/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if defined(WEBRTC_POSIX) #include #endif #include #include "webrtc/base/common.h" #include "webrtc/base/logging.h" #include "webrtc/base/messagequeue.h" #if defined(__native_client__) #include "webrtc/base/nullsocketserver.h" typedef rtc::NullSocketServer DefaultSocketServer; #else #include "webrtc/base/physicalsocketserver.h" typedef rtc::PhysicalSocketServer DefaultSocketServer; #endif namespace rtc { const uint32_t kMaxMsgLatency = 150; // 150 ms //------------------------------------------------------------------ // MessageQueueManager MessageQueueManager* MessageQueueManager::instance_ = NULL; MessageQueueManager* MessageQueueManager::Instance() { // Note: This is not thread safe, but it is first called before threads are // spawned. if (!instance_) instance_ = new MessageQueueManager; return instance_; } bool MessageQueueManager::IsInitialized() { return instance_ != NULL; } MessageQueueManager::MessageQueueManager() { } MessageQueueManager::~MessageQueueManager() { } void MessageQueueManager::Add(MessageQueue *message_queue) { return Instance()->AddInternal(message_queue); } void MessageQueueManager::AddInternal(MessageQueue *message_queue) { // MessageQueueManager methods should be non-reentrant, so we // ASSERT that is the case. If any of these ASSERT, please // contact bpm or jbeda. #if CS_DEBUG_CHECKS // CurrentThreadIsOwner returns true by default. ASSERT(!crit_.CurrentThreadIsOwner()); #endif CritScope cs(&crit_); message_queues_.push_back(message_queue); } void MessageQueueManager::Remove(MessageQueue *message_queue) { // If there isn't a message queue manager instance, then there isn't a queue // to remove. if (!instance_) return; return Instance()->RemoveInternal(message_queue); } void MessageQueueManager::RemoveInternal(MessageQueue *message_queue) { #if CS_DEBUG_CHECKS // CurrentThreadIsOwner returns true by default. ASSERT(!crit_.CurrentThreadIsOwner()); // See note above. #endif // If this is the last MessageQueue, destroy the manager as well so that // we don't leak this object at program shutdown. As mentioned above, this is // not thread-safe, but this should only happen at program termination (when // the ThreadManager is destroyed, and threads are no longer active). bool destroy = false; { CritScope cs(&crit_); std::vector::iterator iter; iter = std::find(message_queues_.begin(), message_queues_.end(), message_queue); if (iter != message_queues_.end()) { message_queues_.erase(iter); } destroy = message_queues_.empty(); } if (destroy) { instance_ = NULL; delete this; } } void MessageQueueManager::Clear(MessageHandler *handler) { // If there isn't a message queue manager instance, then there aren't any // queues to remove this handler from. if (!instance_) return; return Instance()->ClearInternal(handler); } void MessageQueueManager::ClearInternal(MessageHandler *handler) { #if CS_DEBUG_CHECKS // CurrentThreadIsOwner returns true by default. ASSERT(!crit_.CurrentThreadIsOwner()); // See note above. #endif CritScope cs(&crit_); std::vector::iterator iter; for (iter = message_queues_.begin(); iter != message_queues_.end(); iter++) (*iter)->Clear(handler); } //------------------------------------------------------------------ // MessageQueue MessageQueue::MessageQueue(SocketServer* ss) : ss_(ss), fStop_(false), fPeekKeep_(false), dmsgq_next_num_(0) { if (!ss_) { // Currently, MessageQueue holds a socket server, and is the base class for // Thread. It seems like it makes more sense for Thread to hold the socket // server, and provide it to the MessageQueue, since the Thread controls // the I/O model, and MQ is agnostic to those details. Anyway, this causes // messagequeue_unittest to depend on network libraries... yuck. default_ss_.reset(new DefaultSocketServer()); ss_ = default_ss_.get(); } ss_->SetMessageQueue(this); MessageQueueManager::Add(this); } MessageQueue::~MessageQueue() { // The signal is done from here to ensure // that it always gets called when the queue // is going away. SignalQueueDestroyed(); MessageQueueManager::Remove(this); Clear(NULL); if (ss_) { ss_->SetMessageQueue(NULL); } } void MessageQueue::set_socketserver(SocketServer* ss) { ss_ = ss ? ss : default_ss_.get(); ss_->SetMessageQueue(this); } void MessageQueue::Quit() { fStop_ = true; ss_->WakeUp(); } bool MessageQueue::IsQuitting() { return fStop_; } void MessageQueue::Restart() { fStop_ = false; } bool MessageQueue::Peek(Message *pmsg, int cmsWait) { if (fPeekKeep_) { *pmsg = msgPeek_; return true; } if (!Get(pmsg, cmsWait)) return false; msgPeek_ = *pmsg; fPeekKeep_ = true; return true; } bool MessageQueue::Get(Message *pmsg, int cmsWait, bool process_io) { // Return and clear peek if present // Always return the peek if it exists so there is Peek/Get symmetry if (fPeekKeep_) { *pmsg = msgPeek_; fPeekKeep_ = false; return true; } // Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch int cmsTotal = cmsWait; int cmsElapsed = 0; uint32_t msStart = Time(); uint32_t msCurrent = msStart; while (true) { // Check for sent messages ReceiveSends(); // Check for posted events int cmsDelayNext = kForever; bool first_pass = true; while (true) { // All queue operations need to be locked, but nothing else in this loop // (specifically handling disposed message) can happen inside the crit. // Otherwise, disposed MessageHandlers will cause deadlocks. { CritScope cs(&crit_); // On the first pass, check for delayed messages that have been // triggered and calculate the next trigger time. if (first_pass) { first_pass = false; while (!dmsgq_.empty()) { if (TimeIsLater(msCurrent, dmsgq_.top().msTrigger_)) { cmsDelayNext = TimeDiff(dmsgq_.top().msTrigger_, msCurrent); break; } msgq_.push_back(dmsgq_.top().msg_); dmsgq_.pop(); } } // Pull a message off the message queue, if available. if (msgq_.empty()) { break; } else { *pmsg = msgq_.front(); msgq_.pop_front(); } } // crit_ is released here. // Log a warning for time-sensitive messages that we're late to deliver. if (pmsg->ts_sensitive) { int32_t delay = TimeDiff(msCurrent, pmsg->ts_sensitive); if (delay > 0) { LOG_F(LS_WARNING) << "id: " << pmsg->message_id << " delay: " << (delay + kMaxMsgLatency) << "ms"; } } // If this was a dispose message, delete it and skip it. if (MQID_DISPOSE == pmsg->message_id) { ASSERT(NULL == pmsg->phandler); delete pmsg->pdata; *pmsg = Message(); continue; } return true; } if (fStop_) break; // Which is shorter, the delay wait or the asked wait? int cmsNext; if (cmsWait == kForever) { cmsNext = cmsDelayNext; } else { cmsNext = std::max(0, cmsTotal - cmsElapsed); if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext)) cmsNext = cmsDelayNext; } // Wait and multiplex in the meantime if (!ss_->Wait(cmsNext, process_io)) return false; // If the specified timeout expired, return msCurrent = Time(); cmsElapsed = TimeDiff(msCurrent, msStart); if (cmsWait != kForever) { if (cmsElapsed >= cmsWait) return false; } } return false; } void MessageQueue::ReceiveSends() { } void MessageQueue::Post(MessageHandler* phandler, uint32_t id, MessageData* pdata, bool time_sensitive) { if (fStop_) return; // Keep thread safe // Add the message to the end of the queue // Signal for the multiplexer to return CritScope cs(&crit_); Message msg; msg.phandler = phandler; msg.message_id = id; msg.pdata = pdata; if (time_sensitive) { msg.ts_sensitive = Time() + kMaxMsgLatency; } msgq_.push_back(msg); ss_->WakeUp(); } void MessageQueue::PostDelayed(int cmsDelay, MessageHandler* phandler, uint32_t id, MessageData* pdata) { return DoDelayPost(cmsDelay, TimeAfter(cmsDelay), phandler, id, pdata); } void MessageQueue::PostAt(uint32_t tstamp, MessageHandler* phandler, uint32_t id, MessageData* pdata) { return DoDelayPost(TimeUntil(tstamp), tstamp, phandler, id, pdata); } void MessageQueue::DoDelayPost(int cmsDelay, uint32_t tstamp, MessageHandler* phandler, uint32_t id, MessageData* pdata) { if (fStop_) return; // Keep thread safe // Add to the priority queue. Gets sorted soonest first. // Signal for the multiplexer to return. CritScope cs(&crit_); Message msg; msg.phandler = phandler; msg.message_id = id; msg.pdata = pdata; DelayedMessage dmsg(cmsDelay, tstamp, dmsgq_next_num_, msg); dmsgq_.push(dmsg); // If this message queue processes 1 message every millisecond for 50 days, // we will wrap this number. Even then, only messages with identical times // will be misordered, and then only briefly. This is probably ok. VERIFY(0 != ++dmsgq_next_num_); ss_->WakeUp(); } int MessageQueue::GetDelay() { CritScope cs(&crit_); if (!msgq_.empty()) return 0; if (!dmsgq_.empty()) { int delay = TimeUntil(dmsgq_.top().msTrigger_); if (delay < 0) delay = 0; return delay; } return kForever; } void MessageQueue::Clear(MessageHandler* phandler, uint32_t id, MessageList* removed) { CritScope cs(&crit_); // Remove messages with phandler if (fPeekKeep_ && msgPeek_.Match(phandler, id)) { if (removed) { removed->push_back(msgPeek_); } else { delete msgPeek_.pdata; } fPeekKeep_ = false; } // Remove from ordered message queue for (MessageList::iterator it = msgq_.begin(); it != msgq_.end();) { if (it->Match(phandler, id)) { if (removed) { removed->push_back(*it); } else { delete it->pdata; } it = msgq_.erase(it); } else { ++it; } } // Remove from priority queue. Not directly iterable, so use this approach PriorityQueue::container_type::iterator new_end = dmsgq_.container().begin(); for (PriorityQueue::container_type::iterator it = new_end; it != dmsgq_.container().end(); ++it) { if (it->msg_.Match(phandler, id)) { if (removed) { removed->push_back(it->msg_); } else { delete it->msg_.pdata; } } else { *new_end++ = *it; } } dmsgq_.container().erase(new_end, dmsgq_.container().end()); dmsgq_.reheap(); } void MessageQueue::Dispatch(Message *pmsg) { pmsg->phandler->OnMessage(pmsg); } } // namespace rtc