// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_ #define V8_MIPS_ASSEMBLER_MIPS_INL_H_ #include "src/mips64/assembler-mips64.h" #include "src/assembler.h" #include "src/debug/debug.h" #include "src/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); } bool CpuFeatures::SupportsSimd128() { return false; } // ----------------------------------------------------------------------------- // Operand and MemOperand. Operand::Operand(int64_t immediate, RelocInfo::Mode rmode) { rm_ = no_reg; imm64_ = immediate; rmode_ = rmode; } Operand::Operand(const ExternalReference& f) { rm_ = no_reg; imm64_ = reinterpret_cast(f.address()); rmode_ = RelocInfo::EXTERNAL_REFERENCE; } Operand::Operand(Smi* value) { rm_ = no_reg; imm64_ = reinterpret_cast(value); rmode_ = RelocInfo::NONE32; } Operand::Operand(Register rm) { rm_ = rm; } bool Operand::is_reg() const { return rm_.is_valid(); } // ----------------------------------------------------------------------------- // RelocInfo. void RelocInfo::apply(intptr_t delta) { if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { // Absolute code pointer inside code object moves with the code object. byte* p = reinterpret_cast(pc_); int count = Assembler::RelocateInternalReference(rmode_, p, delta); Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t)); } } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LUI/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. In this case the target_address_address function should // return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. After jump optimization, // that is the address of the instruction that follows J/JAL/JR/JALR // instruction. // return reinterpret_cast
( // pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize); return reinterpret_cast
( pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize); } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); return NULL; } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } Address Assembler::target_address_at(Address pc, Code* code) { Address constant_pool = code ? code->constant_pool() : NULL; return target_address_at(pc, constant_pool); } void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code, Address target, ICacheFlushMode icache_flush_mode) { Address constant_pool = code ? code->constant_pool() : NULL; set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode); } Address Assembler::target_address_from_return_address(Address pc) { return pc - kCallTargetAddressOffset; } void Assembler::set_target_internal_reference_encoded_at(Address pc, Address target) { // Encoded internal references are j/jal instructions. Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize); uint64_t imm28 = (reinterpret_cast(target) & static_cast(kImm28Mask)); instr &= ~kImm26Mask; uint64_t imm26 = imm28 >> 2; DCHECK(is_uint26(imm26)); instr_at_put(pc, instr | (imm26 & kImm26Mask)); // Currently used only by deserializer, and all code will be flushed // after complete deserialization, no need to flush on each reference. } void Assembler::deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { DCHECK(IsJ(instr_at(pc))); set_target_internal_reference_encoded_at(pc, target); } else { DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); Memory::Address_at(pc) = target; } } Object* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast(Assembler::target_address_at(pc_, host_)); } Handle RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Handle(reinterpret_cast( Assembler::target_address_at(pc_, host_))); } void RelocInfo::set_target_object(Object* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(isolate_, pc_, host_, reinterpret_cast
(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target)); host()->GetHeap()->RecordWriteIntoCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_internal_reference() { if (rmode_ == INTERNAL_REFERENCE) { return Memory::Address_at(pc_); } else { // Encoded internal references are j/jal instructions. DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED); Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize); instr &= kImm26Mask; uint64_t imm28 = instr << 2; uint64_t segment = (reinterpret_cast(pc_) & ~static_cast(kImm28Mask)); return reinterpret_cast
(segment | imm28); } } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); return reinterpret_cast
(pc_); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } Handle RelocInfo::target_cell_handle() { DCHECK(rmode_ == RelocInfo::CELL); Address address = Memory::Address_at(pc_); return Handle(reinterpret_cast(address)); } Cell* RelocInfo::target_cell() { DCHECK(rmode_ == RelocInfo::CELL); return Cell::FromValueAddress(Memory::Address_at(pc_)); } void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CELL); Address address = cell->address() + Cell::kValueOffset; Memory::Address_at(pc_) = address; if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, cell); } } static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize; Handle RelocInfo::code_age_stub_handle(Assembler* origin) { UNREACHABLE(); // This should never be reached on Arm. return Handle(); } Code* RelocInfo::code_age_stub() { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); return Code::GetCodeFromTargetAddress( Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_)); } void RelocInfo::set_code_age_stub(Code* stub, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_, stub->instruction_start()); } Address RelocInfo::debug_call_address() { // The pc_ offset of 0 assumes patched debug break slot or return // sequence. DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); return Assembler::target_address_at(pc_, host_); } void RelocInfo::set_debug_call_address(Address target) { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); // The pc_ offset of 0 assumes patched debug break slot or return // sequence. Assembler::set_target_address_at(isolate_, pc_, host_, target); if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); if (IsInternalReference(rmode_)) { Memory::Address_at(pc_) = NULL; } else if (IsInternalReferenceEncoded(rmode_)) { Assembler::set_target_internal_reference_encoded_at(pc_, nullptr); } else { Assembler::set_target_address_at(isolate_, pc_, host_, NULL); } } template void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::CELL) { visitor->VisitCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE || mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { visitor->VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { visitor->VisitCodeAgeSequence(this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { visitor->VisitDebugTarget(this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(this); } } template void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::CELL) { StaticVisitor::VisitCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE || mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { StaticVisitor::VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { StaticVisitor::VisitCodeAgeSequence(heap, this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { StaticVisitor::VisitDebugTarget(heap, this); } else if (RelocInfo::IsRuntimeEntry(mode)) { StaticVisitor::VisitRuntimeEntry(this); } } // ----------------------------------------------------------------------------- // Assembler. void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } } void Assembler::CheckTrampolinePoolQuick(int extra_instructions) { if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { CheckTrampolinePool(); } } void Assembler::CheckForEmitInForbiddenSlot() { if (!is_buffer_growth_blocked()) { CheckBuffer(); } if (IsPrevInstrCompactBranch()) { // Nop instruction to preceed a CTI in forbidden slot: Instr nop = SPECIAL | SLL; *reinterpret_cast(pc_) = nop; pc_ += kInstrSize; ClearCompactBranchState(); } } void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) { if (IsPrevInstrCompactBranch()) { if (Instruction::IsForbiddenAfterBranchInstr(x)) { // Nop instruction to preceed a CTI in forbidden slot: Instr nop = SPECIAL | SLL; *reinterpret_cast(pc_) = nop; pc_ += kInstrSize; } ClearCompactBranchState(); } *reinterpret_cast(pc_) = x; pc_ += kInstrSize; if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) { EmittedCompactBranchInstruction(); } CheckTrampolinePoolQuick(); } template <> inline void Assembler::EmitHelper(uint8_t x); template void Assembler::EmitHelper(T x) { *reinterpret_cast(pc_) = x; pc_ += sizeof(x); CheckTrampolinePoolQuick(); } template <> void Assembler::EmitHelper(uint8_t x) { *reinterpret_cast(pc_) = x; pc_ += sizeof(x); if (reinterpret_cast(pc_) % kInstrSize == 0) { CheckTrampolinePoolQuick(); } } void Assembler::emit(Instr x, CompactBranchType is_compact_branch) { if (!is_buffer_growth_blocked()) { CheckBuffer(); } EmitHelper(x, is_compact_branch); } void Assembler::emit(uint64_t data) { CheckForEmitInForbiddenSlot(); EmitHelper(data); } } // namespace internal } // namespace v8 #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_