// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/code-stubs.h" #include "src/api-arguments.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/ia32/code-stubs-ia32.h" #include "src/ia32/frames-ia32.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ pop(ecx); __ mov(MemOperand(esp, eax, times_4, 0), edi); __ push(edi); __ push(ebx); __ push(ecx); __ add(eax, Immediate(3)); __ TailCallRuntime(Runtime::kNewArray); } void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || eax.is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor.GetRegisterParameter(i)); } __ CallExternalReference(miss, param_count); } __ ret(0); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ pushad(); if (save_doubles()) { __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters)); for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movsd(Operand(esp, i * kDoubleSize), reg); } } const int argument_count = 1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, ecx); __ mov(Operand(esp, 0 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movsd(reg, Operand(esp, i * kDoubleSize)); } __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters)); } __ popad(); __ ret(0); } class FloatingPointHelper : public AllStatic { public: enum ArgLocation { ARGS_ON_STACK, ARGS_IN_REGISTERS }; // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in register number. Returns operand as floating point number // on FPU stack. static void LoadFloatOperand(MacroAssembler* masm, Register number); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in eax, operand_2 in edx; falls through on float // operands, jumps to the non_float label otherwise. static void CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch); // Test if operands are numbers (smi or HeapNumber objects), and load // them into xmm0 and xmm1 if they are. Jump to label not_numbers if // either operand is not a number. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); }; void DoubleToIStub::Generate(MacroAssembler* masm) { Register input_reg = this->source(); Register final_result_reg = this->destination(); DCHECK(is_truncating()); Label check_negative, process_64_bits, done, done_no_stash; int double_offset = offset(); // Account for return address and saved regs if input is esp. if (input_reg.is(esp)) double_offset += 3 * kPointerSize; MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); MemOperand exponent_operand(MemOperand(input_reg, double_offset + kDoubleSize / 2)); Register scratch1; { Register scratch_candidates[3] = { ebx, edx, edi }; for (int i = 0; i < 3; i++) { scratch1 = scratch_candidates[i]; if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; } } // Since we must use ecx for shifts below, use some other register (eax) // to calculate the result if ecx is the requested return register. Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead for // the result. Register save_reg = final_result_reg.is(ecx) ? eax : ecx; __ push(scratch1); __ push(save_reg); bool stash_exponent_copy = !input_reg.is(esp); __ mov(scratch1, mantissa_operand); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Load x87 register with heap number. __ fld_d(mantissa_operand); } __ mov(ecx, exponent_operand); if (stash_exponent_copy) __ push(ecx); __ and_(ecx, HeapNumber::kExponentMask); __ shr(ecx, HeapNumber::kExponentShift); __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; if (CpuFeatures::IsSupported(SSE3)) { __ fstp(0); } __ sub(ecx, Immediate(delta)); __ xor_(result_reg, result_reg); __ cmp(ecx, Immediate(31)); __ j(above, &done); __ shl_cl(scratch1); __ jmp(&check_negative); __ bind(&process_64_bits); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); if (stash_exponent_copy) { // Already a copy of the exponent on the stack, overwrite it. STATIC_ASSERT(kDoubleSize == 2 * kPointerSize); __ sub(esp, Immediate(kDoubleSize / 2)); } else { // Reserve space for 64 bit answer. __ sub(esp, Immediate(kDoubleSize)); // Nolint. } // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result __ add(esp, Immediate(kDoubleSize)); __ jmp(&done_no_stash); } else { // Result must be extracted from shifted 32-bit mantissa __ sub(ecx, Immediate(delta)); __ neg(ecx); if (stash_exponent_copy) { __ mov(result_reg, MemOperand(esp, 0)); } else { __ mov(result_reg, exponent_operand); } __ and_(result_reg, Immediate(static_cast(Double::kSignificandMask >> 32))); __ add(result_reg, Immediate(static_cast(Double::kHiddenBit >> 32))); __ shrd_cl(scratch1, result_reg); __ shr_cl(result_reg); __ test(ecx, Immediate(32)); __ cmov(not_equal, scratch1, result_reg); } // If the double was negative, negate the integer result. __ bind(&check_negative); __ mov(result_reg, scratch1); __ neg(result_reg); if (stash_exponent_copy) { __ cmp(MemOperand(esp, 0), Immediate(0)); } else { __ cmp(exponent_operand, Immediate(0)); } __ cmov(greater, result_reg, scratch1); // Restore registers __ bind(&done); if (stash_exponent_copy) { __ add(esp, Immediate(kDoubleSize / 2)); } __ bind(&done_no_stash); if (!final_result_reg.is(result_reg)) { DCHECK(final_result_reg.is(ecx)); __ mov(final_result_reg, result_reg); } __ pop(save_reg); __ pop(scratch1); __ ret(0); } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ JumpIfSmi(number, &load_smi, Label::kNear); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); __ bind(&load_smi); __ SmiUntag(number); __ push(number); __ fild_s(Operand(esp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; // Load operand in edx into xmm0, or branch to not_numbers. __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); Factory* factory = masm->isolate()->factory(); __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, not_numbers); // Argument in edx is not a number. __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1, or branch to not_numbers. __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map()); __ j(equal, &load_float_eax, Label::kNear); __ jmp(not_numbers); // Argument in eax is not a number. __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ Cvtsi2sd(xmm0, edx); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ Cvtsi2sd(xmm1, eax); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ jmp(&done, Label::kNear); __ bind(&load_float_eax); __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ bind(&done); } void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch) { Label test_other, done; // Test if both operands are floats or smi -> scratch=k_is_float; // Otherwise scratch = k_not_float. __ JumpIfSmi(edx, &test_other, Label::kNear); __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in edx is not a number -> NaN __ bind(&test_other); __ JumpIfSmi(eax, &done, Label::kNear); __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in eax is not a number -> NaN // Fall-through: Both operands are numbers. __ bind(&done); } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(eax)); const Register scratch = ecx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ mov(scratch, Immediate(1)); __ Cvtsi2sd(double_result, scratch); if (exponent_type() == TAGGED) { __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiUntag(exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { Label fast_power, try_arithmetic_simplification; __ DoubleToI(exponent, double_exponent, double_scratch, TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, &try_arithmetic_simplification, &try_arithmetic_simplification); __ jmp(&int_exponent); __ bind(&try_arithmetic_simplification); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cvttsd2si(exponent, Operand(double_exponent)); __ cmp(exponent, Immediate(0x1)); __ j(overflow, &call_runtime); // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), double_exponent); __ fld_d(Operand(esp, 0)); // E __ movsd(Operand(esp, 0), double_base); __ fld_d(Operand(esp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // 2^X // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ test_b(eax, Immediate(0x5F)); // We check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ add(esp, Immediate(kDoubleSize)); __ jmp(&call_runtime); } // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; __ mov(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, while_false; __ test(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ neg(scratch); __ bind(&no_neg); __ j(zero, &while_false, Label::kNear); __ shr(scratch, 1); // Above condition means CF==0 && ZF==0. This means that the // bit that has been shifted out is 0 and the result is not 0. __ j(above, &while_true, Label::kNear); __ movsd(double_result, double_scratch); __ j(zero, &while_false, Label::kNear); __ bind(&while_true); __ shr(scratch, 1); __ mulsd(double_scratch, double_scratch); __ j(above, &while_true, Label::kNear); __ mulsd(double_result, double_scratch); __ j(not_zero, &while_true); __ bind(&while_false); // scratch has the original value of the exponent - if the exponent is // negative, return 1/result. __ test(exponent, exponent); __ j(positive, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // exponent is a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ Cvtsi2sd(double_exponent, exponent); // Returning or bailing out. __ bind(&call_runtime); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(4, scratch); __ movsd(Operand(esp, 0 * kDoubleSize), double_base); __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 4); } // Return value is in st(0) on ia32. // Store it into the (fixed) result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ bind(&done); __ ret(0); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // esp[0]: return address // esp[4]: last_match_info (expected JSArray) // esp[8]: previous index // esp[12]: subject string // esp[16]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime; Factory* factory = isolate()->factory(); // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ test(ebx, ebx); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ mov(eax, Operand(esp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &runtime); __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // ecx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); __ j(not_equal, &runtime); // ecx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Multiplying by 2 comes for free since edx is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); __ j(above, &runtime); // Reset offset for possibly sliced string. __ Move(edi, Immediate(0)); __ mov(eax, Operand(esp, kSubjectOffset)); __ JumpIfSmi(eax, &runtime); __ mov(edx, eax); // Make a copy of the original subject string. // eax: subject string // edx: subject string // ecx: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential two byte? If yes, go to (9). // (2) Sequential one byte? If yes, go to (5). // (3) Sequential or cons? If not, go to (6). // (4) Cons string. If the string is flat, replace subject with first string // and go to (1). Otherwise bail out to runtime. // (5) One byte sequential. Load regexp code for one byte. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (6) Long external string? If not, go to (10). // (7) External string. Make it, offset-wise, look like a sequential string. // (8) Is the external string one byte? If yes, go to (5). // (9) Two byte sequential. Load regexp code for two byte. Go to (E). // (10) Short external string or not a string? If yes, bail out to runtime. // (11) Sliced or thin string. Replace subject with parent. Go to (1). Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */, external_string /* 7 */, check_underlying /* 1 */, not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */; __ bind(&check_underlying); // (1) Sequential two byte? If yes, go to (9). __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ and_(ebx, kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask | kShortExternalStringMask); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Go to (9). // (2) Sequential one byte? If yes, go to (5). // Any other sequential string must be one byte. __ and_(ebx, Immediate(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5). // (3) Sequential or cons? If not, go to (6). // We check whether the subject string is a cons, since sequential strings // have already been covered. STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kThinStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(ebx, Immediate(kExternalStringTag)); __ j(greater_equal, ¬_seq_nor_cons); // Go to (6). // (4) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); __ j(not_equal, &runtime); __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); __ jmp(&check_underlying); // eax: sequential subject string (or look-alike, external string) // edx: original subject string // ecx: RegExp data (FixedArray) // (5) One byte sequential. Load regexp code for one byte. __ bind(&seq_one_byte_string); // Load previous index and check range before edx is overwritten. We have // to use edx instead of eax here because it might have been only made to // look like a sequential string when it actually is an external string. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ JumpIfNotSmi(ebx, &runtime); __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); __ j(above_equal, &runtime); __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset)); __ Move(ecx, Immediate(1)); // Type is one byte. // (E) Carry on. String handling is done. __ bind(&check_code); // edx: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(edx, &runtime); // eax: subject string // ebx: previous index (smi) // edx: code // ecx: encoding of subject string (1 if one_byte, 0 if two_byte); // All checks done. Now push arguments for native regexp code. Counters* counters = isolate()->counters(); __ IncrementCounter(counters->regexp_entry_native(), 1); // Isolates: note we add an additional parameter here (isolate pointer). static const int kRegExpExecuteArguments = 9; __ EnterApiExitFrame(kRegExpExecuteArguments); // Argument 9: Pass current isolate address. __ mov(Operand(esp, 8 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); // Argument 8: Indicate that this is a direct call from JavaScript. __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); // Argument 7: Start (high end) of backtracking stack memory area. __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ mov(Operand(esp, 6 * kPointerSize), esi); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); // Argument 5: static offsets vector buffer. __ mov(Operand(esp, 4 * kPointerSize), Immediate(ExternalReference::address_of_static_offsets_vector( isolate()))); // Argument 2: Previous index. __ SmiUntag(ebx); __ mov(Operand(esp, 1 * kPointerSize), ebx); // Argument 1: Original subject string. // The original subject is in the previous stack frame. Therefore we have to // use ebp, which points exactly to one pointer size below the previous esp. // (Because creating a new stack frame pushes the previous ebp onto the stack // and thereby moves up esp by one kPointerSize.) __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), esi); // esi: original subject string // eax: underlying subject string // ebx: previous index // ecx: encoding of subject string (1 if one_byte 0 if two_byte); // edx: code // Argument 4: End of string data // Argument 3: Start of string data // Prepare start and end index of the input. // Load the length from the original sliced string if that is the case. __ mov(esi, FieldOperand(esi, String::kLengthOffset)); __ add(esi, edi); // Calculate input end wrt offset. __ SmiUntag(edi); __ add(ebx, edi); // Calculate input start wrt offset. // ebx: start index of the input string // esi: end index of the input string Label setup_two_byte, setup_rest; __ test(ecx, ecx); __ j(zero, &setup_two_byte, Label::kNear); __ SmiUntag(esi); __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ jmp(&setup_rest, Label::kNear); __ bind(&setup_two_byte); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ bind(&setup_rest); // Locate the code entry and call it. __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(edx); // Drop arguments and come back to JS mode. __ LeaveApiExitFrame(true); // Check the result. Label success; __ cmp(eax, 1); // We expect exactly one result since we force the called regexp to behave // as non-global. __ j(equal, &success); Label failure; __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); __ j(equal, &failure); __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate()); __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); __ mov(eax, Operand::StaticVariable(pending_exception)); __ cmp(edx, eax); __ j(equal, &runtime); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ bind(&failure); // For failure to match, return null. __ mov(eax, factory->null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ mov(eax, Operand(esp, kJSRegExpOffset)); __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(edx, Immediate(2)); // edx was a smi. // edx: Number of capture registers // Check that the last match info is a FixedArray. __ mov(ebx, Operand(esp, kLastMatchInfoOffset)); __ JumpIfSmi(ebx, &runtime); // Check that the object has fast elements. __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(eax, factory->fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); __ SmiUntag(eax); __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead)); __ cmp(edx, eax); __ j(greater, &runtime); // ebx: last_match_info (FixedArray) // edx: number of capture registers // Store the capture count. __ SmiTag(edx); // Number of capture registers to smi. __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx); __ SmiUntag(edx); // Number of capture registers back from smi. // Store last subject and last input. __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(ecx, eax); __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax); __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi, kDontSaveFPRegs); __ mov(eax, ecx); __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax); __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(ecx, Immediate(address_of_static_offsets_vector)); // ebx: last_match_info (FixedArray) // ecx: offsets vector // edx: number of capture registers Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ bind(&next_capture); __ sub(edx, Immediate(1)); __ j(negative, &done, Label::kNear); // Read the value from the static offsets vector buffer. __ mov(edi, Operand(ecx, edx, times_int_size, 0)); __ SmiTag(edi); // Store the smi value in the last match info. __ mov(FieldOperand(ebx, edx, times_pointer_size, RegExpMatchInfo::kFirstCaptureOffset), edi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ mov(eax, ebx); __ ret(4 * kPointerSize); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (6) Long external string? If not, go to (10). __ bind(¬_seq_nor_cons); // Compare flags are still set from (3). __ j(greater, ¬_long_external, Label::kNear); // Go to (10). // (7) External string. Short external strings have been ruled out. __ bind(&external_string); // Reload instance type. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ test_b(ebx, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kTwoByteStringTag == 0); // (8) Is the external string one byte? If yes, go to (5). __ test_b(ebx, Immediate(kStringEncodingMask)); __ j(not_zero, &seq_one_byte_string); // Go to (5). // eax: sequential subject string (or look-alike, external string) // edx: original subject string // ecx: RegExp data (FixedArray) // (9) Two byte sequential. Load regexp code for two byte. Go to (E). __ bind(&seq_two_byte_string); // Load previous index and check range before edx is overwritten. We have // to use edx instead of eax here because it might have been only made to // look like a sequential string when it actually is an external string. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ JumpIfNotSmi(ebx, &runtime); __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); __ j(above_equal, &runtime); __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); __ Move(ecx, Immediate(0)); // Type is two byte. __ jmp(&check_code); // Go to (E). // (10) Not a string or a short external string? If yes, bail out to runtime. __ bind(¬_long_external); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); __ j(not_zero, &runtime); // (11) Sliced or thin string. Replace subject with parent. Go to (1). Label thin_string; __ cmp(ebx, Immediate(kThinStringTag)); __ j(equal, &thin_string, Label::kNear); // Load offset into edi and replace subject string with parent. __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (1). __ bind(&thin_string); __ mov(eax, FieldOperand(eax, ThinString::kActualOffset)); __ jmp(&check_underlying); // Go to (1). #endif // V8_INTERPRETED_REGEXP } static int NegativeComparisonResult(Condition cc) { DCHECK(cc != equal); DCHECK((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } static void CheckInputType(MacroAssembler* masm, Register input, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ cmp(FieldOperand(input, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->heap_number_map())); __ j(not_equal, fail); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } static void BranchIfNotInternalizedString(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, label); } void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Label runtime_call, check_unequal_objects; Condition cc = GetCondition(); Label miss; CheckInputType(masm, edx, left(), &miss); CheckInputType(masm, eax, right(), &miss); // Compare two smis. Label non_smi, smi_done; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &non_smi, Label::kNear); __ sub(edx, eax); // Return on the result of the subtraction. __ j(no_overflow, &smi_done, Label::kNear); __ not_(edx); // Correct sign in case of overflow. edx is never 0 here. __ bind(&smi_done); __ mov(eax, edx); __ ret(0); __ bind(&non_smi); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Identical objects can be compared fast, but there are some tricky cases // for NaN and undefined. Label generic_heap_number_comparison; { Label not_identical; __ cmp(eax, edx); __ j(not_equal, ¬_identical); if (cc != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. __ cmp(edx, isolate()->factory()->undefined_value()); Label check_for_nan; __ j(not_equal, &check_for_nan, Label::kNear); __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc)))); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Compare heap numbers in a general way, // to handle NaNs correctly. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(isolate()->factory()->heap_number_map())); __ j(equal, &generic_heap_number_comparison, Label::kNear); if (cc != equal) { __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // Call runtime on identical JSObjects. Otherwise return equal. __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE)); __ j(above_equal, &runtime_call, Label::kFar); // Call runtime on identical symbols since we need to throw a TypeError. __ cmpb(ecx, Immediate(SYMBOL_TYPE)); __ j(equal, &runtime_call, Label::kFar); } __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); __ bind(¬_identical); } // Strict equality can quickly decide whether objects are equal. // Non-strict object equality is slower, so it is handled later in the stub. if (cc == equal && strict()) { Label slow; // Fallthrough label. Label not_smis; // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(static_cast(0), Smi::kZero); __ mov(ecx, Immediate(kSmiTagMask)); __ and_(ecx, eax); __ test(ecx, edx); __ j(not_zero, ¬_smis, Label::kNear); // One operand is a smi. // Check whether the non-smi is a heap number. STATIC_ASSERT(kSmiTagMask == 1); // ecx still holds eax & kSmiTag, which is either zero or one. __ sub(ecx, Immediate(0x01)); __ mov(ebx, edx); __ xor_(ebx, eax); __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx. __ xor_(ebx, eax); // if eax was smi, ebx is now edx, else eax. // Check if the non-smi operand is a heap number. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(isolate()->factory()->heap_number_map())); // If heap number, handle it in the slow case. __ j(equal, &slow, Label::kNear); // Return non-equal (ebx is not zero) __ mov(eax, ebx); __ ret(0); __ bind(¬_smis); // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // Get the type of the first operand. // If the first object is a JS object, we have done pointer comparison. Label first_non_object; STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(below, &first_non_object, Label::kNear); // Return non-zero (eax is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. __ bind(&slow); } // Generate the number comparison code. Label non_number_comparison; Label unordered; __ bind(&generic_heap_number_comparison); FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); DCHECK(cc != not_equal); if (cc == less || cc == less_equal) { __ mov(eax, Immediate(Smi::FromInt(1))); } else { __ mov(eax, Immediate(Smi::FromInt(-1))); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); // Fast negative check for internalized-to-internalized equality. Label check_for_strings; if (cc == equal) { BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx); BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx); // We've already checked for object identity, so if both operands // are internalized they aren't equal. Register eax already holds a // non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &check_unequal_objects); // Inline comparison of one-byte strings. if (cc == equal) { StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx, edi); } #ifdef DEBUG __ Abort(kUnexpectedFallThroughFromStringComparison); #endif __ bind(&check_unequal_objects); if (cc == equal && !strict()) { // Non-strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. Label return_equal, return_unequal, undetectable; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(ecx, Operand(eax, edx, times_1, 0)); __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &runtime_call); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, &undetectable, Label::kNear); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, &return_unequal, Label::kNear); __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE); __ j(below, &runtime_call, Label::kNear); __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE); __ j(below, &runtime_call, Label::kNear); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in eax. __ ret(0); // eax, edx were pushed __ bind(&undetectable); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal, Label::kNear); // If both sides are JSReceivers, then the result is false according to // the HTML specification, which says that only comparisons with null or // undefined are affected by special casing for document.all. __ CmpInstanceType(ebx, ODDBALL_TYPE); __ j(zero, &return_equal, Label::kNear); __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(not_zero, &return_unequal, Label::kNear); __ bind(&return_equal); __ Move(eax, Immediate(EQUAL)); __ ret(0); // eax, edx were pushed } __ bind(&runtime_call); if (cc == equal) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(esi); __ Call(strict() ? isolate()->builtins()->StrictEqual() : isolate()->builtins()->Equal(), RelocInfo::CODE_TARGET); __ Pop(esi); } // Turn true into 0 and false into some non-zero value. STATIC_ASSERT(EQUAL == 0); __ sub(eax, Immediate(isolate()->factory()->true_value())); __ Ret(); } else { // Push arguments below the return address. __ pop(ecx); __ push(edx); __ push(eax); __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc)))); __ push(ecx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { // eax : number of arguments to the construct function // ebx : feedback vector // edx : slot in feedback vector (Smi) // edi : the function to call { FrameScope scope(masm, StackFrame::INTERNAL); // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(eax); __ push(eax); __ push(edi); __ push(edx); __ push(ebx); __ push(esi); __ CallStub(stub); __ pop(esi); __ pop(ebx); __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // eax : number of arguments to the construct function // ebx : feedback vector // edx : slot in feedback vector (Smi) // edi : the function to call Isolate* isolate = masm->isolate(); Label initialize, done, miss, megamorphic, not_array_function; // Load the cache state into ecx. __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read // at this position in a symbol (see static asserts in feedback-vector.h). Label check_allocation_site; __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset)); __ j(equal, &done, Label::kFar); __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex); __ j(equal, &done, Label::kFar); __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset), Heap::kWeakCellMapRootIndex); __ j(not_equal, &check_allocation_site); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize); __ jmp(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex); __ j(not_equal, &miss); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ j(not_equal, &megamorphic); __ jmp(&done, Label::kFar); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex); __ j(equal, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ mov( FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize), Immediate(FeedbackVector::MegamorphicSentinel(isolate))); __ jmp(&done, Label::kFar); // An uninitialized cache is patched with the function or sentinel to // indicate the ElementsKind if function is the Array constructor. __ bind(&initialize); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ j(not_equal, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(isolate); CallStubInRecordCallTarget(masm, &create_stub); __ jmp(&done); __ bind(¬_array_function); CreateWeakCellStub weak_cell_stub(isolate); CallStubInRecordCallTarget(masm, &weak_cell_stub); __ bind(&done); // Increment the call count for all function calls. __ add(FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize + kPointerSize), Immediate(Smi::FromInt(1))); } void CallConstructStub::Generate(MacroAssembler* masm) { // eax : number of arguments // ebx : feedback vector // edx : slot in feedback vector (Smi, for RecordCallTarget) // edi : constructor function Label non_function; // Check that function is not a smi. __ JumpIfSmi(edi, &non_function); // Check that function is a JSFunction. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &non_function); GenerateRecordCallTarget(masm); Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into ebx, or undefined. __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); Handle allocation_site_map = isolate()->factory()->allocation_site_map(); __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map)); __ j(equal, &feedback_register_initialized); __ mov(ebx, isolate()->factory()->undefined_value()); __ bind(&feedback_register_initialized); __ AssertUndefinedOrAllocationSite(ebx); // Pass new target to construct stub. __ mov(edx, edi); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); __ bind(&non_function); __ mov(edx, edi); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } bool CEntryStub::NeedsImmovableCode() { return false; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); // It is important that the store buffer overflow stubs are generated first. CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. CEntryStub(isolate, 1, kSaveFPRegs).GetCode(); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // eax: number of arguments including receiver // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // // If argv_in_register(): // ecx: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); // Reserve space on the stack for the three arguments passed to the call. If // result size is greater than can be returned in registers, also reserve // space for the hidden argument for the result location, and space for the // result itself. int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size(); // Enter the exit frame that transitions from JavaScript to C++. if (argv_in_register()) { DCHECK(!save_doubles()); DCHECK(!is_builtin_exit()); __ EnterApiExitFrame(arg_stack_space); // Move argc and argv into the correct registers. __ mov(esi, ecx); __ mov(edi, eax); } else { __ EnterExitFrame( arg_stack_space, save_doubles(), is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); } // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result size is 2. // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } // Call C function. if (result_size() <= 2) { __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); } else { DCHECK_EQ(3, result_size()); // Pass a pointer to the result location as the first argument. __ lea(eax, Operand(esp, 4 * kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), eax); __ mov(Operand(esp, 1 * kPointerSize), edi); // argc. __ mov(Operand(esp, 2 * kPointerSize), esi); // argv. __ mov(Operand(esp, 3 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); } __ call(ebx); if (result_size() > 2) { DCHECK_EQ(3, result_size()); #ifndef _WIN32 // Restore the "hidden" argument on the stack which was popped by caller. __ sub(esp, Immediate(kPointerSize)); #endif // Read result values stored on stack. Result is stored above the arguments. __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize)); __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize)); __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize)); } // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ cmp(eax, isolate()->factory()->exception()); __ j(equal, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { __ push(edx); __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); Label okay; ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); __ cmp(edx, Operand::StaticVariable(pending_exception_address)); // Cannot use check here as it attempts to generate call into runtime. __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); __ pop(edx); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles(), !argv_in_register()); __ ret(0); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set eax to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, eax); __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc. __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(esi, Operand::StaticVariable(pending_handler_context_address)); __ mov(esp, Operand::StaticVariable(pending_handler_sp_address)); __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (esi == 0) for non-JS frames. Label skip; __ test(esi, esi); __ j(zero, &skip, Label::kNear); __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); __ bind(&skip); // Compute the handler entry address and jump to it. __ mov(edi, Operand::StaticVariable(pending_handler_code_address)); __ mov(edx, Operand::StaticVariable(pending_handler_offset_address)); __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize)); __ jmp(edi); } void JSEntryStub::Generate(MacroAssembler* masm) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Set up frame. __ push(ebp); __ mov(ebp, esp); // Push marker in two places. StackFrame::Type marker = type(); __ push(Immediate(StackFrame::TypeToMarker(marker))); // marker ExternalReference context_address(Isolate::kContextAddress, isolate()); __ push(Operand::StaticVariable(context_address)); // context // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate()); __ push(Operand::StaticVariable(c_entry_fp)); // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ j(not_equal, ¬_outermost_js, Label::kNear); __ mov(Operand::StaticVariable(js_entry_sp), ebp); __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ jmp(&invoke, Label::kNear); __ bind(¬_outermost_js); __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate()); __ mov(Operand::StaticVariable(pending_exception), eax); __ mov(eax, Immediate(isolate()->factory()->exception())); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Notice that we cannot store a // reference to the trampoline code directly in this stub, because the // builtin stubs may not have been generated yet. if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(edx, Immediate(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(edx, Immediate(entry)); } __ mov(edx, Operand(edx, 0)); // deref address __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ call(edx); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(ebx); __ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ j(not_equal, ¬_outermost_js_2); __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. __ pop(Operand::StaticVariable(ExternalReference( Isolate::kCEntryFPAddress, isolate()))); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(esp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. STATIC_ASSERT(kSmiTag == 0); if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ test(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); } // If the index is non-smi trigger the non-smi case. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ cmp(index_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); __ SmiUntag(index_); Factory* factory = masm->isolate()->factory(); StringCharLoadGenerator::Generate( masm, factory, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, masm->isolate()->factory()->heap_number_map(), index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); if (embed_mode == PART_OF_IC_HANDLER) { __ push(LoadWithVectorDescriptor::VectorRegister()); __ push(LoadDescriptor::SlotRegister()); } __ push(object_); __ push(index_); // Consumed by runtime conversion function. __ CallRuntime(Runtime::kNumberToSmi); if (!index_.is(eax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ mov(index_, eax); } __ pop(object_); if (embed_mode == PART_OF_IC_HANDLER) { __ pop(LoadDescriptor::SlotRegister()); __ pop(LoadWithVectorDescriptor::VectorRegister()); } // Reload the instance type. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ SmiTag(index_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); if (!result_.is(eax)) { __ mov(result_, eax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ mov(length, FieldOperand(left, String::kLengthOffset)); __ cmp(length, FieldOperand(right, String::kLengthOffset)); __ j(equal, &check_zero_length, Label::kNear); __ bind(&strings_not_equal); __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL))); __ ret(0); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ test(length, length); __ j(not_zero, &compare_chars, Label::kNear); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal, Label::kNear); // Characters are equal. __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_compare_native(), 1); // Find minimum length. Label left_shorter; __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); __ mov(scratch3, scratch1); __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); Register length_delta = scratch3; __ j(less_equal, &left_shorter, Label::kNear); // Right string is shorter. Change scratch1 to be length of right string. __ sub(scratch1, length_delta); __ bind(&left_shorter); Register min_length = scratch1; // If either length is zero, just compare lengths. Label compare_lengths; __ test(min_length, min_length); __ j(zero, &compare_lengths, Label::kNear); // Compare characters. Label result_not_equal; GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal, Label::kNear); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); __ test(length_delta, length_delta); Label length_not_equal; __ j(not_zero, &length_not_equal, Label::kNear); // Result is EQUAL. STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); Label result_greater; Label result_less; __ bind(&length_not_equal); __ j(greater, &result_greater, Label::kNear); __ jmp(&result_less, Label::kNear); __ bind(&result_not_equal); __ j(above, &result_greater, Label::kNear); __ bind(&result_less); // Result is LESS. __ Move(eax, Immediate(Smi::FromInt(LESS))); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Move(eax, Immediate(Smi::FromInt(GREATER))); __ ret(0); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance chars_not_equal_near) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ lea(left, FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); __ lea(right, FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); __ neg(length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ mov_b(scratch, Operand(left, index, times_1, 0)); __ cmpb(scratch, Operand(right, index, times_1, 0)); __ j(not_equal, chars_not_equal, chars_not_equal_near); __ inc(index); __ j(not_zero, &loop); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edx : left // -- eax : right // -- esp[0] : return address // ----------------------------------- // Load ecx with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ mov(ecx, isolate()->factory()->undefined_value()); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_equal, kExpectedAllocationSite); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), isolate()->factory()->allocation_site_map()); __ Assert(equal, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { DCHECK_EQ(CompareICState::BOOLEAN, state()); Label miss; Label::Distance const miss_distance = masm->emit_debug_code() ? Label::kFar : Label::kNear; __ JumpIfSmi(edx, &miss, miss_distance); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ JumpIfSmi(eax, &miss, miss_distance); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance); __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance); if (!Token::IsEqualityOp(op())) { __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset)); __ AssertSmi(eax); __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset)); __ AssertSmi(edx); __ push(eax); __ mov(eax, edx); __ pop(edx); } __ sub(eax, edx); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &miss, Label::kNear); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ sub(eax, edx); } else { Label done; __ sub(edx, eax); __ j(no_overflow, &done, Label::kNear); // Correct sign of result in case of overflow. __ not_(edx); __ bind(&done); __ mov(eax, edx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(edx, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(eax, &miss); } // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(eax, &right_smi, Label::kNear); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined1, Label::kNear); __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ jmp(&left, Label::kNear); __ bind(&right_smi); __ mov(ecx, eax); // Can't clobber eax because we can still jump away. __ SmiUntag(ecx); __ Cvtsi2sd(xmm1, ecx); __ bind(&left); __ JumpIfSmi(edx, &left_smi, Label::kNear); __ cmp(FieldOperand(edx, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined2, Label::kNear); __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&left_smi); __ mov(ecx, edx); // Can't clobber edx because we can still jump away. __ SmiUntag(ecx); __ Cvtsi2sd(xmm0, ecx); __ bind(&done); // Compare operands. __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ cmp(eax, Immediate(isolate()->factory()->undefined_value())); __ j(not_equal, &miss); __ JumpIfSmi(edx, &unordered); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); __ j(not_equal, &maybe_undefined2, Label::kNear); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ cmp(edx, Immediate(isolate()->factory()->undefined_value())); __ j(equal, &unordered); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); DCHECK(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; // Check that both operands are heap objects. Label miss; __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss, Label::kNear); // Check that both operands are internalized strings. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ or_(tmp1, tmp2); __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, &miss, Label::kNear); // Internalized strings are compared by identity. Label done; __ cmp(left, right); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; // Check that both operands are heap objects. Label miss; __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss, Label::kNear); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear); // Unique names are compared by identity. Label done; __ cmp(left, right); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; Register tmp3 = edi; // Check that both operands are heap objects. __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ mov(tmp3, tmp1); STATIC_ASSERT(kNotStringTag != 0); __ or_(tmp3, tmp2); __ test(tmp3, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Fast check for identical strings. Label not_same; __ cmp(left, right); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Handle not identical strings. __ bind(¬_same); // Check that both strings are internalized. If they are, we're done // because we already know they are not identical. But in the case of // non-equality compare, we still need to determine the order. We // also know they are both strings. if (equality) { Label do_compare; STATIC_ASSERT(kInternalizedTag == 0); __ or_(tmp1, tmp2); __ test(tmp1, Immediate(kIsNotInternalizedMask)); __ j(not_zero, &do_compare, Label::kNear); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ ret(0); __ bind(&do_compare); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime); // Compare flat one byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3); } // Handle more complex cases in runtime. __ bind(&runtime); if (equality) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(left); __ Push(right); __ CallRuntime(Runtime::kStringEqual); } __ sub(eax, Immediate(masm->isolate()->factory()->true_value())); __ Ret(); } else { __ pop(tmp1); // Return address. __ push(left); __ push(right); __ push(tmp1); __ TailCallRuntime(Runtime::kStringCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(below, &miss, Label::kNear); __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx); __ j(below, &miss, Label::kNear); DCHECK_EQ(equal, GetCondition()); __ sub(eax, edx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { Label miss; Handle cell = Map::WeakCellForMap(known_map_); __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); __ GetWeakValue(edi, cell); __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset)); __ j(not_equal, &miss, Label::kNear); __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ j(not_equal, &miss, Label::kNear); if (Token::IsEqualityOp(op())) { __ sub(eax, edx); __ ret(0); } else { __ PopReturnAddressTo(ecx); __ Push(edx); __ Push(eax); __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition())))); __ PushReturnAddressFrom(ecx); __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); __ push(edx); // Preserve edx and eax. __ push(eax); __ push(edx); // And also use them as the arguments. __ push(eax); __ push(Immediate(Smi::FromInt(op()))); __ CallRuntime(Runtime::kCompareIC_Miss); // Compute the entry point of the rewritten stub. __ lea(edi, FieldOperand(eax, Code::kHeaderSize)); __ pop(eax); __ pop(edx); } // Do a tail call to the rewritten stub. __ jmp(edi); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a unique name and receiver must be a heap object. void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle name, Register r0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. Register index = r0; // Capacity is smi 2^n. __ mov(index, FieldOperand(properties, kCapacityOffset)); __ dec(index); __ and_(index, Immediate(Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. Register entity_name = r0; // Having undefined at this place means the name is not contained. STATIC_ASSERT(kSmiTagSize == 1); __ mov(entity_name, Operand(properties, index, times_half_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(entity_name, masm->isolate()->factory()->undefined_value()); __ j(equal, done); // Stop if found the property. __ cmp(entity_name, Handle(name)); __ j(equal, miss); Label good; // Check for the hole and skip. __ cmp(entity_name, masm->isolate()->factory()->the_hole_value()); __ j(equal, &good, Label::kNear); // Check if the entry name is not a unique name. __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); __ JumpIfNotUniqueNameInstanceType( FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); __ bind(&good); } NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0, NEGATIVE_LOOKUP); __ push(Immediate(Handle(name))); __ push(Immediate(name->Hash())); __ CallStub(&stub); __ test(r0, r0); __ j(not_zero, miss); __ jmp(done); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Stack frame on entry: // esp[0 * kPointerSize]: return address. // esp[1 * kPointerSize]: key's hash. // esp[2 * kPointerSize]: key. // Registers: // dictionary_: NameDictionary to probe. // result_: used as scratch. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Label in_dictionary, maybe_in_dictionary, not_in_dictionary; Register scratch = result(); __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset)); __ dec(scratch); __ SmiUntag(scratch); __ push(scratch); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(scratch, Operand(esp, 2 * kPointerSize)); if (i > 0) { __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i))); } __ and_(scratch, Operand(esp, 0)); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3. // Having undefined at this place means the name is not contained. STATIC_ASSERT(kSmiTagSize == 1); __ mov(scratch, Operand(dictionary(), index(), times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(scratch, isolate()->factory()->undefined_value()); __ j(equal, ¬_in_dictionary); // Stop if found the property. __ cmp(scratch, Operand(esp, 3 * kPointerSize)); __ j(equal, &in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // If we hit a key that is not a unique name during negative // lookup we have to bailout as this key might be equal to the // key we are looking for. // Check if the entry name is not a unique name. __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ JumpIfNotUniqueNameInstanceType( FieldOperand(scratch, Map::kInstanceTypeOffset), &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ mov(result(), Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } __ bind(&in_dictionary); __ mov(result(), Immediate(1)); __ Drop(1); __ ret(2 * kPointerSize); __ bind(¬_in_dictionary); __ mov(result(), Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs); stub.GetCode(); StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. __ jmp(&skip_to_incremental_noncompacting, Label::kNear); __ jmp(&skip_to_incremental_compacting, Label::kFar); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. masm->set_byte_at(0, kTwoByteNopInstruction); masm->set_byte_at(2, kFiveByteNopInstruction); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ ret(0); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); __ mov(Operand(esp, 0 * kPointerSize), regs_.object()); __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label object_is_black, need_incremental, need_incremental_pop_object; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &object_is_black, Label::kNear); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&object_is_black); // Get the value from the slot. __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, zero, &ensure_not_white, Label::kNear); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, not_zero, &ensure_not_white, Label::kNear); __ jmp(&need_incremental); __ bind(&ensure_not_white); } // We need an extra register for this, so we push the object register // temporarily. __ push(regs_.object()); __ JumpIfWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. &need_incremental_pop_object, Label::kNear); __ pop(regs_.object()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&need_incremental_pop_object); __ pop(regs_.object()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; __ mov(ebx, MemOperand(ebp, parameter_count_offset)); masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ pop(ecx); int additional_offset = function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset)); __ jmp(ecx); // Return to IC Miss stub, continuation still on stack. } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); masm->CallStub(&stub); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // Save volatile registers. const int kNumSavedRegisters = 3; __ push(eax); __ push(ecx); __ push(edx); // Calculate and push the original stack pointer. __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); __ push(eax); // Retrieve our return address and use it to calculate the calling // function's address. __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); __ sub(eax, Immediate(Assembler::kCallInstructionLength)); __ push(eax); // Call the entry hook. DCHECK(isolate()->function_entry_hook() != NULL); __ call(FUNCTION_ADDR(isolate()->function_entry_hook()), RelocInfo::RUNTIME_ENTRY); __ add(esp, Immediate(2 * kPointerSize)); // Restore ecx. __ pop(edx); __ pop(ecx); __ pop(eax); __ ret(0); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(edx, kind); __ j(not_equal, &next); T stub(masm->isolate(), kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES) // edx - kind (if mode != DISABLE_ALLOCATION_SITES) // eax - number of arguments // edi - constructor? // esp[0] - return address // esp[4] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ test_b(edx, Immediate(1)); __ j(not_zero, &normal_sequence); } // look at the first argument __ mov(ecx, Operand(esp, kPointerSize)); __ test(ecx, ecx); __ j(zero, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry. __ inc(edx); if (FLAG_debug_code) { Handle allocation_site_map = masm->isolate()->factory()->allocation_site_map(); __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map)); __ Assert(equal, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset), Immediate(Smi::FromInt(kFastElementsKindPackedToHoley))); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(edx, kind); __ j(not_equal, &next); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Label not_zero_case, not_one_case; __ test(eax, eax); __ j(not_zero, ¬_zero_case); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ cmp(eax, 1); __ j(greater, ¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE) // -- ebx : AllocationSite or undefined // -- edi : constructor // -- edx : Original constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in ebx or a valid AllocationSite __ AssertUndefinedOrAllocationSite(ebx); } Label subclassing; // Enter the context of the Array function. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); __ cmp(edx, edi); __ j(not_equal, &subclassing); Label no_info; // If the feedback vector is the undefined value call an array constructor // that doesn't use AllocationSites. __ cmp(ebx, isolate()->factory()->undefined_value()); __ j(equal, &no_info); // Only look at the lower 16 bits of the transition info. __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(edx); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); // Subclassing. __ bind(&subclassing); __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); __ add(eax, Immediate(3)); __ PopReturnAddressTo(ecx); __ Push(edx); __ Push(ebx); __ PushReturnAddressFrom(ecx); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { Label not_zero_case, not_one_case; Label normal_sequence; __ test(eax, eax); __ j(not_zero, ¬_zero_case); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0); __ bind(¬_zero_case); __ cmp(eax, 1); __ j(greater, ¬_one_case); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ mov(ecx, Operand(esp, kPointerSize)); __ test(ecx, ecx); __ j(zero, &normal_sequence); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey); } __ bind(&normal_sequence); InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(ecx); if (FLAG_debug_code) { Label done; __ cmp(ecx, Immediate(FAST_ELEMENTS)); __ j(equal, &done); __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS)); __ Assert(equal, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(ecx, Immediate(FAST_ELEMENTS)); __ j(equal, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } // Generates an Operand for saving parameters after PrepareCallApiFunction. static Operand ApiParameterOperand(int index) { return Operand(esp, index * kPointerSize); } // Prepares stack to put arguments (aligns and so on). Reserves // space for return value if needed (assumes the return value is a handle). // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) // etc. Saves context (esi). If space was reserved for return value then // stores the pointer to the reserved slot into esi. static void PrepareCallApiFunction(MacroAssembler* masm, int argc) { __ EnterApiExitFrame(argc); if (__ emit_debug_code()) { __ mov(esi, Immediate(bit_cast(kZapValue))); } } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Clobbers ebx, edi and // caller-save registers. Restores context. On return removes // stack_space * kPointerSize (GCed). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, Operand thunk_last_arg, int stack_space, Operand* stack_space_operand, Operand return_value_operand, Operand* context_restore_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); ExternalReference limit_address = ExternalReference::handle_scope_limit_address(isolate); ExternalReference level_address = ExternalReference::handle_scope_level_address(isolate); DCHECK(edx.is(function_address)); // Allocate HandleScope in callee-save registers. __ mov(ebx, Operand::StaticVariable(next_address)); __ mov(edi, Operand::StaticVariable(limit_address)); __ add(Operand::StaticVariable(level_address), Immediate(1)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, eax); __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } Label profiler_disabled; Label end_profiler_check; __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate))); __ cmpb(Operand(eax, 0), Immediate(0)); __ j(zero, &profiler_disabled); // Additional parameter is the address of the actual getter function. __ mov(thunk_last_arg, function_address); // Call the api function. __ mov(eax, Immediate(thunk_ref)); __ call(eax); __ jmp(&end_profiler_check); __ bind(&profiler_disabled); // Call the api function. __ call(function_address); __ bind(&end_profiler_check); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, eax); __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label prologue; // Load the value from ReturnValue __ mov(eax, return_value_operand); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; __ bind(&prologue); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ mov(Operand::StaticVariable(next_address), ebx); __ sub(Operand::StaticVariable(level_address), Immediate(1)); __ Assert(above_equal, kInvalidHandleScopeLevel); __ cmp(edi, Operand::StaticVariable(limit_address)); __ j(not_equal, &delete_allocated_handles); // Leave the API exit frame. __ bind(&leave_exit_frame); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ mov(esi, *context_restore_operand); } if (stack_space_operand != nullptr) { __ mov(ebx, *stack_space_operand); } __ LeaveApiExitFrame(!restore_context); // Check if the function scheduled an exception. ExternalReference scheduled_exception_address = ExternalReference::scheduled_exception_address(isolate); __ cmp(Operand::StaticVariable(scheduled_exception_address), Immediate(isolate->factory()->the_hole_value())); __ j(not_equal, &promote_scheduled_exception); #if DEBUG // Check if the function returned a valid JavaScript value. Label ok; Register return_value = eax; Register map = ecx; __ JumpIfSmi(return_value, &ok, Label::kNear); __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset)); __ CmpInstanceType(map, LAST_NAME_TYPE); __ j(below_equal, &ok, Label::kNear); __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); __ j(above_equal, &ok, Label::kNear); __ cmp(map, isolate->factory()->heap_number_map()); __ j(equal, &ok, Label::kNear); __ cmp(return_value, isolate->factory()->undefined_value()); __ j(equal, &ok, Label::kNear); __ cmp(return_value, isolate->factory()->true_value()); __ j(equal, &ok, Label::kNear); __ cmp(return_value, isolate->factory()->false_value()); __ j(equal, &ok, Label::kNear); __ cmp(return_value, isolate->factory()->null_value()); __ j(equal, &ok, Label::kNear); __ Abort(kAPICallReturnedInvalidObject); __ bind(&ok); #endif if (stack_space_operand != nullptr) { DCHECK_EQ(0, stack_space); __ pop(ecx); __ add(esp, ebx); __ jmp(ecx); } else { __ ret(stack_space * kPointerSize); } // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. ExternalReference delete_extensions = ExternalReference::delete_handle_scope_extensions(isolate); __ bind(&delete_allocated_handles); __ mov(Operand::StaticVariable(limit_address), edi); __ mov(edi, eax); __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address(isolate))); __ mov(eax, Immediate(delete_extensions)); __ call(eax); __ mov(eax, edi); __ jmp(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edi : callee // -- ebx : call_data // -- ecx : holder // -- edx : api_function_address // -- esi : context // -- // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[argc * 4] : first argument // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Register callee = edi; Register call_data = ebx; Register holder = ecx; Register api_function_address = edx; Register context = esi; Register return_address = eax; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kNewTargetIndex == 7); STATIC_ASSERT(FCA::kArgsLength == 8); __ pop(return_address); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // context save. __ push(context); // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined()) { // return value __ push(Immediate(masm->isolate()->factory()->undefined_value())); // return value default __ push(Immediate(masm->isolate()->factory()->undefined_value())); } else { // return value __ push(scratch); // return value default __ push(scratch); } // isolate __ push(Immediate(reinterpret_cast(masm->isolate()))); // holder __ push(holder); __ mov(scratch, esp); // push return address __ push(return_address); if (!is_lazy()) { // load context from callee __ mov(context, FieldOperand(callee, JSFunction::kContextOffset)); } // API function gets reference to the v8::Arguments. If CPU profiler // is enabled wrapper function will be called and we need to pass // address of the callback as additional parameter, always allocate // space for it. const int kApiArgc = 1 + 1; // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 3; PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace); // FunctionCallbackInfo::implicit_args_. __ mov(ApiParameterOperand(2), scratch); __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize)); // FunctionCallbackInfo::values_. __ mov(ApiParameterOperand(3), scratch); // FunctionCallbackInfo::length_. __ Move(ApiParameterOperand(4), Immediate(argc())); // v8::InvocationCallback's argument. __ lea(scratch, ApiParameterOperand(2)); __ mov(ApiParameterOperand(0), scratch); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); Operand context_restore_operand(ebp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store()) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } Operand return_value_operand(ebp, return_value_offset * kPointerSize); int stack_space = 0; Operand length_operand = ApiParameterOperand(4); Operand* stack_space_operand = &length_operand; stack_space = argc() + FCA::kArgsLength + 1; stack_space_operand = nullptr; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, ApiParameterOperand(1), stack_space, stack_space_operand, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = ebx; DCHECK(!AreAliased(receiver, holder, callback, scratch)); __ pop(scratch); // Pop return address to extend the frame. __ push(receiver); __ push(FieldOperand(callback, AccessorInfo::kDataOffset)); __ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue // ReturnValue default value __ PushRoot(Heap::kUndefinedValueRootIndex); __ push(Immediate(ExternalReference::isolate_address(isolate()))); __ push(holder); __ push(Immediate(Smi::kZero)); // should_throw_on_error -> false __ push(FieldOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // Restore return address. // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Allocate v8::PropertyCallbackInfo object, arguments for callback and // space for optional callback address parameter (in case CPU profiler is // active) in non-GCed stack space. const int kApiArgc = 3 + 1; // Load address of v8::PropertyAccessorInfo::args_ array. __ lea(scratch, Operand(esp, 2 * kPointerSize)); PrepareCallApiFunction(masm, kApiArgc); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. Operand info_object = ApiParameterOperand(3); __ mov(info_object, scratch); // Name as handle. __ sub(scratch, Immediate(kPointerSize)); __ mov(ApiParameterOperand(0), scratch); // Arguments pointer. __ lea(scratch, info_object); __ mov(ApiParameterOperand(1), scratch); // Reserve space for optional callback address parameter. Operand thunk_last_arg = ApiParameterOperand(2); ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); Register function_address = edx; __ mov(function_address, FieldOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. Operand return_value_operand( ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg, kStackUnwindSpace, nullptr, return_value_operand, NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32