/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FRAMEWORKS_ML_NN_RNN_H #define FRAMEWORKS_ML_NN_RNN_H #include "ActivationFunctor.h" namespace android { namespace hardware { namespace neuralnetworks { namespace V1_1 { struct Operation; } } // namespace neuralnetworks } // namespace hardware } // namespace android namespace android { namespace nn { struct RunTimeOperandInfo; struct Shape; class RNN { public: RNN(const android::hardware::neuralnetworks::V1_1::Operation &operation, std::vector &operands); static bool Prepare(const android::hardware::neuralnetworks::V1_1::Operation &operation, std::vector &operands, Shape *hiddenStateShape, Shape *outputShape); bool Eval(); static constexpr int kInputTensor = 0; static constexpr int kWeightsTensor = 1; // Optional static constexpr int kRecurrentWeightsTensor = 2; static constexpr int kBiasTensor = 3; static constexpr int kHiddenStateInTensor = 4; static constexpr int kActivationParam = 5; static constexpr int kHiddenStateOutTensor = 0; static constexpr int kOutputTensor = 1; private: ActivationFn activation_; const RunTimeOperandInfo *input_; const RunTimeOperandInfo *weights_; const RunTimeOperandInfo *recurrent_weights_; const RunTimeOperandInfo *bias_; const RunTimeOperandInfo *hidden_state_in_; RunTimeOperandInfo *hidden_state_out_; RunTimeOperandInfo *output_; }; } // namespace nn } // namespace android #endif // FRAMEWORKS_ML_NN_RNN_H