/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OperationsUtils" #include "OperationsUtils.h" #include "Operations.h" #include "Utils.h" #include namespace android { namespace nn { bool SameShape(const Shape& in1, const Shape& in2) { if (in1.type != in2.type || in1.dimensions.size() != in2.dimensions.size()) { return false; } for (size_t i = 0; i < in1.dimensions.size(); i++) { if (in1.dimensions[i] != in2.dimensions[i]) { return false; } } return true; } bool SetShape(const Shape& in, Shape* out) { if (in.type != out->type || in.dimensions.size() != out->dimensions.size()) { return false; } out->dimensions = in.dimensions; return true; } uint32_t getNumberOfElements(const Shape& shape) { uint32_t count = 1; for (size_t i = 0; i < shape.dimensions.size(); i++) { count *= shape.dimensions[i]; } return count; } uint32_t getNumberOfDimensions(const Shape& shape) { return shape.dimensions.size(); } uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx) { if (dimensionIdx >= shape.dimensions.size()) { // TODO, log the error return 0; } return shape.dimensions[dimensionIdx]; } bool QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t* quantized_multiplier, int32_t* right_shift) { NN_OPS_CHECK(double_multiplier >= 0.); NN_OPS_CHECK(double_multiplier < 1.); if (double_multiplier == 0.) { *quantized_multiplier = 0; *right_shift = 0; return true; } NN_OPS_CHECK(double_multiplier > 0.); const double q = std::frexp(double_multiplier, right_shift); *right_shift *= -1; int64_t q_fixed = static_cast(std::round(q * (1ll << 31))); NN_OPS_CHECK(q_fixed <= (1ll << 31)); if (q_fixed == (1ll << 31)) { q_fixed /= 2; --*right_shift; } NN_OPS_CHECK(*right_shift >= 0); NN_OPS_CHECK(q_fixed <= std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return true; } bool QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t* quantized_multiplier, int* left_shift) { NN_OPS_CHECK(double_multiplier > 1.); const double q = std::frexp(double_multiplier, left_shift); int64_t q_fixed = static_cast(std::round(q * (1ll << 31))); NN_OPS_CHECK(q_fixed <= (1ll << 31)); if (q_fixed == (1ll << 31)) { q_fixed /= 2; ++*left_shift; } NN_OPS_CHECK(*left_shift >= 0); NN_OPS_CHECK(q_fixed <= std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return true; } bool GetQuantizedConvolutionMultipler(const Shape& inputShape, const Shape& filterShape, const Shape& biasShape, const Shape& outputShape, float* multiplier) { const float input_product_scale = inputShape.scale * filterShape.scale; const float bias_scale = biasShape.scale; const float output_scale = outputShape.scale; // The following conditions must be guaranteed by the training pipeline. NN_OPS_CHECK(std::abs(input_product_scale - bias_scale) <= 1e-6 * std::min(input_product_scale, bias_scale)); NN_OPS_CHECK(input_product_scale >= 0); NN_OPS_CHECK(input_product_scale < output_scale); *multiplier = input_product_scale / output_scale; return true; } void CalculateActivationRangeUint8(int32_t activation, const Shape& outputShape, int32_t* act_min, int32_t* act_max) { const int32_t qmin = std::numeric_limits::min(); const int32_t qmax = std::numeric_limits::max(); const auto scale = outputShape.scale; const auto zero_point = outputShape.offset; auto quantize = [scale, zero_point](float f) { return zero_point + static_cast(std::round(f / scale)); }; if (activation == kActivationRelu) { *act_min = std::max(qmin, quantize(0.0)); *act_max = qmax; } else if (activation == kActivationRelu6) { *act_min = std::max(qmin, quantize(0.0)); *act_max = std::min(qmax, quantize(6.0)); } else if (activation == kActivationRelu1) { *act_min = std::max(qmin, quantize(-1.0)); *act_max = std::min(qmax, quantize(1.0)); } else if (activation == kActivationNone){ *act_min = qmin; *act_max = qmax; } else { LOG(ERROR) << "Unsupported fused activation function."; } } void CalculateActivationRangeFloat(int32_t activation, float* activation_min, float* activation_max) { if (activation == kActivationRelu) { *activation_min = 0.f; *activation_max = std::numeric_limits::max(); } else if (activation == kActivationRelu6) { *activation_min = 0.f; *activation_max = 6.f; } else if (activation == kActivationRelu1) { *activation_min = -1.f; *activation_max = 1.f; } else if (activation == kActivationNone){ *activation_min = std::numeric_limits::lowest(); *activation_max = std::numeric_limits::max(); } else { LOG(ERROR) << "Unsupported fused activation function."; } } int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift) { const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) * (1ll << (31 - input_integer_bits)) / (1ll << input_left_shift); // Tighten bound using floor. Suppose that we could use the exact value. // After scaling the difference, the result would be at the maximum. Thus we // must ensure that our value has lower magnitude. return static_cast(std::floor(max_input_rescaled)); } bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out) { NN_OPS_CHECK(getNumberOfDimensions(in1) <= 4 && getNumberOfDimensions(in2) <= 4); NN_OPS_CHECK(in1.type == in2.type); if (SameShape(in1, in2)) { return SetShape(in1, out); } else { // BroadcastAdd needed uint32_t numberOfDims1 = getNumberOfDimensions(in1); uint32_t numberOfDims2 = getNumberOfDimensions(in2); uint32_t maxDims = std::max(numberOfDims1, numberOfDims2); out->dimensions = std::vector(maxDims); for (uint32_t i = 1; i <= maxDims; i++) { uint32_t dim1 = 1; if (i <= numberOfDims1) { dim1 = getSizeOfDimension(in1, numberOfDims1 - i); } uint32_t dim2 = 1; if (i <= numberOfDims2) { dim2 = getSizeOfDimension(in2, numberOfDims2 - i); } if (dim1 != dim2 && dim1 != 1 && dim2 != 1) { LOG(ERROR) << "Dimensions mismatch for BroadcastAdd"; return false; } out->dimensions[maxDims - i] = std::max(dim1, dim2); } } return true; } bool floorPrepare(const Shape& input, Shape* output) { return SetShape(input, output); } bool dequantizePrepare(const Shape& input, Shape* output) { if (input.type != OperandType::TENSOR_QUANT8_ASYMM || output->type != OperandType::TENSOR_FLOAT32) { LOG(ERROR) << "bad input / output operand type."; return false; } if (input.dimensions.size() != output->dimensions.size()) { LOG(ERROR) << "input and output tensors don't have the same rank."; return false; } output->dimensions = input.dimensions; return true; } bool convPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, Shape* output) { NN_OPS_CHECK(input.type == filter.type); if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_OPS_CHECK(input.type == bias.type); } NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(getNumberOfDimensions(filter) == 4); NN_OPS_CHECK(getNumberOfDimensions(bias) == 1); NN_OPS_CHECK(getSizeOfDimension(filter, 0) == getSizeOfDimension(bias, 0)); NN_OPS_CHECK(getSizeOfDimension(filter, 3) == getSizeOfDimension(input, 3)); uint32_t channels_out = getSizeOfDimension(filter, 0); uint32_t width = getSizeOfDimension(input, 2); uint32_t height = getSizeOfDimension(input, 1); uint32_t filterWidth = getSizeOfDimension(filter, 2); uint32_t filterHeight = getSizeOfDimension(filter, 1); uint32_t batches = getSizeOfDimension(input, 0); uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, padding_top, padding_bottom); output->type = input.type; output->dimensions = {batches, outHeight, outWidth, channels_out}; return true; } bool depthwiseConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, Shape* output) { NN_OPS_CHECK(input.type == filter.type); if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_OPS_CHECK(input.type == bias.type); } NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(getNumberOfDimensions(filter) == 4); NN_OPS_CHECK(getNumberOfDimensions(bias) == 1); NN_OPS_CHECK(getSizeOfDimension(filter, 3) == getSizeOfDimension(bias, 0)); uint32_t channels_out = getSizeOfDimension(filter, 3); uint32_t width = getSizeOfDimension(input, 2); uint32_t height = getSizeOfDimension(input, 1); uint32_t filterWidth = getSizeOfDimension(filter, 2); uint32_t filterHeight = getSizeOfDimension(filter, 1); uint32_t batches = getSizeOfDimension(input, 0); uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, padding_top, padding_bottom); output->type = input.type; output->dimensions = {batches, outHeight, outWidth, channels_out}; return true; } bool genericPoolingPrepare(const Shape& input, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t filter_width, int32_t filter_height, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); uint32_t batches = getSizeOfDimension(input, 0); uint32_t width = getSizeOfDimension(input, 2); uint32_t height = getSizeOfDimension(input, 1); uint32_t channels_out = getSizeOfDimension(input, 3); uint32_t outWidth = computeOutSize(width, filter_width, stride_width, padding_left, padding_right); uint32_t outHeight = computeOutSize(height, filter_height, stride_height, padding_top, padding_bottom); output->type = input.type; output->dimensions = {batches, outHeight, outWidth, channels_out}; return true; } bool genericActivationPrepare(const Shape& input, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) <= 4); return SetShape(input, output); } bool fullyConnectedPrepare(const Shape& input, const Shape& weights, const Shape& bias, Shape* output) { // Check all the parameters of tensor match within themselves and match the // input configuration. NN_OPS_CHECK(input.type == weights.type); if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_OPS_CHECK(input.type == bias.type); } // The Tensorflow fully connected layer specification says that input should // be of at least rank 2, so we check. Tflite doesn't check. NN_OPS_CHECK(getNumberOfDimensions(input) >= 2); NN_OPS_CHECK(getNumberOfDimensions(weights) == 2); uint32_t input_n_elements = getNumberOfElements(input); uint32_t num_units = getSizeOfDimension(weights, 0); uint32_t input_size = getSizeOfDimension(weights, 1); uint32_t batch_size = input_n_elements / input_size; NN_OPS_CHECK(getSizeOfDimension(bias, 0) == num_units); NN_OPS_CHECK(input_size * batch_size == input_n_elements); output->type = input.type; output->dimensions = {batch_size, num_units}; return true; } bool concatenationPrepare(const std::vector& inputShapes, int32_t axis, Shape* output) { int num_inputs = inputShapes.size(); OperandType input_type = inputShapes[0].type; uint32_t num_dimensions = getNumberOfDimensions(inputShapes[0]); NN_OPS_CHECK(axis >= 0); NN_OPS_CHECK(axis < (int32_t)num_dimensions); int sumAxis = getSizeOfDimension(inputShapes[0], axis); for (int i = 1; i < num_inputs; ++i) { NN_OPS_CHECK(getNumberOfDimensions(inputShapes[i]) == num_dimensions); NN_OPS_CHECK(inputShapes[i].type == inputShapes[0].type); if (input_type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(inputShapes[0].offset == inputShapes[i].offset); NN_OPS_CHECK(inputShapes[0].scale == inputShapes[i].scale); } for (int d = 0; d < (int32_t)num_dimensions; ++d) { if (d == axis) { sumAxis += getSizeOfDimension(inputShapes[i], axis); } else { NN_OPS_CHECK(getSizeOfDimension(inputShapes[0], d) == getSizeOfDimension(inputShapes[i], d)); } } } output->type = input_type; output->dimensions = inputShapes[0].dimensions; output->dimensions[axis] = sumAxis; if (input_type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(inputShapes[0].offset == output->offset); NN_OPS_CHECK(inputShapes[0].scale == output->scale); } return true; } bool genericNormalizationPrepare(const Shape& input, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); return SetShape(input, output); } bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize, Shape* output) { // Reshape allows one of the targetDims components to have the // special -1 value, meaning it will be calculated automatically based on the // input. Here we calculate what that dimension should be so that the number // of output elements in the same as the number of input elements. int32_t numInputElements = (int32_t) getNumberOfElements(input); std::vector outDims(targetDimsSize); int32_t numOutputElements = 1; int32_t strechDim = -1; for (int32_t i = 0; i < targetDimsSize; ++i) { int32_t value = targetDims[i]; if (value == -1) { NN_OPS_CHECK(strechDim == -1); strechDim = i; } else { numOutputElements *= value; outDims[i] = (uint32_t)value; } } if (strechDim != -1) { int32_t strechValue = numInputElements / numOutputElements; outDims[strechDim] = (uint32_t) strechValue; numOutputElements *= strechValue; } NN_OPS_CHECK(numInputElements == numOutputElements); output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool resizeBilinearPrepare(const Shape& input, int32_t width, int32_t height, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); uint32_t batches = getSizeOfDimension(input, 0); uint32_t channels = getSizeOfDimension(input, 3); output->type = input.type; output->dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; return true; } bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(blockSize > 0); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(channels % (blockSize * blockSize) == 0); output->type = input.type; output->dimensions = {batches, height * blockSize, width * blockSize, channels / (blockSize * blockSize)}; output->offset = input.offset; output->scale = input.scale; return true; } bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(blockSize > 0); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(height % blockSize == 0); NN_OPS_CHECK(width % blockSize == 0); output->type = input.type; output->dimensions = {batches, height / blockSize, width / blockSize, channels * (blockSize * blockSize)}; output->offset = input.offset; output->scale = input.scale; return true; } bool embeddingLookupPrepare(const Shape &valueShape, const Shape &lookupShape, Shape *outputShape) { NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 2); NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1); const uint32_t rows = getSizeOfDimension(valueShape, 0); const uint32_t columns = getSizeOfDimension(valueShape, 1); const uint32_t lookups = getSizeOfDimension(lookupShape, 0); outputShape->type = valueShape.type; outputShape->dimensions = { lookups, columns }; for (uint32_t i = 2; i < getNumberOfDimensions(valueShape); i++) { outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i)); } outputShape->offset = valueShape.offset; outputShape->scale = valueShape.scale; return true; } bool hashtableLookupPrepare(const Shape &lookupShape, const Shape &keyShape, const Shape &valueShape, Shape *outputShape, Shape *hitShape) { NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(keyShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 1); const uint32_t lookups = getSizeOfDimension(lookupShape, 0); const uint32_t keys = getSizeOfDimension(keyShape, 0); const uint32_t rows = getSizeOfDimension(valueShape, 0); outputShape->type = valueShape.type; outputShape->dimensions = { lookups }; for (uint32_t i = 1; i < getNumberOfDimensions(valueShape); i++) { outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i)); } outputShape->offset = valueShape.offset; outputShape->scale = valueShape.scale; hitShape->type = OperandType::TENSOR_QUANT8_ASYMM; hitShape->dimensions = { lookups }; hitShape->offset = 0; hitShape->scale = 1.f; return true; } bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output) { // Currently only 4D tensors are supported. uint32_t numInputDims = getNumberOfDimensions(input); NN_OPS_CHECK(numInputDims == 4); // paddings need to be provided as a 2-D int32 tensor. NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2); std::vector outDims(numInputDims); for (uint32_t i = 0; i < numInputDims; ++i) { int32_t beforePadding = *paddingsData++; int32_t afterPadding = *paddingsData++; // Pad value has to be greater than equal to 0. NN_OPS_CHECK(beforePadding >= 0 && afterPadding >= 0); outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding; } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, Shape* output) { // Only 4D NHWC tensors are supported. NN_OPS_CHECK(getNumberOfDimensions(input) == 4); // blockSize need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1); // Only applies to spatial dimensions. NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); output->type = input.type; output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), height * blockSizeData[0], width * blockSizeData[1], channels}; output->offset = input.offset; output->scale = input.scale; return true; } bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output) { // Only 4D NHWC tensors are supported. NN_OPS_CHECK(getNumberOfDimensions(input) == 4); // blockSize need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1); // Only applies to spatial dimensions. NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2); // paddings need to be provided as a 2-D int32 tensor. NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); uint32_t paddedHeight = paddingsData[0] + height + paddingsData[1]; uint32_t paddedWidth = paddingsData[2] + width + paddingsData[3]; NN_OPS_CHECK(paddedHeight % blockSizeData[0] == 0); NN_OPS_CHECK(paddedWidth % blockSizeData[1] == 0); output->type = input.type; output->dimensions = {batches * (blockSizeData[0] * blockSizeData[1]), paddedHeight / blockSizeData[0], paddedWidth / blockSizeData[1], channels}; output->offset = input.offset; output->scale = input.scale; return true; } bool squeezePrepare(const Shape& input, const int32_t* squeezeDims, const Shape& squeezeDimsShape, Shape* output) { int32_t numInputDims = static_cast(getNumberOfDimensions(input)); // squeezeDims need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(squeezeDimsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(squeezeDimsShape) == 1); int32_t squeezeDimsSize = static_cast(getSizeOfDimension(squeezeDimsShape, 0)); std::vector shouldSqueeze(numInputDims, false); int32_t numDimsSqueezed = 0; if (squeezeDimsSize == 0) { // If squeezeDimsSize is 0, all dims with value 1 will be squeezed. for (int32_t idx = 0; idx < numInputDims; ++idx) { if (getSizeOfDimension(input, idx) == 1) { shouldSqueeze[idx] = true; ++numDimsSqueezed; } } } else { for (int32_t idx = 0; idx < squeezeDimsSize; ++idx) { int32_t current = squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx]; NN_OPS_CHECK(current >= 0 && current < numInputDims && getSizeOfDimension(input, current) == 1); if (!shouldSqueeze[current]) ++numDimsSqueezed; shouldSqueeze[current] = true; } } // Sets output dimensions. std::vector outDims(numInputDims - numDimsSqueezed); for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) { if (!shouldSqueeze[inIdx]) { outDims[outIdx++] = getSizeOfDimension(input, inIdx); } } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool transposePrepare(const Shape& input, const int32_t* permData, const Shape& permShape, Shape* output) { uint32_t numInputDims = getNumberOfDimensions(input); // Transpose op only supports 1D-4D input arrays. NN_OPS_CHECK(numInputDims <= 4); // perm need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(permShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(permShape) == 1); NN_OPS_CHECK(numInputDims == getSizeOfDimension(permShape, 0)); std::vector outDims(numInputDims); for (int32_t idx = 0; idx < static_cast(numInputDims); ++idx) { NN_OPS_CHECK(permData[idx] >= 0 && permData[idx] < static_cast(numInputDims)); outDims[idx] = getSizeOfDimension(input, permData[idx]); } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, Shape* output) { // perm need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(axisShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(axisShape) == 1); int32_t numInputDims = static_cast(getNumberOfDimensions(input)); int32_t axisSize = static_cast(getSizeOfDimension(axisShape, 0)); // Determines size of output tensor. if (keepDims) { std::vector outDims(numInputDims); for (int32_t idx = 0; idx < numInputDims; ++idx) { bool isAxis = false; for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) { if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) { isAxis = true; break; } } if (isAxis) { outDims[idx] = 1; } else { outDims[idx] = getSizeOfDimension(input, idx); } } output->dimensions = outDims; } else { // Calculates size of reducing axis. int32_t numReduceAxis = axisSize; for (int32_t i = 0; i < axisSize; ++i) { int32_t current = axisData[i]; if (current < 0) { current += numInputDims; } NN_OPS_CHECK(current >= 0 && current < numInputDims); for (int32_t j = 0; j < i; ++j) { int32_t previous = axisData[j]; if (previous < 0) { previous += numInputDims; } if (current == previous) { --numReduceAxis; break; } } } // Determines output dimensions. std::vector outDims(numInputDims - numReduceAxis); int32_t numSkipAxis = 0; for (int32_t idx = 0; idx < numInputDims; ++idx) { bool isAxis = false; for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) { if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) { ++numSkipAxis; isAxis = true; break; } } if (!isAxis) { outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx); } } output->dimensions = outDims; } output->type = input.type; output->offset = input.offset; output->scale = input.scale; return true; } bool stridedSlicePrepare(const Shape& input, const int32_t* beginData, const Shape& beginShape, const int32_t* endData, const Shape& endShape, const int32_t* stridesData, const Shape& stridesShape, int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask, Shape* output) { uint32_t numInputDims = getNumberOfDimensions(input); // StridedSlice op only supports 1D-4D input arrays. NN_OPS_CHECK(numInputDims <= 4); NN_OPS_CHECK(getNumberOfDimensions(beginShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(endShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(stridesShape) == 1); NN_OPS_CHECK(getSizeOfDimension(beginShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(endShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(stridesShape, 0) == numInputDims); NN_OPS_CHECK(beginShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(endShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(stridesShape.type == OperandType::TENSOR_INT32); // Determine size of output tensor and map indices std::vector outDims; for (int32_t idx = 0; idx < static_cast(numInputDims); idx++) { int32_t dim = static_cast(getSizeOfDimension(input, idx)); int32_t stride = stridesData[idx]; // stride value has to be non-zero NN_OPS_CHECK(stride != 0); bool positiveStride = stride > 0; int32_t begin = beginMask & (1 << idx) ? positiveStride ? 0 : dim - 1 : ClampedIndex(beginData[idx], dim, positiveStride); int32_t end = endMask & (1 << idx) ? positiveStride ? dim : -1 : ClampedIndex(endData[idx], dim, positiveStride); // This is valid for both positive and negative strides int32_t outDim = ceil((end - begin) / static_cast(stride)); outDim = outDim < 0 ? 0 : static_cast(outDim); if (!(shrinkAxisMask & (1 << idx))) { outDims.push_back(outDim); } else { if (outDim != 1) { LOG(ERROR) << "Outdim " << idx << " is " << outDim << ", expected 1"; NN_OPS_CHECK(outDim == 1); } } } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } } // namespace nn } // namespace android