#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2015 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using System;
using System.Collections;
using System.Globalization;
using System.Text;
using Google.Protobuf.Reflection;
using Google.Protobuf.WellKnownTypes;
using System.IO;
using System.Linq;
using System.Collections.Generic;
using System.Reflection;
namespace Google.Protobuf
{
///
/// Reflection-based converter from messages to JSON.
///
///
///
/// Instances of this class are thread-safe, with no mutable state.
///
///
/// This is a simple start to get JSON formatting working. As it's reflection-based,
/// it's not as quick as baking calls into generated messages - but is a simpler implementation.
/// (This code is generally not heavily optimized.)
///
///
public sealed class JsonFormatter
{
internal const string AnyTypeUrlField = "@type";
internal const string AnyDiagnosticValueField = "@value";
internal const string AnyWellKnownTypeValueField = "value";
private const string TypeUrlPrefix = "type.googleapis.com";
private const string NameValueSeparator = ": ";
private const string PropertySeparator = ", ";
///
/// Returns a formatter using the default settings.
///
public static JsonFormatter Default { get; } = new JsonFormatter(Settings.Default);
// A JSON formatter which *only* exists
private static readonly JsonFormatter diagnosticFormatter = new JsonFormatter(Settings.Default);
///
/// The JSON representation of the first 160 characters of Unicode.
/// Empty strings are replaced by the static constructor.
///
private static readonly string[] CommonRepresentations = {
// C0 (ASCII and derivatives) control characters
"\\u0000", "\\u0001", "\\u0002", "\\u0003", // 0x00
"\\u0004", "\\u0005", "\\u0006", "\\u0007",
"\\b", "\\t", "\\n", "\\u000b",
"\\f", "\\r", "\\u000e", "\\u000f",
"\\u0010", "\\u0011", "\\u0012", "\\u0013", // 0x10
"\\u0014", "\\u0015", "\\u0016", "\\u0017",
"\\u0018", "\\u0019", "\\u001a", "\\u001b",
"\\u001c", "\\u001d", "\\u001e", "\\u001f",
// Escaping of " and \ are required by www.json.org string definition.
// Escaping of < and > are required for HTML security.
"", "", "\\\"", "", "", "", "", "", // 0x20
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "", // 0x30
"", "", "", "", "\\u003c", "", "\\u003e", "",
"", "", "", "", "", "", "", "", // 0x40
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "", // 0x50
"", "", "", "", "\\\\", "", "", "",
"", "", "", "", "", "", "", "", // 0x60
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "", // 0x70
"", "", "", "", "", "", "", "\\u007f",
// C1 (ISO 8859 and Unicode) extended control characters
"\\u0080", "\\u0081", "\\u0082", "\\u0083", // 0x80
"\\u0084", "\\u0085", "\\u0086", "\\u0087",
"\\u0088", "\\u0089", "\\u008a", "\\u008b",
"\\u008c", "\\u008d", "\\u008e", "\\u008f",
"\\u0090", "\\u0091", "\\u0092", "\\u0093", // 0x90
"\\u0094", "\\u0095", "\\u0096", "\\u0097",
"\\u0098", "\\u0099", "\\u009a", "\\u009b",
"\\u009c", "\\u009d", "\\u009e", "\\u009f"
};
static JsonFormatter()
{
for (int i = 0; i < CommonRepresentations.Length; i++)
{
if (CommonRepresentations[i] == "")
{
CommonRepresentations[i] = ((char) i).ToString();
}
}
}
private readonly Settings settings;
private bool DiagnosticOnly => ReferenceEquals(this, diagnosticFormatter);
///
/// Creates a new formatted with the given settings.
///
/// The settings.
public JsonFormatter(Settings settings)
{
this.settings = settings;
}
///
/// Formats the specified message as JSON.
///
/// The message to format.
/// The formatted message.
public string Format(IMessage message)
{
var writer = new StringWriter();
Format(message, writer);
return writer.ToString();
}
///
/// Formats the specified message as JSON.
///
/// The message to format.
/// The TextWriter to write the formatted message to.
/// The formatted message.
public void Format(IMessage message, TextWriter writer)
{
ProtoPreconditions.CheckNotNull(message, nameof(message));
ProtoPreconditions.CheckNotNull(writer, nameof(writer));
if (message.Descriptor.IsWellKnownType)
{
WriteWellKnownTypeValue(writer, message.Descriptor, message);
}
else
{
WriteMessage(writer, message);
}
}
///
/// Converts a message to JSON for diagnostic purposes with no extra context.
///
///
///
/// This differs from calling on the default JSON
/// formatter in its handling of . As no type registry is available
/// in calls, the normal way of resolving the type of
/// an Any message cannot be applied. Instead, a JSON property named @value
/// is included with the base64 data from the property of the message.
///
/// The value returned by this method is only designed to be used for diagnostic
/// purposes. It may not be parsable by , and may not be parsable
/// by other Protocol Buffer implementations.
///
/// The message to format for diagnostic purposes.
/// The diagnostic-only JSON representation of the message
public static string ToDiagnosticString(IMessage message)
{
ProtoPreconditions.CheckNotNull(message, nameof(message));
return diagnosticFormatter.Format(message);
}
private void WriteMessage(TextWriter writer, IMessage message)
{
if (message == null)
{
WriteNull(writer);
return;
}
if (DiagnosticOnly)
{
ICustomDiagnosticMessage customDiagnosticMessage = message as ICustomDiagnosticMessage;
if (customDiagnosticMessage != null)
{
writer.Write(customDiagnosticMessage.ToDiagnosticString());
return;
}
}
writer.Write("{ ");
bool writtenFields = WriteMessageFields(writer, message, false);
writer.Write(writtenFields ? " }" : "}");
}
private bool WriteMessageFields(TextWriter writer, IMessage message, bool assumeFirstFieldWritten)
{
var fields = message.Descriptor.Fields;
bool first = !assumeFirstFieldWritten;
// First non-oneof fields
foreach (var field in fields.InFieldNumberOrder())
{
var accessor = field.Accessor;
if (field.ContainingOneof != null && field.ContainingOneof.Accessor.GetCaseFieldDescriptor(message) != field)
{
continue;
}
// Omit default values unless we're asked to format them, or they're oneofs (where the default
// value is still formatted regardless, because that's how we preserve the oneof case).
object value = accessor.GetValue(message);
if (field.ContainingOneof == null && !settings.FormatDefaultValues && IsDefaultValue(accessor, value))
{
continue;
}
// Okay, all tests complete: let's write the field value...
if (!first)
{
writer.Write(PropertySeparator);
}
WriteString(writer, accessor.Descriptor.JsonName);
writer.Write(NameValueSeparator);
WriteValue(writer, value);
first = false;
}
return !first;
}
///
/// Camel-case converter with added strictness for field mask formatting.
///
/// The field mask is invalid for JSON representation
private static string ToCamelCaseForFieldMask(string input)
{
for (int i = 0; i < input.Length; i++)
{
char c = input[i];
if (c >= 'A' && c <= 'Z')
{
throw new InvalidOperationException($"Invalid field mask to be converted to JSON: {input}");
}
if (c == '_' && i < input.Length - 1)
{
char next = input[i + 1];
if (next < 'a' || next > 'z')
{
throw new InvalidOperationException($"Invalid field mask to be converted to JSON: {input}");
}
}
}
return ToCamelCase(input);
}
// Converted from src/google/protobuf/util/internal/utility.cc ToCamelCase
// TODO: Use the new field in FieldDescriptor.
internal static string ToCamelCase(string input)
{
bool capitalizeNext = false;
bool wasCap = true;
bool isCap = false;
bool firstWord = true;
StringBuilder result = new StringBuilder(input.Length);
for (int i = 0; i < input.Length; i++, wasCap = isCap)
{
isCap = char.IsUpper(input[i]);
if (input[i] == '_')
{
capitalizeNext = true;
if (result.Length != 0)
{
firstWord = false;
}
continue;
}
else if (firstWord)
{
// Consider when the current character B is capitalized,
// first word ends when:
// 1) following a lowercase: "...aB..."
// 2) followed by a lowercase: "...ABc..."
if (result.Length != 0 && isCap &&
(!wasCap || (i + 1 < input.Length && char.IsLower(input[i + 1]))))
{
firstWord = false;
}
else
{
result.Append(char.ToLowerInvariant(input[i]));
continue;
}
}
else if (capitalizeNext)
{
capitalizeNext = false;
if (char.IsLower(input[i]))
{
result.Append(char.ToUpperInvariant(input[i]));
continue;
}
}
result.Append(input[i]);
}
return result.ToString();
}
private static void WriteNull(TextWriter writer)
{
writer.Write("null");
}
private static bool IsDefaultValue(IFieldAccessor accessor, object value)
{
if (accessor.Descriptor.IsMap)
{
IDictionary dictionary = (IDictionary) value;
return dictionary.Count == 0;
}
if (accessor.Descriptor.IsRepeated)
{
IList list = (IList) value;
return list.Count == 0;
}
switch (accessor.Descriptor.FieldType)
{
case FieldType.Bool:
return (bool) value == false;
case FieldType.Bytes:
return (ByteString) value == ByteString.Empty;
case FieldType.String:
return (string) value == "";
case FieldType.Double:
return (double) value == 0.0;
case FieldType.SInt32:
case FieldType.Int32:
case FieldType.SFixed32:
case FieldType.Enum:
return (int) value == 0;
case FieldType.Fixed32:
case FieldType.UInt32:
return (uint) value == 0;
case FieldType.Fixed64:
case FieldType.UInt64:
return (ulong) value == 0;
case FieldType.SFixed64:
case FieldType.Int64:
case FieldType.SInt64:
return (long) value == 0;
case FieldType.Float:
return (float) value == 0f;
case FieldType.Message:
case FieldType.Group: // Never expect to get this, but...
return value == null;
default:
throw new ArgumentException("Invalid field type");
}
}
private void WriteValue(TextWriter writer, object value)
{
if (value == null)
{
WriteNull(writer);
}
else if (value is bool)
{
writer.Write((bool)value ? "true" : "false");
}
else if (value is ByteString)
{
// Nothing in Base64 needs escaping
writer.Write('"');
writer.Write(((ByteString)value).ToBase64());
writer.Write('"');
}
else if (value is string)
{
WriteString(writer, (string)value);
}
else if (value is IDictionary)
{
WriteDictionary(writer, (IDictionary)value);
}
else if (value is IList)
{
WriteList(writer, (IList)value);
}
else if (value is int || value is uint)
{
IFormattable formattable = (IFormattable) value;
writer.Write(formattable.ToString("d", CultureInfo.InvariantCulture));
}
else if (value is long || value is ulong)
{
writer.Write('"');
IFormattable formattable = (IFormattable) value;
writer.Write(formattable.ToString("d", CultureInfo.InvariantCulture));
writer.Write('"');
}
else if (value is System.Enum)
{
string name = OriginalEnumValueHelper.GetOriginalName(value);
if (name != null)
{
WriteString(writer, name);
}
else
{
WriteValue(writer, (int)value);
}
}
else if (value is float || value is double)
{
string text = ((IFormattable) value).ToString("r", CultureInfo.InvariantCulture);
if (text == "NaN" || text == "Infinity" || text == "-Infinity")
{
writer.Write('"');
writer.Write(text);
writer.Write('"');
}
else
{
writer.Write(text);
}
}
else if (value is IMessage)
{
IMessage message = (IMessage) value;
if (message.Descriptor.IsWellKnownType)
{
WriteWellKnownTypeValue(writer, message.Descriptor, value);
}
else
{
WriteMessage(writer, (IMessage)value);
}
}
else
{
throw new ArgumentException("Unable to format value of type " + value.GetType());
}
}
///
/// Central interception point for well-known type formatting. Any well-known types which
/// don't need special handling can fall back to WriteMessage. We avoid assuming that the
/// values are using the embedded well-known types, in order to allow for dynamic messages
/// in the future.
///
private void WriteWellKnownTypeValue(TextWriter writer, MessageDescriptor descriptor, object value)
{
// Currently, we can never actually get here, because null values are always handled by the caller. But if we *could*,
// this would do the right thing.
if (value == null)
{
WriteNull(writer);
return;
}
// For wrapper types, the value will either be the (possibly boxed) "native" value,
// or the message itself if we're formatting it at the top level (e.g. just calling ToString on the object itself).
// If it's the message form, we can extract the value first, which *will* be the (possibly boxed) native value,
// and then proceed, writing it as if we were definitely in a field. (We never need to wrap it in an extra string...
// WriteValue will do the right thing.)
if (descriptor.IsWrapperType)
{
if (value is IMessage)
{
var message = (IMessage) value;
value = message.Descriptor.Fields[WrappersReflection.WrapperValueFieldNumber].Accessor.GetValue(message);
}
WriteValue(writer, value);
return;
}
if (descriptor.FullName == Timestamp.Descriptor.FullName)
{
WriteTimestamp(writer, (IMessage)value);
return;
}
if (descriptor.FullName == Duration.Descriptor.FullName)
{
WriteDuration(writer, (IMessage)value);
return;
}
if (descriptor.FullName == FieldMask.Descriptor.FullName)
{
WriteFieldMask(writer, (IMessage)value);
return;
}
if (descriptor.FullName == Struct.Descriptor.FullName)
{
WriteStruct(writer, (IMessage)value);
return;
}
if (descriptor.FullName == ListValue.Descriptor.FullName)
{
var fieldAccessor = descriptor.Fields[ListValue.ValuesFieldNumber].Accessor;
WriteList(writer, (IList)fieldAccessor.GetValue((IMessage)value));
return;
}
if (descriptor.FullName == Value.Descriptor.FullName)
{
WriteStructFieldValue(writer, (IMessage)value);
return;
}
if (descriptor.FullName == Any.Descriptor.FullName)
{
WriteAny(writer, (IMessage)value);
return;
}
WriteMessage(writer, (IMessage)value);
}
private void WriteTimestamp(TextWriter writer, IMessage value)
{
// TODO: In the common case where this *is* using the built-in Timestamp type, we could
// avoid all the reflection at this point, by casting to Timestamp. In the interests of
// avoiding subtle bugs, don't do that until we've implemented DynamicMessage so that we can prove
// it still works in that case.
int nanos = (int) value.Descriptor.Fields[Timestamp.NanosFieldNumber].Accessor.GetValue(value);
long seconds = (long) value.Descriptor.Fields[Timestamp.SecondsFieldNumber].Accessor.GetValue(value);
writer.Write(Timestamp.ToJson(seconds, nanos, DiagnosticOnly));
}
private void WriteDuration(TextWriter writer, IMessage value)
{
// TODO: Same as for WriteTimestamp
int nanos = (int) value.Descriptor.Fields[Duration.NanosFieldNumber].Accessor.GetValue(value);
long seconds = (long) value.Descriptor.Fields[Duration.SecondsFieldNumber].Accessor.GetValue(value);
writer.Write(Duration.ToJson(seconds, nanos, DiagnosticOnly));
}
private void WriteFieldMask(TextWriter writer, IMessage value)
{
var paths = (IList) value.Descriptor.Fields[FieldMask.PathsFieldNumber].Accessor.GetValue(value);
writer.Write(FieldMask.ToJson(paths, DiagnosticOnly));
}
private void WriteAny(TextWriter writer, IMessage value)
{
if (DiagnosticOnly)
{
WriteDiagnosticOnlyAny(writer, value);
return;
}
string typeUrl = (string) value.Descriptor.Fields[Any.TypeUrlFieldNumber].Accessor.GetValue(value);
ByteString data = (ByteString) value.Descriptor.Fields[Any.ValueFieldNumber].Accessor.GetValue(value);
string typeName = Any.GetTypeName(typeUrl);
MessageDescriptor descriptor = settings.TypeRegistry.Find(typeName);
if (descriptor == null)
{
throw new InvalidOperationException($"Type registry has no descriptor for type name '{typeName}'");
}
IMessage message = descriptor.Parser.ParseFrom(data);
writer.Write("{ ");
WriteString(writer, AnyTypeUrlField);
writer.Write(NameValueSeparator);
WriteString(writer, typeUrl);
if (descriptor.IsWellKnownType)
{
writer.Write(PropertySeparator);
WriteString(writer, AnyWellKnownTypeValueField);
writer.Write(NameValueSeparator);
WriteWellKnownTypeValue(writer, descriptor, message);
}
else
{
WriteMessageFields(writer, message, true);
}
writer.Write(" }");
}
private void WriteDiagnosticOnlyAny(TextWriter writer, IMessage value)
{
string typeUrl = (string) value.Descriptor.Fields[Any.TypeUrlFieldNumber].Accessor.GetValue(value);
ByteString data = (ByteString) value.Descriptor.Fields[Any.ValueFieldNumber].Accessor.GetValue(value);
writer.Write("{ ");
WriteString(writer, AnyTypeUrlField);
writer.Write(NameValueSeparator);
WriteString(writer, typeUrl);
writer.Write(PropertySeparator);
WriteString(writer, AnyDiagnosticValueField);
writer.Write(NameValueSeparator);
writer.Write('"');
writer.Write(data.ToBase64());
writer.Write('"');
writer.Write(" }");
}
private void WriteStruct(TextWriter writer, IMessage message)
{
writer.Write("{ ");
IDictionary fields = (IDictionary) message.Descriptor.Fields[Struct.FieldsFieldNumber].Accessor.GetValue(message);
bool first = true;
foreach (DictionaryEntry entry in fields)
{
string key = (string) entry.Key;
IMessage value = (IMessage) entry.Value;
if (string.IsNullOrEmpty(key) || value == null)
{
throw new InvalidOperationException("Struct fields cannot have an empty key or a null value.");
}
if (!first)
{
writer.Write(PropertySeparator);
}
WriteString(writer, key);
writer.Write(NameValueSeparator);
WriteStructFieldValue(writer, value);
first = false;
}
writer.Write(first ? "}" : " }");
}
private void WriteStructFieldValue(TextWriter writer, IMessage message)
{
var specifiedField = message.Descriptor.Oneofs[0].Accessor.GetCaseFieldDescriptor(message);
if (specifiedField == null)
{
throw new InvalidOperationException("Value message must contain a value for the oneof.");
}
object value = specifiedField.Accessor.GetValue(message);
switch (specifiedField.FieldNumber)
{
case Value.BoolValueFieldNumber:
case Value.StringValueFieldNumber:
case Value.NumberValueFieldNumber:
WriteValue(writer, value);
return;
case Value.StructValueFieldNumber:
case Value.ListValueFieldNumber:
// Structs and ListValues are nested messages, and already well-known types.
var nestedMessage = (IMessage) specifiedField.Accessor.GetValue(message);
WriteWellKnownTypeValue(writer, nestedMessage.Descriptor, nestedMessage);
return;
case Value.NullValueFieldNumber:
WriteNull(writer);
return;
default:
throw new InvalidOperationException("Unexpected case in struct field: " + specifiedField.FieldNumber);
}
}
internal void WriteList(TextWriter writer, IList list)
{
writer.Write("[ ");
bool first = true;
foreach (var value in list)
{
if (!first)
{
writer.Write(PropertySeparator);
}
WriteValue(writer, value);
first = false;
}
writer.Write(first ? "]" : " ]");
}
internal void WriteDictionary(TextWriter writer, IDictionary dictionary)
{
writer.Write("{ ");
bool first = true;
// This will box each pair. Could use IDictionaryEnumerator, but that's ugly in terms of disposal.
foreach (DictionaryEntry pair in dictionary)
{
if (!first)
{
writer.Write(PropertySeparator);
}
string keyText;
if (pair.Key is string)
{
keyText = (string) pair.Key;
}
else if (pair.Key is bool)
{
keyText = (bool) pair.Key ? "true" : "false";
}
else if (pair.Key is int || pair.Key is uint | pair.Key is long || pair.Key is ulong)
{
keyText = ((IFormattable) pair.Key).ToString("d", CultureInfo.InvariantCulture);
}
else
{
if (pair.Key == null)
{
throw new ArgumentException("Dictionary has entry with null key");
}
throw new ArgumentException("Unhandled dictionary key type: " + pair.Key.GetType());
}
WriteString(writer, keyText);
writer.Write(NameValueSeparator);
WriteValue(writer, pair.Value);
first = false;
}
writer.Write(first ? "}" : " }");
}
///
/// Returns whether or not a singular value can be represented in JSON.
/// Currently only relevant for enums, where unknown values can't be represented.
/// For repeated/map fields, this always returns true.
///
private bool CanWriteSingleValue(object value)
{
if (value is System.Enum)
{
return System.Enum.IsDefined(value.GetType(), value);
}
return true;
}
///
/// Writes a string (including leading and trailing double quotes) to a builder, escaping as required.
///
///
/// Other than surrogate pair handling, this code is mostly taken from src/google/protobuf/util/internal/json_escaping.cc.
///
internal static void WriteString(TextWriter writer, string text)
{
writer.Write('"');
for (int i = 0; i < text.Length; i++)
{
char c = text[i];
if (c < 0xa0)
{
writer.Write(CommonRepresentations[c]);
continue;
}
if (char.IsHighSurrogate(c))
{
// Encountered first part of a surrogate pair.
// Check that we have the whole pair, and encode both parts as hex.
i++;
if (i == text.Length || !char.IsLowSurrogate(text[i]))
{
throw new ArgumentException("String contains low surrogate not followed by high surrogate");
}
HexEncodeUtf16CodeUnit(writer, c);
HexEncodeUtf16CodeUnit(writer, text[i]);
continue;
}
else if (char.IsLowSurrogate(c))
{
throw new ArgumentException("String contains high surrogate not preceded by low surrogate");
}
switch ((uint) c)
{
// These are not required by json spec
// but used to prevent security bugs in javascript.
case 0xfeff: // Zero width no-break space
case 0xfff9: // Interlinear annotation anchor
case 0xfffa: // Interlinear annotation separator
case 0xfffb: // Interlinear annotation terminator
case 0x00ad: // Soft-hyphen
case 0x06dd: // Arabic end of ayah
case 0x070f: // Syriac abbreviation mark
case 0x17b4: // Khmer vowel inherent Aq
case 0x17b5: // Khmer vowel inherent Aa
HexEncodeUtf16CodeUnit(writer, c);
break;
default:
if ((c >= 0x0600 && c <= 0x0603) || // Arabic signs
(c >= 0x200b && c <= 0x200f) || // Zero width etc.
(c >= 0x2028 && c <= 0x202e) || // Separators etc.
(c >= 0x2060 && c <= 0x2064) || // Invisible etc.
(c >= 0x206a && c <= 0x206f))
{
HexEncodeUtf16CodeUnit(writer, c);
}
else
{
// No handling of surrogates here - that's done earlier
writer.Write(c);
}
break;
}
}
writer.Write('"');
}
private const string Hex = "0123456789abcdef";
private static void HexEncodeUtf16CodeUnit(TextWriter writer, char c)
{
writer.Write("\\u");
writer.Write(Hex[(c >> 12) & 0xf]);
writer.Write(Hex[(c >> 8) & 0xf]);
writer.Write(Hex[(c >> 4) & 0xf]);
writer.Write(Hex[(c >> 0) & 0xf]);
}
///
/// Settings controlling JSON formatting.
///
public sealed class Settings
{
///
/// Default settings, as used by
///
public static Settings Default { get; }
// Workaround for the Mono compiler complaining about XML comments not being on
// valid language elements.
static Settings()
{
Default = new Settings(false);
}
///
/// Whether fields whose values are the default for the field type (e.g. 0 for integers)
/// should be formatted (true) or omitted (false).
///
public bool FormatDefaultValues { get; }
///
/// The type registry used to format messages.
///
public TypeRegistry TypeRegistry { get; }
// TODO: Work out how we're going to scale this to multiple settings. "WithXyz" methods?
///
/// Creates a new object with the specified formatting of default values
/// and an empty type registry.
///
/// true if default values (0, empty strings etc) should be formatted; false otherwise.
public Settings(bool formatDefaultValues) : this(formatDefaultValues, TypeRegistry.Empty)
{
}
///
/// Creates a new object with the specified formatting of default values
/// and type registry.
///
/// true if default values (0, empty strings etc) should be formatted; false otherwise.
/// The to use when formatting messages.
public Settings(bool formatDefaultValues, TypeRegistry typeRegistry)
{
FormatDefaultValues = formatDefaultValues;
TypeRegistry = ProtoPreconditions.CheckNotNull(typeRegistry, nameof(typeRegistry));
}
}
// Effectively a cache of mapping from enum values to the original name as specified in the proto file,
// fetched by reflection.
// The need for this is unfortunate, as is its unbounded size, but realistically it shouldn't cause issues.
private static class OriginalEnumValueHelper
{
// TODO: In the future we might want to use ConcurrentDictionary, at the point where all
// the platforms we target have it.
private static readonly Dictionary> dictionaries
= new Dictionary>();
internal static string GetOriginalName(object value)
{
var enumType = value.GetType();
Dictionary