// Copyright 2014, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "test-runner.h" #include "test-utils-aarch64.h" #include "aarch64/cpu-aarch64.h" #include "aarch64/disasm-aarch64.h" #include "aarch64/macro-assembler-aarch64.h" #include "aarch64/simulator-aarch64.h" #define __ masm-> namespace vixl { namespace aarch64 { // This value is a signalling NaN as both a double and as a float (taking the // least-significant word). const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f800001)); const float kFP32SignallingNaN = RawbitsToFloat(0x7f800001); // A similar value, but as a quiet NaN. const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc00001)); const float kFP32QuietNaN = RawbitsToFloat(0x7fc00001); bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) { if (result != expected) { printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", expected, result); } return expected == result; } bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { if (result != expected) { printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", expected, result); } return expected == result; } bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) { if ((result.h != expected.h) || (result.l != expected.l)) { printf("Expected 0x%016" PRIx64 "%016" PRIx64 "\t " "Found 0x%016" PRIx64 "%016" PRIx64 "\n", expected.h, expected.l, result.h, result.l); } return ((expected.h == result.h) && (expected.l == result.l)); } bool EqualFP32(float expected, const RegisterDump*, float result) { if (FloatToRawbits(expected) == FloatToRawbits(result)) { return true; } else { if (std::isnan(expected) || (expected == 0.0)) { printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", FloatToRawbits(expected), FloatToRawbits(result)); } else { printf("Expected %.9f (0x%08" PRIx32 ")\t " "Found %.9f (0x%08" PRIx32 ")\n", expected, FloatToRawbits(expected), result, FloatToRawbits(result)); } return false; } } bool EqualFP64(double expected, const RegisterDump*, double result) { if (DoubleToRawbits(expected) == DoubleToRawbits(result)) { return true; } if (std::isnan(expected) || (expected == 0.0)) { printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", DoubleToRawbits(expected), DoubleToRawbits(result)); } else { printf("Expected %.17f (0x%016" PRIx64 ")\t " "Found %.17f (0x%016" PRIx64 ")\n", expected, DoubleToRawbits(expected), result, DoubleToRawbits(result)); } return false; } bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { VIXL_ASSERT(reg.Is32Bits()); // Retrieve the corresponding X register so we can check that the upper part // was properly cleared. int64_t result_x = core->xreg(reg.GetCode()); if ((result_x & 0xffffffff00000000) != 0) { printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", expected, result_x); return false; } uint32_t result_w = core->wreg(reg.GetCode()); return Equal32(expected, core, result_w); } bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) { VIXL_ASSERT(reg.Is64Bits()); uint64_t result = core->xreg(reg.GetCode()); return Equal64(expected, core, result); } bool Equal128(uint64_t expected_h, uint64_t expected_l, const RegisterDump* core, const VRegister& vreg) { VIXL_ASSERT(vreg.Is128Bits()); vec128_t expected = {expected_l, expected_h}; vec128_t result = core->qreg(vreg.GetCode()); return Equal128(expected, core, result); } bool EqualFP32(float expected, const RegisterDump* core, const FPRegister& fpreg) { VIXL_ASSERT(fpreg.Is32Bits()); // Retrieve the corresponding D register so we can check that the upper part // was properly cleared. uint64_t result_64 = core->dreg_bits(fpreg.GetCode()); if ((result_64 & 0xffffffff00000000) != 0) { printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", FloatToRawbits(expected), expected, result_64); return false; } return EqualFP32(expected, core, core->sreg(fpreg.GetCode())); } bool EqualFP64(double expected, const RegisterDump* core, const FPRegister& fpreg) { VIXL_ASSERT(fpreg.Is64Bits()); return EqualFP64(expected, core, core->dreg(fpreg.GetCode())); } bool Equal64(const Register& reg0, const RegisterDump* core, const Register& reg1) { VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits()); int64_t expected = core->xreg(reg0.GetCode()); int64_t result = core->xreg(reg1.GetCode()); return Equal64(expected, core, result); } bool Equal64(uint64_t expected, const RegisterDump* core, const VRegister& vreg) { VIXL_ASSERT(vreg.Is64Bits()); uint64_t result = core->dreg_bits(vreg.GetCode()); return Equal64(expected, core, result); } static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; } static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; } static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; } static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; } bool EqualNzcv(uint32_t expected, uint32_t result) { VIXL_ASSERT((expected & ~NZCVFlag) == 0); VIXL_ASSERT((result & ~NZCVFlag) == 0); if (result != expected) { printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n", FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected), FlagN(result), FlagZ(result), FlagC(result), FlagV(result)); return false; } return true; } bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (a->xreg(i) != b->xreg(i)) { printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", i, a->xreg(i), b->xreg(i)); return false; } } for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { uint64_t a_bits = a->dreg_bits(i); uint64_t b_bits = b->dreg_bits(i); if (a_bits != b_bits) { printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", i, a_bits, b_bits); return false; } } return true; } RegList PopulateRegisterArray(Register* w, Register* x, Register* r, int reg_size, int reg_count, RegList allowed) { RegList list = 0; int i = 0; for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) { if (((UINT64_C(1) << n) & allowed) != 0) { // Only assign allowed registers. if (r) { r[i] = Register(n, reg_size); } if (x) { x[i] = Register(n, kXRegSize); } if (w) { w[i] = Register(n, kWRegSize); } list |= (UINT64_C(1) << n); i++; } } // Check that we got enough registers. VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count); return list; } RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, int reg_size, int reg_count, RegList allowed) { RegList list = 0; int i = 0; for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) { if (((UINT64_C(1) << n) & allowed) != 0) { // Only assigned allowed registers. if (v) { v[i] = FPRegister(n, reg_size); } if (d) { d[i] = FPRegister(n, kDRegSize); } if (s) { s[i] = FPRegister(n, kSRegSize); } list |= (UINT64_C(1) << n); i++; } } // Check that we got enough registers. VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count); return list; } void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { Register first = NoReg; for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (reg_list & (UINT64_C(1) << i)) { Register xn(i, kXRegSize); // We should never write into sp here. VIXL_ASSERT(!xn.Is(sp)); if (!xn.IsZero()) { if (!first.IsValid()) { // This is the first register we've hit, so construct the literal. __ Mov(xn, value); first = xn; } else { // We've already loaded the literal, so re-use the value already // loaded into the first register we hit. __ Mov(xn, first); } } } } } void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { FPRegister first = NoFPReg; for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { if (reg_list & (UINT64_C(1) << i)) { FPRegister dn(i, kDRegSize); if (!first.IsValid()) { // This is the first register we've hit, so construct the literal. __ Fmov(dn, value); first = dn; } else { // We've already loaded the literal, so re-use the value already loaded // into the first register we hit. __ Fmov(dn, first); } } } } void Clobber(MacroAssembler* masm, CPURegList reg_list) { if (reg_list.GetType() == CPURegister::kRegister) { // This will always clobber X registers. Clobber(masm, reg_list.GetList()); } else if (reg_list.GetType() == CPURegister::kVRegister) { // This will always clobber D registers. ClobberFP(masm, reg_list.GetList()); } else { VIXL_UNREACHABLE(); } } void RegisterDump::Dump(MacroAssembler* masm) { VIXL_ASSERT(__ StackPointer().Is(sp)); // Ensure that we don't unintentionally clobber any registers. UseScratchRegisterScope temps(masm); temps.ExcludeAll(); // Preserve some temporary registers. Register dump_base = x0; Register dump = x1; Register tmp = x2; Register dump_base_w = dump_base.W(); Register dump_w = dump.W(); Register tmp_w = tmp.W(); // Offsets into the dump_ structure. const int x_offset = offsetof(dump_t, x_); const int w_offset = offsetof(dump_t, w_); const int d_offset = offsetof(dump_t, d_); const int s_offset = offsetof(dump_t, s_); const int q_offset = offsetof(dump_t, q_); const int sp_offset = offsetof(dump_t, sp_); const int wsp_offset = offsetof(dump_t, wsp_); const int flags_offset = offsetof(dump_t, flags_); __ Push(xzr, dump_base, dump, tmp); // Load the address where we will dump the state. __ Mov(dump_base, reinterpret_cast(&dump_)); // Dump the stack pointer (sp and wsp). // The stack pointer cannot be stored directly; it needs to be moved into // another register first. Also, we pushed four X registers, so we need to // compensate here. __ Add(tmp, sp, 4 * kXRegSizeInBytes); __ Str(tmp, MemOperand(dump_base, sp_offset)); __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes); __ Str(tmp_w, MemOperand(dump_base, wsp_offset)); // Dump X registers. __ Add(dump, dump_base, x_offset); for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { __ Stp(Register::GetXRegFromCode(i), Register::GetXRegFromCode(i + 1), MemOperand(dump, i * kXRegSizeInBytes)); } // Dump W registers. __ Add(dump, dump_base, w_offset); for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { __ Stp(Register::GetWRegFromCode(i), Register::GetWRegFromCode(i + 1), MemOperand(dump, i * kWRegSizeInBytes)); } // Dump D registers. __ Add(dump, dump_base, d_offset); for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { __ Stp(FPRegister::GetDRegFromCode(i), FPRegister::GetDRegFromCode(i + 1), MemOperand(dump, i * kDRegSizeInBytes)); } // Dump S registers. __ Add(dump, dump_base, s_offset); for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { __ Stp(FPRegister::GetSRegFromCode(i), FPRegister::GetSRegFromCode(i + 1), MemOperand(dump, i * kSRegSizeInBytes)); } // Dump Q registers. __ Add(dump, dump_base, q_offset); for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) { __ Stp(VRegister::GetQRegFromCode(i), VRegister::GetQRegFromCode(i + 1), MemOperand(dump, i * kQRegSizeInBytes)); } // Dump the flags. __ Mrs(tmp, NZCV); __ Str(tmp, MemOperand(dump_base, flags_offset)); // To dump the values that were in tmp amd dump, we need a new scratch // register. We can use any of the already dumped registers since we can // easily restore them. Register dump2_base = x10; Register dump2 = x11; VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); // Don't lose the dump_ address. __ Mov(dump2_base, dump_base); __ Pop(tmp, dump, dump_base, xzr); __ Add(dump2, dump2_base, w_offset); __ Str(dump_base_w, MemOperand(dump2, dump_base.GetCode() * kWRegSizeInBytes)); __ Str(dump_w, MemOperand(dump2, dump.GetCode() * kWRegSizeInBytes)); __ Str(tmp_w, MemOperand(dump2, tmp.GetCode() * kWRegSizeInBytes)); __ Add(dump2, dump2_base, x_offset); __ Str(dump_base, MemOperand(dump2, dump_base.GetCode() * kXRegSizeInBytes)); __ Str(dump, MemOperand(dump2, dump.GetCode() * kXRegSizeInBytes)); __ Str(tmp, MemOperand(dump2, tmp.GetCode() * kXRegSizeInBytes)); // Finally, restore dump2_base and dump2. __ Ldr(dump2_base, MemOperand(dump2, dump2_base.GetCode() * kXRegSizeInBytes)); __ Ldr(dump2, MemOperand(dump2, dump2.GetCode() * kXRegSizeInBytes)); completed_ = true; } } // namespace aarch64 } // namespace vixl