return 0; } static unsigned copyPhysRegOpcode_AVX512_BW(unsigned& DestReg, unsigned& SrcReg) { if (MaskRegClassContains(SrcReg) && MaskRegClassContains(DestReg)) return X86::KMOVQkk; if (MaskRegClassContains(SrcReg) && X86::GR32RegClass.contains(DestReg)) return X86::KMOVDrk; if (MaskRegClassContains(SrcReg) && X86::GR64RegClass.contains(DestReg)) return X86::KMOVQrk; if (MaskRegClassContains(DestReg) && X86::GR32RegClass.contains(SrcReg)) return X86::KMOVDkr; if (MaskRegClassContains(DestReg) && X86::GR64RegClass.contains(SrcReg)) return X86::KMOVQkr; return 0; } static unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg, const X86Subtarget &Subtarget) { if (Subtarget.hasDQI()) if (auto Opc = copyPhysRegOpcode_AVX512_DQ(DestReg, SrcReg)) return Opc; if (Subtarget.hasBWI()) if (auto Opc = copyPhysRegOpcode_AVX512_BW(DestReg, SrcReg)) return Opc; if (X86::VR128XRegClass.contains(DestReg, SrcReg) || X86::VR256XRegClass.contains(DestReg, SrcReg) || X86::VR512RegClass.contains(DestReg, SrcReg)) { DestReg = get512BitSuperRegister(DestReg); SrcReg = get512BitSuperRegister(SrcReg); return X86::VMOVAPSZrr; } if (MaskRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) return X86::KMOVWkk; if (MaskRegClassContains(DestReg) && GRRegClassContains(SrcReg)) { SrcReg = getX86SubSuperRegister(SrcReg, 32); return X86::KMOVWkr; } if (GRRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) { DestReg = getX86SubSuperRegister(DestReg, 32); return X86::KMOVWrk; } return 0; } void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // First deal with the normal symmetric copies. bool HasAVX = Subtarget.hasAVX(); bool HasAVX512 = Subtarget.hasAVX512(); unsigned Opc = 0; if (X86::GR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV64rr; else if (X86::GR32RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV32rr; else if (X86::GR16RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV16rr; else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { Opc = X86::MOV8rr_NOREX; // Both operands must be encodable without an REX prefix. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"); } else Opc = X86::MOV8rr; } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MMX_MOVQ64rr; else if (HasAVX512) Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg, Subtarget); else if (X86::VR128RegClass.contains(DestReg, SrcReg)) Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; else if (X86::VR256RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSYrr; if (!Opc) Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); if (Opc) { BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } bool FromEFLAGS = SrcReg == X86::EFLAGS; bool ToEFLAGS = DestReg == X86::EFLAGS; int Reg = FromEFLAGS ? DestReg : SrcReg; bool is32 = X86::GR32RegClass.contains(Reg); bool is64 = X86::GR64RegClass.contains(Reg); if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) { int Mov = is64 ? X86::MOV64rr : X86::MOV32rr; int Push = is64 ? X86::PUSH64r : X86::PUSH32r; int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32; int Pop = is64 ? X86::POP64r : X86::POP32r; int PopF = is64 ? X86::POPF64 : X86::POPF32; int AX = is64 ? X86::RAX : X86::EAX; if (!Subtarget.hasLAHFSAHF()) { assert(Subtarget.is64Bit() && "Not having LAHF/SAHF only happens on 64-bit."); // Moving EFLAGS to / from another register requires a push and a pop. // Notice that we have to adjust the stack if we don't want to clobber the // first frame index. See X86FrameLowering.cpp - usesTheStack. if (FromEFLAGS) { BuildMI(MBB, MI, DL, get(PushF)); BuildMI(MBB, MI, DL, get(Pop), DestReg); } if (ToEFLAGS) { BuildMI(MBB, MI, DL, get(Push)) .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(PopF)); } return; } // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is // inefficient. Instead: // - Save the overflow flag OF into AL using SETO, and restore it using a // signed 8-bit addition of AL and INT8_MAX. // - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH // using LAHF/SAHF. // - When RAX/EAX is live and isn't the destination register, make sure it // isn't clobbered by PUSH/POP'ing it before and after saving/restoring // the flags. // This approach is ~2.25x faster than using PUSHF/POPF. // // This is still somewhat inefficient because we don't know which flags are // actually live inside EFLAGS. Were we able to do a single SETcc instead of // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster. // // PUSHF/POPF is also potentially incorrect because it affects other flags // such as TF/IF/DF, which LLVM doesn't model. // // Notice that we have to adjust the stack if we don't want to clobber the // first frame index. // See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment. const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineBasicBlock::LivenessQueryResult LQR = MBB.computeRegisterLiveness(TRI, AX, MI); // We do not want to save and restore AX if we do not have to. // Moreover, if we do so whereas AX is dead, we would need to set // an undef flag on the use of AX, otherwise the verifier will // complain that we read an undef value. // We do not want to change the behavior of the machine verifier // as this is usually wrong to read an undef value. if (MachineBasicBlock::LQR_Unknown == LQR) { LivePhysRegs LPR(TRI); LPR.addLiveOuts(MBB); MachineBasicBlock::iterator I = MBB.end(); while (I != MI) { --I; LPR.stepBackward(*I); } // AX contains the top most register in the aliasing hierarchy. // It may not be live, but one of its aliases may be. for (MCRegAliasIterator AI(AX, TRI, true); AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI) LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live : MachineBasicBlock::LQR_Dead; } bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR); if (!AXDead) BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true)); if (FromEFLAGS) { BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL); BuildMI(MBB, MI, DL, get(X86::LAHF)); BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX); } if (ToEFLAGS) { BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL) .addReg(X86::AL) .addImm(INT8_MAX); BuildMI(MBB, MI, DL, get(X86::SAHF)); } if (!AXDead) BuildMI(MBB, MI, DL, get(Pop), AX); return; } DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " << RI.getName(DestReg) << '\n'); llvm_unreachable("Cannot emit physreg copy instruction"); } static unsigned getLoadStoreMaskRegOpcode(const TargetRegisterClass *RC, bool load) { switch (RC->getSize()) { default: llvm_unreachable("Unknown spill size"); case 2: return load ? X86::KMOVWkm : X86::KMOVWmk; case 4: return load ? X86::KMOVDkm : X86::KMOVDmk; case 8: return load ? X86::KMOVQkm : X86::KMOVQmk; } } static unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI, bool load) { if (STI.hasAVX512()) { if (isMaskRegClass(RC)) return getLoadStoreMaskRegOpcode(RC, load); if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC)) return load ? X86::VMOVSSZrm : X86::VMOVSSZmr; if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC)) return load ? X86::VMOVSDZrm : X86::VMOVSDZmr; if (X86::VR512RegClass.hasSubClassEq(RC)) return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; } bool HasAVX = STI.hasAVX(); switch (RC->getSize()) { default: llvm_unreachable("Unknown spill size"); case 1: assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); if (STI.is64Bit()) // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; return load ? X86::MOV8rm : X86::MOV8mr; case 2: assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); return load ? X86::MOV16rm : X86::MOV16mr; case 4: if (X86::GR32RegClass.hasSubClassEq(RC)) return load ? X86::MOV32rm : X86::MOV32mr; if (X86::FR32RegClass.hasSubClassEq(RC)) return load ? (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); if (X86::RFP32RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp32m : X86::ST_Fp32m; llvm_unreachable("Unknown 4-byte regclass"); case 8: if (X86::GR64RegClass.hasSubClassEq(RC)) return load ? X86::MOV64rm : X86::MOV64mr; if (X86::FR64RegClass.hasSubClassEq(RC)) return load ? (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); if (X86::VR64RegClass.hasSubClassEq(RC)) return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; if (X86::RFP64RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp64m : X86::ST_Fp64m; llvm_unreachable("Unknown 8-byte regclass"); case 10: assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); return load ? X86::LD_Fp80m : X86::ST_FpP80m; case 16: { assert((X86::VR128RegClass.hasSubClassEq(RC) || X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass"); // If stack is realigned we can use aligned stores. if (X86::VR128RegClass.hasSubClassEq(RC)) { if (isStackAligned) return load ? (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); else return load ? (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); } assert(STI.hasVLX() && "Using extended register requires VLX"); if (isStackAligned) return load ? X86::VMOVAPSZ128rm : X86::VMOVAPSZ128mr; else return load ? X86::VMOVUPSZ128rm : X86::VMOVUPSZ128mr; } case 32: assert((X86::VR256RegClass.hasSubClassEq(RC) || X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass"); // If stack is realigned we can use aligned stores. if (X86::VR256RegClass.hasSubClassEq(RC)) { if (isStackAligned) return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; else return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; } assert(STI.hasVLX() && "Using extended register requires VLX"); if (isStackAligned) return load ? X86::VMOVAPSZ256rm : X86::VMOVAPSZ256mr; else return load ? X86::VMOVUPSZ256rm : X86::VMOVUPSZ256mr; case 64: assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); assert(STI.hasVLX() && "Using 512-bit register requires AVX512"); if (isStackAligned) return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; else return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; } } bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { const MCInstrDesc &Desc = MemOp.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBegin < 0) return false; MemRefBegin += X86II::getOperandBias(Desc); MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); if (!BaseMO.isReg()) // Can be an MO_FrameIndex return false; BaseReg = BaseMO.getReg(); if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) return false; if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != X86::NoRegister) return false; const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); // Displacement can be symbolic if (!DispMO.isImm()) return false; Offset = DispMO.getImm(); return MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() == X86::NoRegister; } static unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); } static unsigned getLoadRegOpcode(unsigned DestReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); } void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && "Stack slot too small for store"); unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) .addReg(SrcReg, getKillRegState(isKill)); } void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); MIB.addReg(SrcReg, getKillRegState(isKill)); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); } void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const { switch (MI.getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = MI.getOperand(1).getImm(); return true; // A SUB can be used to perform comparison. case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = 0; return true; case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = MI.getOperand(2).getReg(); CmpMask = ~0; CmpValue = 0; return true; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = MI.getOperand(2).getImm(); return true; case X86::CMP64rr: case X86::CMP32rr: case X86::CMP16rr: case X86::CMP8rr: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = MI.getOperand(1).getReg(); CmpMask = ~0; CmpValue = 0; return true; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: SrcReg = MI.getOperand(0).getReg(); if (MI.getOperand(1).getReg() != SrcReg) return false; // Compare against zero. SrcReg2 = 0; CmpMask = ~0; CmpValue = 0; return true; } return false; } /// Check whether the first instruction, whose only /// purpose is to update flags, can be made redundant. /// CMPrr can be made redundant by SUBrr if the operands are the same. /// This function can be extended later on. /// SrcReg, SrcRegs: register operands for FlagI. /// ImmValue: immediate for FlagI if it takes an immediate. inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg, unsigned SrcReg2, int ImmValue, MachineInstr &OI) { if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && ((OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getReg() == SrcReg2) || (OI.getOperand(1).getReg() == SrcReg2 && OI.getOperand(2).getReg() == SrcReg))) return true; if (((FlagI.getOpcode() == X86::CMP64ri32 && OI.getOpcode() == X86::SUB64ri32) || (FlagI.getOpcode() == X86::CMP64ri8 && OI.getOpcode() == X86::SUB64ri8) || (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || (FlagI.getOpcode() == X86::CMP32ri8 && OI.getOpcode() == X86::SUB32ri8) || (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || (FlagI.getOpcode() == X86::CMP16ri8 && OI.getOpcode() == X86::SUB16ri8) || (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getImm() == ImmValue) return true; return false; } /// Check whether the definition can be converted /// to remove a comparison against zero. inline static bool isDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; // The shift instructions only modify ZF if their shift count is non-zero. // N.B.: The processor truncates the shift count depending on the encoding. case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: return getTruncatedShiftCount(MI, 2) != 0; // Some left shift instructions can be turned into LEA instructions but only // if their flags aren't used. Avoid transforming such instructions. case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (isTruncatedShiftCountForLEA(ShAmt)) return false; return ShAmt != 0; } case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: return getTruncatedShiftCount(MI, 3) != 0; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: case X86::ADC32ri: case X86::ADC32ri8: case X86::ADC32rr: case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC64rr: case X86::SBB32ri: case X86::SBB32ri8: case X86::SBB32rr: case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB64rr: case X86::ANDN32rr: case X86::ANDN32rm: case X86::ANDN64rr: case X86::ANDN64rm: case X86::BEXTR32rr: case X86::BEXTR64rr: case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BLSI32rr: case X86::BLSI32rm: case X86::BLSI64rr: case X86::BLSI64rm: case X86::BLSMSK32rr:case X86::BLSMSK32rm: case X86::BLSMSK64rr:case X86::BLSMSK64rm: case X86::BLSR32rr: case X86::BLSR32rm: case X86::BLSR64rr: case X86::BLSR64rm: case X86::BZHI32rr: case X86::BZHI32rm: case X86::BZHI64rr: case X86::BZHI64rm: case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return true; } } /// Check whether the use can be converted to remove a comparison against zero. static X86::CondCode isUseDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return X86::COND_INVALID; case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: return X86::COND_B; case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: return X86::COND_E; case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return X86::COND_B; } } /// Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { // Check whether we can replace SUB with CMP. unsigned NewOpcode = 0; switch (CmpInstr.getOpcode()) { default: break; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: { if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) return false; // There is no use of the destination register, we can replace SUB with CMP. switch (CmpInstr.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; } CmpInstr.setDesc(get(NewOpcode)); CmpInstr.RemoveOperand(0); // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) return false; } } // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; // CmpInstr is the first instruction of the BB. MachineBasicBlock::iterator I = CmpInstr, Def = MI; // If we are comparing against zero, check whether we can use MI to update // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) return false; // If we have a use of the source register between the def and our compare // instruction we can eliminate the compare iff the use sets EFLAGS in the // right way. bool ShouldUpdateCC = false; X86::CondCode NewCC = X86::COND_INVALID; if (IsCmpZero && !isDefConvertible(*MI)) { // Scan forward from the use until we hit the use we're looking for or the // compare instruction. for (MachineBasicBlock::iterator J = MI;; ++J) { // Do we have a convertible instruction? NewCC = isUseDefConvertible(*J); if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && J->getOperand(1).getReg() == SrcReg) { assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); ShouldUpdateCC = true; // Update CC later on. // This is not a def of SrcReg, but still a def of EFLAGS. Keep going // with the new def. Def = J; MI = &*Def; break; } if (J == I) return false; } } // We are searching for an earlier instruction that can make CmpInstr // redundant and that instruction will be saved in Sub. MachineInstr *Sub = nullptr; const TargetRegisterInfo *TRI = &getRegisterInfo(); // We iterate backward, starting from the instruction before CmpInstr and // stop when reaching the definition of a source register or done with the BB. // RI points to the instruction before CmpInstr. // If the definition is in this basic block, RE points to the definition; // otherwise, RE is the rend of the basic block. MachineBasicBlock::reverse_iterator RI = MachineBasicBlock::reverse_iterator(I), RE = CmpInstr.getParent() == MI->getParent() ? MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : CmpInstr.getParent()->rend(); MachineInstr *Movr0Inst = nullptr; for (; RI != RE; ++RI) { MachineInstr &Instr = *RI; // Check whether CmpInstr can be made redundant by the current instruction. if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { Sub = &Instr; break; } if (Instr.modifiesRegister(X86::EFLAGS, TRI) || Instr.readsRegister(X86::EFLAGS, TRI)) { // This instruction modifies or uses EFLAGS. // MOV32r0 etc. are implemented with xor which clobbers condition code. // They are safe to move up, if the definition to EFLAGS is dead and // earlier instructions do not read or write EFLAGS. if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && Instr.registerDefIsDead(X86::EFLAGS, TRI)) { Movr0Inst = &Instr; continue; } // We can't remove CmpInstr. return false; } } // Return false if no candidates exist. if (!IsCmpZero && !Sub) return false; bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && Sub->getOperand(2).getReg() == SrcReg); // Scan forward from the instruction after CmpInstr for uses of EFLAGS. // It is safe to remove CmpInstr if EFLAGS is redefined or killed. // If we are done with the basic block, we need to check whether EFLAGS is // live-out. bool IsSafe = false; SmallVector, 4> OpsToUpdate; MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); for (++I; I != E; ++I) { const MachineInstr &Instr = *I; bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); // We should check the usage if this instruction uses and updates EFLAGS. if (!UseEFLAGS && ModifyEFLAGS) { // It is safe to remove CmpInstr if EFLAGS is updated again. IsSafe = true; break; } if (!UseEFLAGS && !ModifyEFLAGS) continue; // EFLAGS is used by this instruction. X86::CondCode OldCC = X86::COND_INVALID; bool OpcIsSET = false; if (IsCmpZero || IsSwapped) { // We decode the condition code from opcode. if (Instr.isBranch()) OldCC = getCondFromBranchOpc(Instr.getOpcode()); else { OldCC = getCondFromSETOpc(Instr.getOpcode()); if (OldCC != X86::COND_INVALID) OpcIsSET = true; else OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); } if (OldCC == X86::COND_INVALID) return false; } if (IsCmpZero) { switch (OldCC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: // CF and OF are used, we can't perform this optimization. return false; } // If we're updating the condition code check if we have to reverse the // condition. if (ShouldUpdateCC) switch (OldCC) { default: return false; case X86::COND_E: break; case X86::COND_NE: NewCC = GetOppositeBranchCondition(NewCC); break; } } else if (IsSwapped) { // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. // We swap the condition code and synthesize the new opcode. NewCC = getSwappedCondition(OldCC); if (NewCC == X86::COND_INVALID) return false; } if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { // Synthesize the new opcode. bool HasMemoryOperand = Instr.hasOneMemOperand(); unsigned NewOpc; if (Instr.isBranch()) NewOpc = GetCondBranchFromCond(NewCC); else if(OpcIsSET) NewOpc = getSETFromCond(NewCC, HasMemoryOperand); else { unsigned DstReg = Instr.getOperand(0).getReg(); NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), HasMemoryOperand); } // Push the MachineInstr to OpsToUpdate. // If it is safe to remove CmpInstr, the condition code of these // instructions will be modified. OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); } if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { // It is safe to remove CmpInstr if EFLAGS is updated again or killed. IsSafe = true; break; } } // If EFLAGS is not killed nor re-defined, we should check whether it is // live-out. If it is live-out, do not optimize. if ((IsCmpZero || IsSwapped) && !IsSafe) { MachineBasicBlock *MBB = CmpInstr.getParent(); for (MachineBasicBlock *Successor : MBB->successors()) if (Successor->isLiveIn(X86::EFLAGS)) return false; } // The instruction to be updated is either Sub or MI. Sub = IsCmpZero ? MI : Sub; // Move Movr0Inst to the appropriate place before Sub. if (Movr0Inst) { // Look backwards until we find a def that doesn't use the current EFLAGS. Def = Sub; MachineBasicBlock::reverse_iterator InsertI = MachineBasicBlock::reverse_iterator(++Def), InsertE = Sub->getParent()->rend(); for (; InsertI != InsertE; ++InsertI) { MachineInstr *Instr = &*InsertI; if (!Instr->readsRegister(X86::EFLAGS, TRI) && Instr->modifiesRegister(X86::EFLAGS, TRI)) { Sub->getParent()->remove(Movr0Inst); Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), Movr0Inst); break; } } if (InsertI == InsertE) return false; } // Make sure Sub instruction defines EFLAGS and mark the def live. unsigned i = 0, e = Sub->getNumOperands(); for (; i != e; ++i) { MachineOperand &MO = Sub->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { MO.setIsDead(false); break; } } assert(i != e && "Unable to locate a def EFLAGS operand"); CmpInstr.eraseFromParent(); // Modify the condition code of instructions in OpsToUpdate. for (auto &Op : OpsToUpdate) Op.first->setDesc(get(Op.second)); return true; } /// Try to remove the load by folding it to a register /// operand at the use. We fold the load instructions if load defines a virtual /// register, the virtual register is used once in the same BB, and the /// instructions in-between do not load or store, and have no side effects. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const { if (FoldAsLoadDefReg == 0) return nullptr; // To be conservative, if there exists another load, clear the load candidate. if (MI.mayLoad()) { FoldAsLoadDefReg = 0; return nullptr; } // Check whether we can move DefMI here. DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; if (!DefMI->isSafeToMove(nullptr, SawStore)) return nullptr; // Collect information about virtual register operands of MI. unsigned SrcOperandId = 0; bool FoundSrcOperand = false; for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg != FoldAsLoadDefReg) continue; // Do not fold if we have a subreg use or a def or multiple uses. if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) return nullptr; SrcOperandId = i; FoundSrcOperand = true; } if (!FoundSrcOperand) return nullptr; // Check whether we can fold the def into SrcOperandId. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, *DefMI)) { FoldAsLoadDefReg = 0; return FoldMI; } return nullptr; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two undef reads of the register being defined. /// This is used for mapping: /// %xmm4 = V_SET0 /// to: /// %xmm4 = PXORrr %xmm4, %xmm4 /// static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(Desc); // MachineInstr::addOperand() will insert explicit operands before any // implicit operands. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); // But we don't trust that. assert(MIB->getOperand(1).getReg() == Reg && MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); return true; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two %k0 reads. /// This is used for mapping: /// %k4 = K_SET1 /// to: /// %k4 = KXNORrr %k0, %k0 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, unsigned Reg) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); MIB->setDesc(Desc); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); return true; } static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); // Insert the XOR. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); // Turn the pseudo into an INC or DEC. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); MIB.addReg(Reg); return true; } bool X86InstrInfo::ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); int64_t Imm = MIB->getOperand(1).getImm(); assert(Imm != 0 && "Using push/pop for 0 is not efficient."); MachineBasicBlock::iterator I = MIB.getInstr(); int StackAdjustment; if (Subtarget.is64Bit()) { assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8); // Can't use push/pop lowering if the function might write to the red zone. X86MachineFunctionInfo *X86FI = MBB.getParent()->getInfo(); if (X86FI->getUsesRedZone()) { MIB->setDesc(get(MIB->getOpcode() == X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); return true; } // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and // widen the register if necessary. StackAdjustment = 8; BuildMI(MBB, I, DL, get(X86::PUSH64i8)).addImm(Imm); MIB->setDesc(get(X86::POP64r)); MIB->getOperand(0) .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); } else { assert(MIB->getOpcode() == X86::MOV32ImmSExti8); StackAdjustment = 4; BuildMI(MBB, I, DL, get(X86::PUSH32i8)).addImm(Imm); MIB->setDesc(get(X86::POP32r)); } // Build CFI if necessary. MachineFunction &MF = *MBB.getParent(); const X86FrameLowering *TFL = Subtarget.getFrameLowering(); bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsDwarfCFI = !IsWin64Prologue && (MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry()); bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; if (EmitCFI) { TFL->BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); TFL->BuildCFI(MBB, std::next(I), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); } return true; } // LoadStackGuard has so far only been implemented for 64-bit MachO. Different // code sequence is needed for other targets. static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); const GlobalValue *GV = cast((*MIB->memoperands_begin())->getValue()); unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 8, 8); MachineBasicBlock::iterator I = MIB.getInstr(); BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) .addMemOperand(MMO); MIB->setDebugLoc(DL); MIB->setDesc(TII.get(X86::MOV64rm)); MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); } bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { bool HasAVX = Subtarget.hasAVX(); MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); switch (MI.getOpcode()) { case X86::MOV32r0: return Expand2AddrUndef(MIB, get(X86::XOR32rr)); case X86::MOV32r1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); case X86::MOV32r_1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); case X86::MOV32ImmSExti8: case X86::MOV64ImmSExti8: return ExpandMOVImmSExti8(MIB); case X86::SETB_C8r: return Expand2AddrUndef(MIB, get(X86::SBB8rr)); case X86::SETB_C16r: return Expand2AddrUndef(MIB, get(X86::SBB16rr)); case X86::SETB_C32r: return Expand2AddrUndef(MIB, get(X86::SBB32rr)); case X86::SETB_C64r: return Expand2AddrUndef(MIB, get(X86::SBB64rr)); case X86::V_SET0: case X86::FsFLD0SS: case X86::FsFLD0SD: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); case X86::AVX_SET0: assert(HasAVX && "AVX not supported"); return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); case X86::AVX512_128_SET0: return Expand2AddrUndef(MIB, get(X86::VPXORDZ128rr)); case X86::AVX512_256_SET0: return Expand2AddrUndef(MIB, get(X86::VPXORDZ256rr)); case X86::AVX512_512_SET0: return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); case X86::V_SETALLONES: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); case X86::AVX2_SETALLONES: return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); case X86::AVX512_512_SETALLONES: { unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(get(X86::VPTERNLOGDZrri)); // VPTERNLOGD needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef).addImm(0xff); return true; } case X86::TEST8ri_NOREX: MI.setDesc(get(X86::TEST8ri)); return true; case X86::MOV32ri64: MI.setDesc(get(X86::MOV32ri)); return true; // KNL does not recognize dependency-breaking idioms for mask registers, // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. // Using %k0 as the undef input register is a performance heuristic based // on the assumption that %k0 is used less frequently than the other mask // registers, since it is not usable as a write mask. // FIXME: A more advanced approach would be to choose the best input mask // register based on context. case X86::KSET0B: case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); case X86::KSET1B: case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); case TargetOpcode::LOAD_STACK_GUARD: expandLoadStackGuard(MIB, *this); return true; } return false; } static void addOperands(MachineInstrBuilder &MIB, ArrayRef MOs, int PtrOffset = 0) { unsigned NumAddrOps = MOs.size(); if (NumAddrOps < 4) { // FrameIndex only - add an immediate offset (whether its zero or not). for (unsigned i = 0; i != NumAddrOps; ++i) MIB.addOperand(MOs[i]); addOffset(MIB, PtrOffset); } else { // General Memory Addressing - we need to add any offset to an existing // offset. assert(MOs.size() == 5 && "Unexpected memory operand list length"); for (unsigned i = 0; i != NumAddrOps; ++i) { const MachineOperand &MO = MOs[i]; if (i == 3 && PtrOffset != 0) { MIB.addDisp(MO, PtrOffset); } else { MIB.addOperand(MO); } } } } static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); addOperands(MIB, MOs); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI.getDesc().getNumOperands() - 2; for (unsigned i = 0; i != NumOps; ++i) { MachineOperand &MO = MI.getOperand(i + 2); MIB.addOperand(MO); } for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); MIB.addOperand(MO); } MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset = 0) { // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); addOperands(MIB, MOs, PtrOffset); } else { MIB.addOperand(MO); } } MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI) { MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), TII.get(Opcode)); addOperands(MIB, MOs); return MIB.addImm(0); } MachineInstr *X86InstrInfo::foldMemoryOperandCustom( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align) const { switch (MI.getOpcode()) { case X86::INSERTPSrr: case X86::VINSERTPSrr: // Attempt to convert the load of inserted vector into a fold load // of a single float. if (OpNum == 2) { unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); unsigned ZMask = Imm & 15; unsigned DstIdx = (Imm >> 4) & 3; unsigned SrcIdx = (Imm >> 6) & 3; unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size <= RCSize && 4 <= Align) { int PtrOffset = SrcIdx * 4; unsigned NewImm = (DstIdx << 4) | ZMask; unsigned NewOpCode = (MI.getOpcode() == X86::VINSERTPSrr ? X86::VINSERTPSrm : X86::INSERTPSrm); MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); return NewMI; } } break; case X86::MOVHLPSrr: case X86::VMOVHLPSrr: // Move the upper 64-bits of the second operand to the lower 64-bits. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. if (OpNum == 2) { unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size <= RCSize && 8 <= Align) { unsigned NewOpCode = (MI.getOpcode() == X86::VMOVHLPSrr ? X86::VMOVLPSrm : X86::MOVLPSrm); MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); return NewMI; } } break; }; return nullptr; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align, bool AllowCommute) const { const DenseMap > *OpcodeTablePtr = nullptr; bool isCallRegIndirect = Subtarget.callRegIndirect(); bool isTwoAddrFold = false; // For CPUs that favor the register form of a call or push, // do not fold loads into calls or pushes, unless optimizing for size // aggressively. if (isCallRegIndirect && !MF.getFunction()->optForMinSize() && (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || MI.getOpcode() == X86::PUSH64r)) return nullptr; unsigned NumOps = MI.getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI.getOpcode() == X86::ADD32ri && MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return nullptr; MachineInstr *NewMI = nullptr; // Attempt to fold any custom cases we have. if (MachineInstr *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) return CustomMI; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { OpcodeTablePtr = &RegOp2MemOpTable2Addr; isTwoAddrFold = true; } else if (OpNum == 0) { if (MI.getOpcode() == X86::MOV32r0) { NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); if (NewMI) return NewMI; } OpcodeTablePtr = &RegOp2MemOpTable0; } else if (OpNum == 1) { OpcodeTablePtr = &RegOp2MemOpTable1; } else if (OpNum == 2) { OpcodeTablePtr = &RegOp2MemOpTable2; } else if (OpNum == 3) { OpcodeTablePtr = &RegOp2MemOpTable3; } else if (OpNum == 4) { OpcodeTablePtr = &RegOp2MemOpTable4; } // If table selected... if (OpcodeTablePtr) { // Find the Opcode to fuse auto I = OpcodeTablePtr->find(MI.getOpcode()); if (I != OpcodeTablePtr->end()) { unsigned Opcode = I->second.first; unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; if (Align < MinAlign) return nullptr; bool NarrowToMOV32rm = false; if (Size) { unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size < RCSize) { // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) return nullptr; // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is // due to live interval analysis remat'ing a load from stack slot. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) return nullptr; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } } if (isTwoAddrFold) NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); else NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit // value and zero-extend the top bits. Change the destination register // to a 32-bit one. unsigned DstReg = NewMI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); else NewMI->getOperand(0).setSubReg(X86::sub_32bit); } return NewMI; } } // If the instruction and target operand are commutable, commute the // instruction and try again. if (AllowCommute) { unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { bool HasDef = MI.getDesc().getNumDefs(); unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); bool Tied1 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); bool Tied2 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); // If either of the commutable operands are tied to the destination // then we can not commute + fold. if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) return nullptr; MachineInstr *CommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!CommutedMI) { // Unable to commute. return nullptr; } if (CommutedMI != &MI) { // New instruction. We can't fold from this. CommutedMI->eraseFromParent(); return nullptr; } // Attempt to fold with the commuted version of the instruction. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, Align, /*AllowCommute=*/false); if (NewMI) return NewMI; // Folding failed again - undo the commute before returning. MachineInstr *UncommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!UncommutedMI) { // Unable to commute. return nullptr; } if (UncommutedMI != &MI) { // New instruction. It doesn't need to be kept. UncommutedMI->eraseFromParent(); return nullptr; } // Return here to prevent duplicate fuse failure report. return nullptr; } } // No fusion if (PrintFailedFusing && !MI.isCopy()) dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; return nullptr; } /// Return true for all instructions that only update /// the first 32 or 64-bits of the destination register and leave the rest /// unmodified. This can be used to avoid folding loads if the instructions /// only update part of the destination register, and the non-updated part is /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these /// instructions breaks the partial register dependency and it can improve /// performance. e.g.: /// /// movss (%rdi), %xmm0 /// cvtss2sd %xmm0, %xmm0 /// /// Instead of /// cvtss2sd (%rdi), %xmm0 /// /// FIXME: This should be turned into a TSFlags. /// static bool hasPartialRegUpdate(unsigned Opcode) { switch (Opcode) { case X86::CVTSI2SSrr: case X86::CVTSI2SSrm: case X86::CVTSI2SS64rr: case X86::CVTSI2SS64rm: case X86::CVTSI2SDrr: case X86::CVTSI2SDrm: case X86::CVTSI2SD64rr: case X86::CVTSI2SD64rm: case X86::CVTSD2SSrr: case X86::CVTSD2SSrm: case X86::Int_CVTSD2SSrr: case X86::Int_CVTSD2SSrm: case X86::CVTSS2SDrr: case X86::CVTSS2SDrm: case X86::Int_CVTSS2SDrr: case X86::Int_CVTSS2SDrm: case X86::MOVHPDrm: case X86::MOVHPSrm: case X86::MOVLPDrm: case X86::MOVLPSrm: case X86::RCPSSr: case X86::RCPSSm: case X86::RCPSSr_Int: case X86::RCPSSm_Int: case X86::ROUNDSDr: case X86::ROUNDSDm: case X86::ROUNDSDr_Int: case X86::ROUNDSSr: case X86::ROUNDSSm: case X86::ROUNDSSr_Int: case X86::RSQRTSSr: case X86::RSQRTSSm: case X86::RSQRTSSr_Int: case X86::RSQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSm: case X86::SQRTSSr_Int: case X86::SQRTSSm_Int: case X86::SQRTSDr: case X86::SQRTSDm: case X86::SQRTSDr_Int: case X86::SQRTSDm_Int: return true; } return false; } /// Inform the ExeDepsFix pass how many idle /// instructions we would like before a partial register update. unsigned X86InstrInfo::getPartialRegUpdateClearance( const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode())) return 0; // If MI is marked as reading Reg, the partial register update is wanted. const MachineOperand &MO = MI.getOperand(0); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { if (MO.readsReg() || MI.readsVirtualRegister(Reg)) return 0; } else { if (MI.readsRegister(Reg, TRI)) return 0; } // If any instructions in the clearance range are reading Reg, insert a // dependency breaking instruction, which is inexpensive and is likely to // be hidden in other instruction's cycles. return PartialRegUpdateClearance; } // Return true for any instruction the copies the high bits of the first source // operand into the unused high bits of the destination operand. static bool hasUndefRegUpdate(unsigned Opcode) { switch (Opcode) { case X86::VCVTSI2SSrr: case X86::VCVTSI2SSrm: case X86::Int_VCVTSI2SSrr: case X86::Int_VCVTSI2SSrm: case X86::VCVTSI2SS64rr: case X86::VCVTSI2SS64rm: case X86::Int_VCVTSI2SS64rr: case X86::Int_VCVTSI2SS64rm: case X86::VCVTSI2SDrr: case X86::VCVTSI2SDrm: case X86::Int_VCVTSI2SDrr: case X86::Int_VCVTSI2SDrm: case X86::VCVTSI2SD64rr: case X86::VCVTSI2SD64rm: case X86::Int_VCVTSI2SD64rr: case X86::Int_VCVTSI2SD64rm: case X86::VCVTSD2SSrr: case X86::VCVTSD2SSrm: case X86::Int_VCVTSD2SSrr: case X86::Int_VCVTSD2SSrm: case X86::VCVTSS2SDrr: case X86::VCVTSS2SDrm: case X86::Int_VCVTSS2SDrr: case X86::Int_VCVTSS2SDrm: case X86::VRCPSSr: case X86::VRCPSSm: case X86::VRCPSSm_Int: case X86::VROUNDSDr: case X86::VROUNDSDm: case X86::VROUNDSDr_Int: case X86::VROUNDSSr: case X86::VROUNDSSm: case X86::VROUNDSSr_Int: case X86::VRSQRTSSr: case X86::VRSQRTSSm: case X86::VRSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSDr: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: // AVX-512 case X86::VCVTSD2SSZrr: case X86::VCVTSD2SSZrm: case X86::VCVTSS2SDZrr: case X86::VCVTSS2SDZrm: return true; } return false; } /// Inform the ExeDepsFix pass how many idle instructions we would like before /// certain undef register reads. /// /// This catches the VCVTSI2SD family of instructions: /// /// vcvtsi2sdq %rax, %xmm0, %xmm14 /// /// We should to be careful *not* to catch VXOR idioms which are presumably /// handled specially in the pipeline: /// /// vxorps %xmm1, %xmm1, %xmm1 /// /// Like getPartialRegUpdateClearance, this makes a strong assumption that the /// high bits that are passed-through are not live. unsigned X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, const TargetRegisterInfo *TRI) const { if (!hasUndefRegUpdate(MI.getOpcode())) return 0; // Set the OpNum parameter to the first source operand. OpNum = 1; const MachineOperand &MO = MI.getOperand(OpNum); if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { return UndefRegClearance; } return 0; } void X86InstrInfo::breakPartialRegDependency( MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { unsigned Reg = MI.getOperand(OpNum).getReg(); // If MI kills this register, the false dependence is already broken. if (MI.killsRegister(Reg, TRI)) return; if (X86::VR128RegClass.contains(Reg)) { // These instructions are all floating point domain, so xorps is the best // choice. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR256RegClass.contains(Reg)) { // Use vxorps to clear the full ymm register. // It wants to read and write the xmm sub-register. unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } } MachineInstr * X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS) const { // Check switch flag if (NoFusing) return nullptr; // Unless optimizing for size, don't fold to avoid partial // register update stalls if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode())) return nullptr; const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = MFI->getObjectSize(FrameIndex); unsigned Alignment = MFI->getObjectAlignment(FrameIndex); // If the function stack isn't realigned we don't want to fold instructions // that need increased alignment. if (!RI.needsStackRealignment(MF)) Alignment = std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; unsigned RCSize = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; } // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) return nullptr; // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops[0], MachineOperand::CreateFI(FrameIndex), InsertPt, Size, Alignment, /*AllowCommute=*/true); } /// Check if \p LoadMI is a partial register load that we can't fold into \p MI /// because the latter uses contents that wouldn't be defined in the folded /// version. For instance, this transformation isn't legal: /// movss (%rdi), %xmm0 /// addps %xmm0, %xmm0 /// -> /// addps (%rdi), %xmm0 /// /// But this one is: /// movss (%rdi), %xmm0 /// addss %xmm0, %xmm0 /// -> /// addss (%rdi), %xmm0 /// static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF) { unsigned Opc = LoadMI.getOpcode(); unsigned UserOpc = UserMI.getOpcode(); unsigned RegSize = MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) { // These instructions only load 32 bits, we can't fold them if the // destination register is wider than 32 bits (4 bytes), and its user // instruction isn't scalar (SS). switch (UserOpc) { case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VFMADDSSr132r_Int: case X86::VFNMADDSSr132r_Int: case X86::VFMADDSSr213r_Int: case X86::VFNMADDSSr213r_Int: case X86::VFMADDSSr231r_Int: case X86::VFNMADDSSr231r_Int: case X86::VFMSUBSSr132r_Int: case X86::VFNMSUBSSr132r_Int: case X86::VFMSUBSSr213r_Int: case X86::VFNMSUBSSr213r_Int: case X86::VFMSUBSSr231r_Int: case X86::VFNMSUBSSr231r_Int: return false; default: return true; } } if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) { // These instructions only load 64 bits, we can't fold them if the // destination register is wider than 64 bits (8 bytes), and its user // instruction isn't scalar (SD). switch (UserOpc) { case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VFMADDSDr132r_Int: case X86::VFNMADDSDr132r_Int: case X86::VFMADDSDr213r_Int: case X86::VFNMADDSDr213r_Int: case X86::VFMADDSDr231r_Int: case X86::VFNMADDSDr231r_Int: case X86::VFMSUBSDr132r_Int: case X86::VFNMSUBSDr132r_Int: case X86::VFMSUBSDr213r_Int: case X86::VFNMSUBSDr213r_Int: case X86::VFMSUBSDr231r_Int: case X86::VFNMSUBSDr231r_Int: return false; default: return true; } } return false; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS) const { // If loading from a FrameIndex, fold directly from the FrameIndex. unsigned NumOps = LoadMI.getDesc().getNumOperands(); int FrameIndex; if (isLoadFromStackSlot(LoadMI, FrameIndex)) { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); } // Check switch flag if (NoFusing) return nullptr; // Avoid partial register update stalls unless optimizing for size. if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode())) return nullptr; // Determine the alignment of the load. unsigned Alignment = 0; if (LoadMI.hasOneMemOperand()) Alignment = (*LoadMI.memoperands_begin())->getAlignment(); else switch (LoadMI.getOpcode()) { case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: Alignment = 64; break; case X86::AVX2_SETALLONES: case X86::AVX_SET0: case X86::AVX512_256_SET0: Alignment = 32; break; case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX512_128_SET0: Alignment = 16; break; case X86::FsFLD0SD: Alignment = 8; break; case X86::FsFLD0SS: Alignment = 4; break; default: return nullptr; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; } // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) return nullptr; SmallVector MOs; switch (LoadMI.getOpcode()) { case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX2_SETALLONES: case X86::AVX_SET0: case X86::AVX512_128_SET0: case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: case X86::FsFLD0SD: case X86::FsFLD0SS: { // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. // Create a constant-pool entry and operands to load from it. // Medium and large mode can't fold loads this way. if (MF.getTarget().getCodeModel() != CodeModel::Small && MF.getTarget().getCodeModel() != CodeModel::Kernel) return nullptr; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; if (MF.getTarget().isPositionIndependent()) { if (Subtarget.is64Bit()) PICBase = X86::RIP; else // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. return nullptr; } // Create a constant-pool entry. MachineConstantPool &MCP = *MF.getConstantPool(); Type *Ty; unsigned Opc = LoadMI.getOpcode(); if (Opc == X86::FsFLD0SS) Ty = Type::getFloatTy(MF.getFunction()->getContext()); else if (Opc == X86::FsFLD0SD) Ty = Type::getDoubleTy(MF.getFunction()->getContext()); else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()),16); else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || Opc == X86::AVX512_256_SET0) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); else Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || Opc == X86::AVX512_512_SETALLONES); const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); // Create operands to load from the constant pool entry. MOs.push_back(MachineOperand::CreateReg(PICBase, false)); MOs.push_back(MachineOperand::CreateImm(1)); MOs.push_back(MachineOperand::CreateReg(0, false)); MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); MOs.push_back(MachineOperand::CreateReg(0, false)); break; } default: { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; // Folding a normal load. Just copy the load's address operands. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, LoadMI.operands_begin() + NumOps); break; } } return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/0, Alignment, /*AllowCommute=*/true); } bool X86InstrInfo::unfoldMemoryOperand( MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const { auto I = MemOp2RegOpTable.find(MI.getOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & TB_INDEX_MASK; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return false; UnfoldLoad &= FoldedLoad; if (UnfoldStore && !FoldedStore) return false; UnfoldStore &= FoldedStore; const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); // TODO: Check if 32-byte or greater accesses are slow too? if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Without memoperands, loadRegFromAddr and storeRegToStackSlot will // conservatively assume the address is unaligned. That's bad for // performance. return false; SmallVector AddrOps; SmallVector BeforeOps; SmallVector AfterOps; SmallVector ImpOps; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &Op = MI.getOperand(i); if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); else if (i < Index) BeforeOps.push_back(Op); else if (i > Index) AfterOps.push_back(Op); } // Emit the load instruction. if (UnfoldLoad) { std::pair MMOs = MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end()); loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); if (UnfoldStore) { // Address operands cannot be marked isKill. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); } } } // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); for (MachineOperand &BeforeOp : BeforeOps) MIB.addOperand(BeforeOp); if (FoldedLoad) MIB.addReg(Reg); for (MachineOperand &AfterOp : AfterOps) MIB.addOperand(AfterOp); for (MachineOperand &ImpOp : ImpOps) { MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | RegState::Implicit | getKillRegState(ImpOp.isKill()) | getDeadRegState(ImpOp.isDead()) | getUndefRegState(ImpOp.isUndef())); } // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: { MachineOperand &MO0 = DataMI->getOperand(0); MachineOperand &MO1 = DataMI->getOperand(1); if (MO1.getImm() == 0) { unsigned NewOpc; switch (DataMI->getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri8: case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; case X86::CMP32ri8: case X86::CMP32ri: NewOpc = X86::TEST32rr; break; case X86::CMP16ri8: case X86::CMP16ri: NewOpc = X86::TEST16rr; break; case X86::CMP8ri: NewOpc = X86::TEST8rr; break; } DataMI->setDesc(get(NewOpc)); MO1.ChangeToRegister(MO0.getReg(), false); } } } NewMIs.push_back(DataMI); // Emit the store instruction. if (UnfoldStore) { const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); std::pair MMOs = MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end()); storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); } return true; } bool X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { if (!N->isMachineOpcode()) return false; auto I = MemOp2RegOpTable.find(N->getMachineOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & TB_INDEX_MASK; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; const MCInstrDesc &MCID = get(Opc); MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); unsigned NumDefs = MCID.NumDefs; std::vector AddrOps; std::vector BeforeOps; std::vector AfterOps; SDLoc dl(N); unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps-1; ++i) { SDValue Op = N->getOperand(i); if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index-NumDefs) BeforeOps.push_back(Op); else if (i > Index-NumDefs) AfterOps.push_back(Op); } SDValue Chain = N->getOperand(NumOps-1); AddrOps.push_back(Chain); // Emit the load instruction. SDNode *Load = nullptr; if (FoldedLoad) { EVT VT = *RC->vt_begin(); std::pair MMOs = MF.extractLoadMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned load. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = RC->getSize() == 32 ? 32 : 16; bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, VT, MVT::Other, AddrOps); NewNodes.push_back(Load); // Preserve memory reference information. cast(Load)->setMemRefs(MMOs.first, MMOs.second); } // Emit the data processing instruction. std::vector VTs; const TargetRegisterClass *DstRC = nullptr; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI, MF); VTs.push_back(*DstRC->vt_begin()); } for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) VTs.push_back(VT); } if (Load) BeforeOps.push_back(SDValue(Load, 0)); BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); NewNodes.push_back(NewNode); // Emit the store instruction. if (FoldedStore) { AddrOps.pop_back(); AddrOps.push_back(SDValue(NewNode, 0)); AddrOps.push_back(Chain); std::pair MMOs = MF.extractStoreMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned store. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = RC->getSize() == 32 ? 32 : 16; bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), dl, MVT::Other, AddrOps); NewNodes.push_back(Store); // Preserve memory reference information. cast(Store)->setMemRefs(MMOs.first, MMOs.second); } return true; } unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { auto I = MemOp2RegOpTable.find(Opc); if (I == MemOp2RegOpTable.end()) return 0; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return 0; if (UnfoldStore && !FoldedStore) return 0; if (LoadRegIndex) *LoadRegIndex = I->second.second & TB_INDEX_MASK; return I->second.first; } bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); switch (Opc1) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::FsVMOVAPSrm: case X86::FsVMOVAPDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: break; } switch (Opc2) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::FsVMOVAPSrm: case X86::FsVMOVAPDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: break; } // Check if chain operands and base addresses match. if (Load1->getOperand(0) != Load2->getOperand(0) || Load1->getOperand(5) != Load2->getOperand(5)) return false; // Segment operands should match as well. if (Load1->getOperand(4) != Load2->getOperand(4)) return false; // Scale should be 1, Index should be Reg0. if (Load1->getOperand(1) == Load2->getOperand(1) && Load1->getOperand(2) == Load2->getOperand(2)) { if (cast(Load1->getOperand(1))->getZExtValue() != 1) return false; // Now let's examine the displacements. if (isa(Load1->getOperand(3)) && isa(Load2->getOperand(3))) { Offset1 = cast(Load1->getOperand(3))->getSExtValue(); Offset2 = cast(Load2->getOperand(3))->getSExtValue(); return true; } } return false; } bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); if (Opc1 != Opc2) return false; // FIXME: overly conservative? switch (Opc1) { default: break; case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return false; } EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (Subtarget.is64Bit()) { if (NumLoads >= 3) return false; } else if (NumLoads) { return false; } break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (NumLoads) return false; break; } return true; } bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr &First, MachineInstr &Second) const { // Check if this processor supports macro-fusion. Since this is a minor // heuristic, we haven't specifically reserved a feature. hasAVX is a decent // proxy for SandyBridge+. if (!Subtarget.hasAVX()) return false; enum { FuseTest, FuseCmp, FuseInc } FuseKind; switch (Second.getOpcode()) { default: return false; case X86::JE_1: case X86::JNE_1: case X86::JL_1: case X86::JLE_1: case X86::JG_1: case X86::JGE_1: FuseKind = FuseInc; break; case X86::JB_1: case X86::JBE_1: case X86::JA_1: case X86::JAE_1: FuseKind = FuseCmp; break; case X86::JS_1: case X86::JNS_1: case X86::JP_1: case X86::JNP_1: case X86::JO_1: case X86::JNO_1: FuseKind = FuseTest; break; } switch (First.getOpcode()) { default: return false; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: case X86::TEST8ri: case X86::TEST16ri: case X86::TEST32ri: case X86::TEST32i32: case X86::TEST64i32: case X86::TEST64ri32: case X86::TEST8rm: case X86::TEST16rm: case X86::TEST32rm: case X86::TEST64rm: case X86::TEST8ri_NOREX: case X86::AND16i16: case X86::AND16ri: case X86::AND16ri8: case X86::AND16rm: case X86::AND16rr: case X86::AND32i32: case X86::AND32ri: case X86::AND32ri8: case X86::AND32rm: case X86::AND32rr: case X86::AND64i32: case X86::AND64ri32: case X86::AND64ri8: case X86::AND64rm: case X86::AND64rr: case X86::AND8i8: case X86::AND8ri: case X86::AND8rm: case X86::AND8rr: return true; case X86::CMP16i16: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP16rm: case X86::CMP16rr: case X86::CMP32i32: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP32rm: case X86::CMP32rr: case X86::CMP64i32: case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP64rm: case X86::CMP64rr: case X86::CMP8i8: case X86::CMP8ri: case X86::CMP8rm: case X86::CMP8rr: case X86::ADD16i16: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri8_DB: case X86::ADD16ri_DB: case X86::ADD16rm: case X86::ADD16rr: case X86::ADD16rr_DB: case X86::ADD32i32: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri8_DB: case X86::ADD32ri_DB: case X86::ADD32rm: case X86::ADD32rr: case X86::ADD32rr_DB: case X86::ADD64i32: case X86::ADD64ri32: case X86::ADD64ri32_DB: case X86::ADD64ri8: case X86::ADD64ri8_DB: case X86::ADD64rm: case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD8i8: case X86::ADD8mi: case X86::ADD8mr: case X86::ADD8ri: case X86::ADD8rm: case X86::ADD8rr: case X86::SUB16i16: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB16rm: case X86::SUB16rr: case X86::SUB32i32: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB32rm: case X86::SUB32rr: case X86::SUB64i32: case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB64rm: case X86::SUB64rr: case X86::SUB8i8: case X86::SUB8ri: case X86::SUB8rm: case X86::SUB8rr: return FuseKind == FuseCmp || FuseKind == FuseInc; case X86::INC16r: case X86::INC32r: case X86::INC64r: case X86::INC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: case X86::DEC8r: return FuseKind == FuseInc; } } bool X86InstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); X86::CondCode CC = static_cast(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } bool X86InstrInfo:: isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // FIXME: Return false for x87 stack register classes for now. We can't // allow any loads of these registers before FpGet_ST0_80. return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } /// Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. /// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { assert(!Subtarget.is64Bit() && "X86-64 PIC uses RIP relative addressing"); X86MachineFunctionInfo *X86FI = MF->getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Create the register. The code to initialize it is inserted // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } // These are the replaceable SSE instructions. Some of these have Int variants // that we don't include here. We don't want to replace instructions selected // by intrinsics. static const uint16_t ReplaceableInstrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, // AVX 128-bit support { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, // AVX 256-bit support { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } }; static const uint16_t ReplaceableInstrsAVX2[][3] = { //PackedSingle PackedDouble PackedInt { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm} }; // FIXME: Some shuffle and unpack instructions have equivalents in different // domains, but they require a bit more work than just switching opcodes. static const uint16_t *lookup(unsigned opcode, unsigned domain) { for (const uint16_t (&Row)[3] : ReplaceableInstrs) if (Row[domain-1] == opcode) return Row; return nullptr; } static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { for (const uint16_t (&Row)[3] : ReplaceableInstrsAVX2) if (Row[domain-1] == opcode) return Row; return nullptr; } std::pair X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; bool hasAVX2 = Subtarget.hasAVX2(); uint16_t validDomains = 0; if (domain && lookup(MI.getOpcode(), domain)) validDomains = 0xe; else if (domain && lookupAVX2(MI.getOpcode(), domain)) validDomains = hasAVX2 ? 0xe : 0x6; return std::make_pair(domain, validDomains); } void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { assert(Domain>0 && Domain<4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); const uint16_t *table = lookup(MI.getOpcode(), dom); if (!table) { // try the other table assert((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"); table = lookupAVX2(MI.getOpcode(), dom); } assert(table && "Cannot change domain"); MI.setDesc(get(table[Domain - 1])); } /// Return the noop instruction to use for a noop. void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } // This code must remain in sync with getJumpInstrTableEntryBound in this class! // In particular, getJumpInstrTableEntryBound must always return an upper bound // on the encoding lengths of the instructions generated by // getUnconditionalBranch and getTrap. void X86InstrInfo::getUnconditionalBranch( MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const { Branch.setOpcode(X86::JMP_1); Branch.addOperand(MCOperand::createExpr(BranchTarget)); } // This code must remain in sync with getJumpInstrTableEntryBound in this class! // In particular, getJumpInstrTableEntryBound must always return an upper bound // on the encoding lengths of the instructions generated by // getUnconditionalBranch and getTrap. void X86InstrInfo::getTrap(MCInst &MI) const { MI.setOpcode(X86::TRAP); } // See getTrap and getUnconditionalBranch for conditions on the value returned // by this function. unsigned X86InstrInfo::getJumpInstrTableEntryBound() const { // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4 // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B). return 5; } bool X86InstrInfo::isHighLatencyDef(int opc) const { switch (opc) { default: return false; case X86::DIVSDrm: case X86::DIVSDrm_Int: case X86::DIVSDrr: case X86::DIVSDrr_Int: case X86::DIVSSrm: case X86::DIVSSrm_Int: case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: case X86::SQRTPDr: case X86::SQRTPSm: case X86::SQRTPSr: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: case X86::SQRTSDr_Int: case X86::SQRTSSm: case X86::SQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: // AVX instructions with high latency case X86::VDIVSDrm: case X86::VDIVSDrm_Int: case X86::VDIVSDrr: case X86::VDIVSDrr_Int: case X86::VDIVSSrm: case X86::VDIVSSrm_Int: case X86::VDIVSSrr: case X86::VDIVSSrr_Int: case X86::VSQRTPDm: case X86::VSQRTPDr: case X86::VSQRTPSm: case X86::VSQRTPSr: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: case X86::VSQRTSDr: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTPDZm: case X86::VSQRTPDZr: case X86::VSQRTPSZm: case X86::VSQRTPSZr: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: case X86::VSQRTSDZr: case X86::VSQRTSSZm_Int: case X86::VSQRTSSZr: case X86::VSQRTSSZm: case X86::VDIVSDZrm: case X86::VDIVSDZrr: case X86::VDIVSSZrm: case X86::VDIVSSZrr: case X86::VGATHERQPSZrm: case X86::VGATHERQPDZrm: case X86::VGATHERDPDZrm: case X86::VGATHERDPSZrm: case X86::VPGATHERQDZrm: case X86::VPGATHERQQZrm: case X86::VPGATHERDDZrm: case X86::VPGATHERDQZrm: case X86::VSCATTERQPDZmr: case X86::VSCATTERQPSZmr: case X86::VSCATTERDPDZmr: case X86::VSCATTERDPSZmr: case X86::VPSCATTERQDZmr: case X86::VPSCATTERQQZmr: case X86::VPSCATTERDDZmr: case X86::VPSCATTERDQZmr: return true; } } bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI.getOpcode()); } bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const { assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && "Reassociation needs binary operators"); // Integer binary math/logic instructions have a third source operand: // the EFLAGS register. That operand must be both defined here and never // used; ie, it must be dead. If the EFLAGS operand is live, then we can // not change anything because rearranging the operands could affect other // instructions that depend on the exact status flags (zero, sign, etc.) // that are set by using these particular operands with this operation. if (Inst.getNumOperands() == 4) { assert(Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); if (!Inst.getOperand(3).isDead()) return false; } return TargetInstrInfo::hasReassociableOperands(Inst, MBB); } // TODO: There are many more machine instruction opcodes to match: // 1. Other data types (integer, vectors) // 2. Other math / logic operations (xor, or) // 3. Other forms of the same operation (intrinsics and other variants) bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { switch (Inst.getOpcode()) { case X86::AND8rr: case X86::AND16rr: case X86::AND32rr: case X86::AND64rr: case X86::OR8rr: case X86::OR16rr: case X86::OR32rr: case X86::OR64rr: case X86::XOR8rr: case X86::XOR16rr: case X86::XOR32rr: case X86::XOR64rr: case X86::IMUL16rr: case X86::IMUL32rr: case X86::IMUL64rr: case X86::PANDrr: case X86::PORrr: case X86::PXORrr: case X86::VPANDrr: case X86::VPANDYrr: case X86::VPORrr: case X86::VPORYrr: case X86::VPXORrr: case X86::VPXORYrr: // Normal min/max instructions are not commutative because of NaN and signed // zero semantics, but these are. Thus, there's no need to check for global // relaxed math; the instructions themselves have the properties we need. case X86::MAXCPDrr: case X86::MAXCPSrr: case X86::MAXCSDrr: case X86::MAXCSSrr: case X86::MINCPDrr: case X86::MINCPSrr: case X86::MINCSDrr: case X86::MINCSSrr: case X86::VMAXCPDrr: case X86::VMAXCPSrr: case X86::VMAXCPDYrr: case X86::VMAXCPSYrr: case X86::VMAXCSDrr: case X86::VMAXCSSrr: case X86::VMINCPDrr: case X86::VMINCPSrr: case X86::VMINCPDYrr: case X86::VMINCPSYrr: case X86::VMINCSDrr: case X86::VMINCSSrr: return true; case X86::ADDPDrr: case X86::ADDPSrr: case X86::ADDSDrr: case X86::ADDSSrr: case X86::MULPDrr: case X86::MULPSrr: case X86::MULSDrr: case X86::MULSSrr: case X86::VADDPDrr: case X86::VADDPSrr: case X86::VADDPDYrr: case X86::VADDPSYrr: case X86::VADDSDrr: case X86::VADDSSrr: case X86::VMULPDrr: case X86::VMULPSrr: case X86::VMULPDYrr: case X86::VMULPSYrr: case X86::VMULSDrr: case X86::VMULSSrr: return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; default: return false; } } /// This is an architecture-specific helper function of reassociateOps. /// Set special operand attributes for new instructions after reassociation. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const { // Integer instructions define an implicit EFLAGS source register operand as // the third source (fourth total) operand. if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) return; assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && "Unexpected instruction type for reassociation"); MachineOperand &OldOp1 = OldMI1.getOperand(3); MachineOperand &OldOp2 = OldMI2.getOperand(3); MachineOperand &NewOp1 = NewMI1.getOperand(3); MachineOperand &NewOp2 = NewMI2.getOperand(3); assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); (void)OldOp1; (void)OldOp2; assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations // of this pass or other passes. The EFLAGS operands must be dead in these new // instructions because the EFLAGS operands in the original instructions must // be dead in order for reassociation to occur. NewOp1.setIsDead(); NewOp2.setIsDead(); } std::pair X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::make_pair(TF, 0u); } ArrayRef> X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace X86II; static const std::pair TargetFlags[] = { {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, {MO_GOT, "x86-got"}, {MO_GOTOFF, "x86-gotoff"}, {MO_GOTPCREL, "x86-gotpcrel"}, {MO_PLT, "x86-plt"}, {MO_TLSGD, "x86-tlsgd"}, {MO_TLSLD, "x86-tlsld"}, {MO_TLSLDM, "x86-tlsldm"}, {MO_GOTTPOFF, "x86-gottpoff"}, {MO_INDNTPOFF, "x86-indntpoff"}, {MO_TPOFF, "x86-tpoff"}, {MO_DTPOFF, "x86-dtpoff"}, {MO_NTPOFF, "x86-ntpoff"}, {MO_GOTNTPOFF, "x86-gotntpoff"}, {MO_DLLIMPORT, "x86-dllimport"}, {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, {MO_TLVP, "x86-tlvp"}, {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, {MO_SECREL, "x86-secrel"}}; return makeArrayRef(TargetFlags); } namespace { /// Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; CGBR() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { const X86TargetMachine *TM = static_cast(&MF.getTarget()); const X86Subtarget &STI = MF.getSubtarget(); // Don't do anything if this is 64-bit as 64-bit PIC // uses RIP relative addressing. if (STI.is64Bit()) return false; // Only emit a global base reg in PIC mode. if (!TM->isPositionIndependent()) return false; X86MachineFunctionInfo *X86FI = MF.getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); // If we didn't need a GlobalBaseReg, don't insert code. if (GlobalBaseReg == 0) return false; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF.front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc DL = FirstMBB.findDebugLoc(MBBI); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const X86InstrInfo *TII = STI.getInstrInfo(); unsigned PC; if (STI.isPICStyleGOT()) PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); else PC = GlobalBaseReg; // Operand of MovePCtoStack is completely ignored by asm printer. It's // only used in JIT code emission as displacement to pc. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); // If we're using vanilla 'GOT' PIC style, we should use relative addressing // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. if (STI.isPICStyleGOT()) { // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_GOT_ABSOLUTE_ADDRESS); } return true; } const char *getPassName() const override { return "X86 PIC Global Base Reg Initialization"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char CGBR::ID = 0; FunctionPass* llvm::createX86GlobalBaseRegPass() { return new CGBR(); } namespace { struct LDTLSCleanup : public MachineFunctionPass { static char ID; LDTLSCleanup() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) return false; X86MachineFunctionInfo *MFI = MF.getInfo(); if (MFI->getNumLocalDynamicTLSAccesses() < 2) { // No point folding accesses if there isn't at least two. return false; } MachineDominatorTree *DT = &getAnalysis(); return VisitNode(DT->getRootNode(), 0); } // Visit the dominator subtree rooted at Node in pre-order. // If TLSBaseAddrReg is non-null, then use that to replace any // TLS_base_addr instructions. Otherwise, create the register // when the first such instruction is seen, and then use it // as we encounter more instructions. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { MachineBasicBlock *BB = Node->getBlock(); bool Changed = false; // Traverse the current block. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { switch (I->getOpcode()) { case X86::TLS_base_addr32: case X86::TLS_base_addr64: if (TLSBaseAddrReg) I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); else I = SetRegister(*I, &TLSBaseAddrReg); Changed = true; break; default: break; } } // Visit the children of this block in the dominator tree. for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) { Changed |= VisitNode(*I, TLSBaseAddrReg); } return Changed; } // Replace the TLS_base_addr instruction I with a copy from // TLSBaseAddrReg, returning the new instruction. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, unsigned TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Insert a Copy from TLSBaseAddrReg to RAX/EAX. MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) .addReg(TLSBaseAddrReg); // Erase the TLS_base_addr instruction. I.eraseFromParent(); return Copy; } // Create a virtal register in *TLSBaseAddrReg, and populate it by // inserting a copy instruction after I. Returns the new instruction. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Create a virtual register for the TLS base address. MachineRegisterInfo &RegInfo = MF->getRegInfo(); *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); // Insert a copy from RAX/EAX to TLSBaseAddrReg. MachineInstr *Next = I.getNextNode(); MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) .addReg(is64Bit ? X86::RAX : X86::EAX); return Copy; } const char *getPassName() const override { return "Local Dynamic TLS Access Clean-up"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char LDTLSCleanup::ID = 0; FunctionPass* llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }