/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Operations.h" #include "CpuOperationUtils.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" namespace android { namespace nn { bool l2normFloat32(const float* inputData, const Shape& inputShape, float* outputData, const Shape& outputShape) { tflite::optimized_ops::L2Normalization( inputData, convertShapeToDims(inputShape), outputData, convertShapeToDims(outputShape)); return true; } bool l2normQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData, const Shape& outputShape) { tflite::optimized_ops::L2Normalization( inputData, convertShapeToDims(inputShape), inputShape.offset, outputData, convertShapeToDims(outputShape)); return true; } bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, float* outputData, const Shape& outputShape) { tflite::optimized_ops::LocalResponseNormalization( inputData, convertShapeToDims(inputShape), radius, bias, alpha, beta, outputData, convertShapeToDims(outputShape)); return true; } } // namespace nn } // namespace android