/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "webrtc/p2p/base/dtlstransportchannel.h" #include "webrtc/p2p/base/common.h" #include "webrtc/base/buffer.h" #include "webrtc/base/checks.h" #include "webrtc/base/dscp.h" #include "webrtc/base/messagequeue.h" #include "webrtc/base/sslstreamadapter.h" #include "webrtc/base/stream.h" #include "webrtc/base/thread.h" namespace cricket { // We don't pull the RTP constants from rtputils.h, to avoid a layer violation. static const size_t kDtlsRecordHeaderLen = 13; static const size_t kMaxDtlsPacketLen = 2048; static const size_t kMinRtpPacketLen = 12; // Maximum number of pending packets in the queue. Packets are read immediately // after they have been written, so a capacity of "1" is sufficient. static const size_t kMaxPendingPackets = 1; static bool IsDtlsPacket(const char* data, size_t len) { const uint8_t* u = reinterpret_cast(data); return (len >= kDtlsRecordHeaderLen && (u[0] > 19 && u[0] < 64)); } static bool IsRtpPacket(const char* data, size_t len) { const uint8_t* u = reinterpret_cast(data); return (len >= kMinRtpPacketLen && (u[0] & 0xC0) == 0x80); } StreamInterfaceChannel::StreamInterfaceChannel(TransportChannel* channel) : channel_(channel), state_(rtc::SS_OPEN), packets_(kMaxPendingPackets, kMaxDtlsPacketLen) { } rtc::StreamResult StreamInterfaceChannel::Read(void* buffer, size_t buffer_len, size_t* read, int* error) { if (state_ == rtc::SS_CLOSED) return rtc::SR_EOS; if (state_ == rtc::SS_OPENING) return rtc::SR_BLOCK; if (!packets_.ReadFront(buffer, buffer_len, read)) { return rtc::SR_BLOCK; } return rtc::SR_SUCCESS; } rtc::StreamResult StreamInterfaceChannel::Write(const void* data, size_t data_len, size_t* written, int* error) { // Always succeeds, since this is an unreliable transport anyway. // TODO: Should this block if channel_'s temporarily unwritable? rtc::PacketOptions packet_options; channel_->SendPacket(static_cast(data), data_len, packet_options); if (written) { *written = data_len; } return rtc::SR_SUCCESS; } bool StreamInterfaceChannel::OnPacketReceived(const char* data, size_t size) { // We force a read event here to ensure that we don't overflow our queue. bool ret = packets_.WriteBack(data, size, NULL); RTC_CHECK(ret) << "Failed to write packet to queue."; if (ret) { SignalEvent(this, rtc::SE_READ, 0); } return ret; } DtlsTransportChannelWrapper::DtlsTransportChannelWrapper( Transport* transport, TransportChannelImpl* channel) : TransportChannelImpl(channel->transport_name(), channel->component()), transport_(transport), worker_thread_(rtc::Thread::Current()), channel_(channel), downward_(NULL), ssl_role_(rtc::SSL_CLIENT), ssl_max_version_(rtc::SSL_PROTOCOL_DTLS_12) { channel_->SignalWritableState.connect(this, &DtlsTransportChannelWrapper::OnWritableState); channel_->SignalReadPacket.connect(this, &DtlsTransportChannelWrapper::OnReadPacket); channel_->SignalSentPacket.connect( this, &DtlsTransportChannelWrapper::OnSentPacket); channel_->SignalReadyToSend.connect(this, &DtlsTransportChannelWrapper::OnReadyToSend); channel_->SignalGatheringState.connect( this, &DtlsTransportChannelWrapper::OnGatheringState); channel_->SignalCandidateGathered.connect( this, &DtlsTransportChannelWrapper::OnCandidateGathered); channel_->SignalRoleConflict.connect(this, &DtlsTransportChannelWrapper::OnRoleConflict); channel_->SignalRouteChange.connect(this, &DtlsTransportChannelWrapper::OnRouteChange); channel_->SignalConnectionRemoved.connect(this, &DtlsTransportChannelWrapper::OnConnectionRemoved); channel_->SignalReceivingState.connect(this, &DtlsTransportChannelWrapper::OnReceivingState); } DtlsTransportChannelWrapper::~DtlsTransportChannelWrapper() { } void DtlsTransportChannelWrapper::Connect() { // We should only get a single call to Connect. ASSERT(dtls_state() == DTLS_TRANSPORT_NEW); channel_->Connect(); } bool DtlsTransportChannelWrapper::SetLocalCertificate( const rtc::scoped_refptr& certificate) { if (dtls_active_) { if (certificate == local_certificate_) { // This may happen during renegotiation. LOG_J(LS_INFO, this) << "Ignoring identical DTLS identity"; return true; } else { LOG_J(LS_ERROR, this) << "Can't change DTLS local identity in this state"; return false; } } if (certificate) { local_certificate_ = certificate; dtls_active_ = true; } else { LOG_J(LS_INFO, this) << "NULL DTLS identity supplied. Not doing DTLS"; } return true; } rtc::scoped_refptr DtlsTransportChannelWrapper::GetLocalCertificate() const { return local_certificate_; } bool DtlsTransportChannelWrapper::SetSslMaxProtocolVersion( rtc::SSLProtocolVersion version) { if (dtls_active_) { LOG(LS_ERROR) << "Not changing max. protocol version " << "while DTLS is negotiating"; return false; } ssl_max_version_ = version; return true; } bool DtlsTransportChannelWrapper::SetSslRole(rtc::SSLRole role) { if (dtls_state() == DTLS_TRANSPORT_CONNECTED) { if (ssl_role_ != role) { LOG(LS_ERROR) << "SSL Role can't be reversed after the session is setup."; return false; } return true; } ssl_role_ = role; return true; } bool DtlsTransportChannelWrapper::GetSslRole(rtc::SSLRole* role) const { *role = ssl_role_; return true; } bool DtlsTransportChannelWrapper::GetSslCipherSuite(int* cipher) { if (dtls_state() != DTLS_TRANSPORT_CONNECTED) { return false; } return dtls_->GetSslCipherSuite(cipher); } bool DtlsTransportChannelWrapper::SetRemoteFingerprint( const std::string& digest_alg, const uint8_t* digest, size_t digest_len) { rtc::Buffer remote_fingerprint_value(digest, digest_len); // Once we have the local certificate, the same remote fingerprint can be set // multiple times. if (dtls_active_ && remote_fingerprint_value_ == remote_fingerprint_value && !digest_alg.empty()) { // This may happen during renegotiation. LOG_J(LS_INFO, this) << "Ignoring identical remote DTLS fingerprint"; return true; } // If the other side doesn't support DTLS, turn off |dtls_active_|. if (digest_alg.empty()) { RTC_DCHECK(!digest_len); LOG_J(LS_INFO, this) << "Other side didn't support DTLS."; dtls_active_ = false; return true; } // Otherwise, we must have a local certificate before setting remote // fingerprint. if (!dtls_active_) { LOG_J(LS_ERROR, this) << "Can't set DTLS remote settings in this state."; return false; } // At this point we know we are doing DTLS remote_fingerprint_value_ = std::move(remote_fingerprint_value); remote_fingerprint_algorithm_ = digest_alg; bool reconnect = dtls_; if (!SetupDtls()) { set_dtls_state(DTLS_TRANSPORT_FAILED); return false; } if (reconnect) { Reconnect(); } return true; } bool DtlsTransportChannelWrapper::GetRemoteSSLCertificate( rtc::SSLCertificate** cert) const { if (!dtls_) { return false; } return dtls_->GetPeerCertificate(cert); } bool DtlsTransportChannelWrapper::SetupDtls() { StreamInterfaceChannel* downward = new StreamInterfaceChannel(channel_); dtls_.reset(rtc::SSLStreamAdapter::Create(downward)); if (!dtls_) { LOG_J(LS_ERROR, this) << "Failed to create DTLS adapter."; delete downward; return false; } downward_ = downward; dtls_->SetIdentity(local_certificate_->identity()->GetReference()); dtls_->SetMode(rtc::SSL_MODE_DTLS); dtls_->SetMaxProtocolVersion(ssl_max_version_); dtls_->SetServerRole(ssl_role_); dtls_->SignalEvent.connect(this, &DtlsTransportChannelWrapper::OnDtlsEvent); if (!dtls_->SetPeerCertificateDigest( remote_fingerprint_algorithm_, reinterpret_cast(remote_fingerprint_value_.data()), remote_fingerprint_value_.size())) { LOG_J(LS_ERROR, this) << "Couldn't set DTLS certificate digest."; return false; } // Set up DTLS-SRTP, if it's been enabled. if (!srtp_ciphers_.empty()) { if (!dtls_->SetDtlsSrtpCryptoSuites(srtp_ciphers_)) { LOG_J(LS_ERROR, this) << "Couldn't set DTLS-SRTP ciphers."; return false; } } else { LOG_J(LS_INFO, this) << "Not using DTLS-SRTP."; } LOG_J(LS_INFO, this) << "DTLS setup complete."; return true; } bool DtlsTransportChannelWrapper::SetSrtpCryptoSuites( const std::vector& ciphers) { if (srtp_ciphers_ == ciphers) return true; if (dtls_state() == DTLS_TRANSPORT_CONNECTING) { LOG(LS_WARNING) << "Ignoring new SRTP ciphers while DTLS is negotiating"; return true; } if (dtls_state() == DTLS_TRANSPORT_CONNECTED) { // We don't support DTLS renegotiation currently. If new set of srtp ciphers // are different than what's being used currently, we will not use it. // So for now, let's be happy (or sad) with a warning message. int current_srtp_cipher; if (!dtls_->GetDtlsSrtpCryptoSuite(¤t_srtp_cipher)) { LOG(LS_ERROR) << "Failed to get the current SRTP cipher for DTLS channel"; return false; } const std::vector::const_iterator iter = std::find(ciphers.begin(), ciphers.end(), current_srtp_cipher); if (iter == ciphers.end()) { std::string requested_str; for (size_t i = 0; i < ciphers.size(); ++i) { requested_str.append(" "); requested_str.append(rtc::SrtpCryptoSuiteToName(ciphers[i])); requested_str.append(" "); } LOG(LS_WARNING) << "Ignoring new set of SRTP ciphers, as DTLS " << "renegotiation is not supported currently " << "current cipher = " << current_srtp_cipher << " and " << "requested = " << "[" << requested_str << "]"; } return true; } if (!VERIFY(dtls_state() == DTLS_TRANSPORT_NEW)) { return false; } srtp_ciphers_ = ciphers; return true; } bool DtlsTransportChannelWrapper::GetSrtpCryptoSuite(int* cipher) { if (dtls_state() != DTLS_TRANSPORT_CONNECTED) { return false; } return dtls_->GetDtlsSrtpCryptoSuite(cipher); } // Called from upper layers to send a media packet. int DtlsTransportChannelWrapper::SendPacket( const char* data, size_t size, const rtc::PacketOptions& options, int flags) { if (!dtls_active_) { // Not doing DTLS. return channel_->SendPacket(data, size, options); } switch (dtls_state()) { case DTLS_TRANSPORT_NEW: // Can't send data until the connection is active. // TODO(ekr@rtfm.com): assert here if dtls_ is NULL? return -1; case DTLS_TRANSPORT_CONNECTING: // Can't send data until the connection is active. return -1; case DTLS_TRANSPORT_CONNECTED: if (flags & PF_SRTP_BYPASS) { ASSERT(!srtp_ciphers_.empty()); if (!IsRtpPacket(data, size)) { return -1; } return channel_->SendPacket(data, size, options); } else { return (dtls_->WriteAll(data, size, NULL, NULL) == rtc::SR_SUCCESS) ? static_cast(size) : -1; } case DTLS_TRANSPORT_FAILED: case DTLS_TRANSPORT_CLOSED: // Can't send anything when we're closed. return -1; default: ASSERT(false); return -1; } } // The state transition logic here is as follows: // (1) If we're not doing DTLS-SRTP, then the state is just the // state of the underlying impl() // (2) If we're doing DTLS-SRTP: // - Prior to the DTLS handshake, the state is neither receiving nor // writable // - When the impl goes writable for the first time we // start the DTLS handshake // - Once the DTLS handshake completes, the state is that of the // impl again void DtlsTransportChannelWrapper::OnWritableState(TransportChannel* channel) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); LOG_J(LS_VERBOSE, this) << "DTLSTransportChannelWrapper: channel writable state changed to " << channel_->writable(); if (!dtls_active_) { // Not doing DTLS. // Note: SignalWritableState fired by set_writable. set_writable(channel_->writable()); return; } switch (dtls_state()) { case DTLS_TRANSPORT_NEW: // This should never fail: // Because we are operating in a nonblocking mode and all // incoming packets come in via OnReadPacket(), which rejects // packets in this state, the incoming queue must be empty. We // ignore write errors, thus any errors must be because of // configuration and therefore are our fault. // Note that in non-debug configurations, failure in // MaybeStartDtls() changes the state to DTLS_TRANSPORT_FAILED. VERIFY(MaybeStartDtls()); break; case DTLS_TRANSPORT_CONNECTED: // Note: SignalWritableState fired by set_writable. set_writable(channel_->writable()); break; case DTLS_TRANSPORT_CONNECTING: // Do nothing. break; case DTLS_TRANSPORT_FAILED: case DTLS_TRANSPORT_CLOSED: // Should not happen. Do nothing. break; } } void DtlsTransportChannelWrapper::OnReceivingState(TransportChannel* channel) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); LOG_J(LS_VERBOSE, this) << "DTLSTransportChannelWrapper: channel receiving state changed to " << channel_->receiving(); if (!dtls_active_ || dtls_state() == DTLS_TRANSPORT_CONNECTED) { // Note: SignalReceivingState fired by set_receiving. set_receiving(channel_->receiving()); } } void DtlsTransportChannelWrapper::OnReadPacket( TransportChannel* channel, const char* data, size_t size, const rtc::PacketTime& packet_time, int flags) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); ASSERT(flags == 0); if (!dtls_active_) { // Not doing DTLS. SignalReadPacket(this, data, size, packet_time, 0); return; } switch (dtls_state()) { case DTLS_TRANSPORT_NEW: if (dtls_) { // Drop packets received before DTLS has actually started. LOG_J(LS_INFO, this) << "Dropping packet received before DTLS started."; } else { // Currently drop the packet, but we might in future // decide to take this as evidence that the other // side is ready to do DTLS and start the handshake // on our end. LOG_J(LS_WARNING, this) << "Received packet before we know if we are " << "doing DTLS or not; dropping."; } break; case DTLS_TRANSPORT_CONNECTING: case DTLS_TRANSPORT_CONNECTED: // We should only get DTLS or SRTP packets; STUN's already been demuxed. // Is this potentially a DTLS packet? if (IsDtlsPacket(data, size)) { if (!HandleDtlsPacket(data, size)) { LOG_J(LS_ERROR, this) << "Failed to handle DTLS packet."; return; } } else { // Not a DTLS packet; our handshake should be complete by now. if (dtls_state() != DTLS_TRANSPORT_CONNECTED) { LOG_J(LS_ERROR, this) << "Received non-DTLS packet before DTLS " << "complete."; return; } // And it had better be a SRTP packet. if (!IsRtpPacket(data, size)) { LOG_J(LS_ERROR, this) << "Received unexpected non-DTLS packet."; return; } // Sanity check. ASSERT(!srtp_ciphers_.empty()); // Signal this upwards as a bypass packet. SignalReadPacket(this, data, size, packet_time, PF_SRTP_BYPASS); } break; case DTLS_TRANSPORT_FAILED: case DTLS_TRANSPORT_CLOSED: // This shouldn't be happening. Drop the packet. break; } } void DtlsTransportChannelWrapper::OnSentPacket( TransportChannel* channel, const rtc::SentPacket& sent_packet) { ASSERT(rtc::Thread::Current() == worker_thread_); SignalSentPacket(this, sent_packet); } void DtlsTransportChannelWrapper::OnReadyToSend(TransportChannel* channel) { if (writable()) { SignalReadyToSend(this); } } void DtlsTransportChannelWrapper::OnDtlsEvent(rtc::StreamInterface* dtls, int sig, int err) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(dtls == dtls_.get()); if (sig & rtc::SE_OPEN) { // This is the first time. LOG_J(LS_INFO, this) << "DTLS handshake complete."; if (dtls_->GetState() == rtc::SS_OPEN) { // The check for OPEN shouldn't be necessary but let's make // sure we don't accidentally frob the state if it's closed. set_dtls_state(DTLS_TRANSPORT_CONNECTED); set_writable(true); } } if (sig & rtc::SE_READ) { char buf[kMaxDtlsPacketLen]; size_t read; if (dtls_->Read(buf, sizeof(buf), &read, NULL) == rtc::SR_SUCCESS) { SignalReadPacket(this, buf, read, rtc::CreatePacketTime(0), 0); } } if (sig & rtc::SE_CLOSE) { ASSERT(sig == rtc::SE_CLOSE); // SE_CLOSE should be by itself. set_writable(false); if (!err) { LOG_J(LS_INFO, this) << "DTLS channel closed"; set_dtls_state(DTLS_TRANSPORT_CLOSED); } else { LOG_J(LS_INFO, this) << "DTLS channel error, code=" << err; set_dtls_state(DTLS_TRANSPORT_FAILED); } } } bool DtlsTransportChannelWrapper::MaybeStartDtls() { if (dtls_ && channel_->writable()) { if (dtls_->StartSSLWithPeer()) { LOG_J(LS_ERROR, this) << "Couldn't start DTLS handshake"; set_dtls_state(DTLS_TRANSPORT_FAILED); return false; } LOG_J(LS_INFO, this) << "DtlsTransportChannelWrapper: Started DTLS handshake"; set_dtls_state(DTLS_TRANSPORT_CONNECTING); } return true; } // Called from OnReadPacket when a DTLS packet is received. bool DtlsTransportChannelWrapper::HandleDtlsPacket(const char* data, size_t size) { // Sanity check we're not passing junk that // just looks like DTLS. const uint8_t* tmp_data = reinterpret_cast(data); size_t tmp_size = size; while (tmp_size > 0) { if (tmp_size < kDtlsRecordHeaderLen) return false; // Too short for the header size_t record_len = (tmp_data[11] << 8) | (tmp_data[12]); if ((record_len + kDtlsRecordHeaderLen) > tmp_size) return false; // Body too short tmp_data += record_len + kDtlsRecordHeaderLen; tmp_size -= record_len + kDtlsRecordHeaderLen; } // Looks good. Pass to the SIC which ends up being passed to // the DTLS stack. return downward_->OnPacketReceived(data, size); } void DtlsTransportChannelWrapper::OnGatheringState( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalGatheringState(this); } void DtlsTransportChannelWrapper::OnCandidateGathered( TransportChannelImpl* channel, const Candidate& c) { ASSERT(channel == channel_); SignalCandidateGathered(this, c); } void DtlsTransportChannelWrapper::OnRoleConflict( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalRoleConflict(this); } void DtlsTransportChannelWrapper::OnRouteChange( TransportChannel* channel, const Candidate& candidate) { ASSERT(channel == channel_); SignalRouteChange(this, candidate); } void DtlsTransportChannelWrapper::OnConnectionRemoved( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalConnectionRemoved(this); } void DtlsTransportChannelWrapper::Reconnect() { set_dtls_state(DTLS_TRANSPORT_NEW); set_writable(false); if (channel_->writable()) { OnWritableState(channel_); } } } // namespace cricket