• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/bn.h>
110 
111 #include <assert.h>
112 
113 #include <openssl/err.h>
114 
115 #include "internal.h"
116 
euclid(BIGNUM * a,BIGNUM * b)117 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) {
118   BIGNUM *t;
119   int shifts = 0;
120 
121   // 0 <= b <= a
122   while (!BN_is_zero(b)) {
123     // 0 < b <= a
124 
125     if (BN_is_odd(a)) {
126       if (BN_is_odd(b)) {
127         if (!BN_sub(a, a, b)) {
128           goto err;
129         }
130         if (!BN_rshift1(a, a)) {
131           goto err;
132         }
133         if (BN_cmp(a, b) < 0) {
134           t = a;
135           a = b;
136           b = t;
137         }
138       } else {
139         // a odd - b even
140         if (!BN_rshift1(b, b)) {
141           goto err;
142         }
143         if (BN_cmp(a, b) < 0) {
144           t = a;
145           a = b;
146           b = t;
147         }
148       }
149     } else {
150       // a is even
151       if (BN_is_odd(b)) {
152         if (!BN_rshift1(a, a)) {
153           goto err;
154         }
155         if (BN_cmp(a, b) < 0) {
156           t = a;
157           a = b;
158           b = t;
159         }
160       } else {
161         // a even - b even
162         if (!BN_rshift1(a, a)) {
163           goto err;
164         }
165         if (!BN_rshift1(b, b)) {
166           goto err;
167         }
168         shifts++;
169       }
170     }
171     // 0 <= b <= a
172   }
173 
174   if (shifts) {
175     if (!BN_lshift(a, a, shifts)) {
176       goto err;
177     }
178   }
179 
180   return a;
181 
182 err:
183   return NULL;
184 }
185 
BN_gcd(BIGNUM * r,const BIGNUM * in_a,const BIGNUM * in_b,BN_CTX * ctx)186 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) {
187   BIGNUM *a, *b, *t;
188   int ret = 0;
189 
190   BN_CTX_start(ctx);
191   a = BN_CTX_get(ctx);
192   b = BN_CTX_get(ctx);
193 
194   if (a == NULL || b == NULL) {
195     goto err;
196   }
197   if (BN_copy(a, in_a) == NULL) {
198     goto err;
199   }
200   if (BN_copy(b, in_b) == NULL) {
201     goto err;
202   }
203 
204   a->neg = 0;
205   b->neg = 0;
206 
207   if (BN_cmp(a, b) < 0) {
208     t = a;
209     a = b;
210     b = t;
211   }
212   t = euclid(a, b);
213   if (t == NULL) {
214     goto err;
215   }
216 
217   if (BN_copy(r, t) == NULL) {
218     goto err;
219   }
220   ret = 1;
221 
222 err:
223   BN_CTX_end(ctx);
224   return ret;
225 }
226 
227 // solves ax == 1 (mod n)
228 static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse,
229                                   const BIGNUM *a, const BIGNUM *n,
230                                   BN_CTX *ctx);
231 
BN_mod_inverse_odd(BIGNUM * out,int * out_no_inverse,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)232 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
233                        const BIGNUM *n, BN_CTX *ctx) {
234   *out_no_inverse = 0;
235 
236   if (!BN_is_odd(n)) {
237     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
238     return 0;
239   }
240 
241   if (BN_is_negative(a) || BN_cmp(a, n) >= 0) {
242     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
243     return 0;
244   }
245 
246   BIGNUM *A, *B, *X, *Y;
247   int ret = 0;
248   int sign;
249 
250   BN_CTX_start(ctx);
251   A = BN_CTX_get(ctx);
252   B = BN_CTX_get(ctx);
253   X = BN_CTX_get(ctx);
254   Y = BN_CTX_get(ctx);
255   if (Y == NULL) {
256     goto err;
257   }
258 
259   BIGNUM *R = out;
260 
261   BN_zero(Y);
262   if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
263     goto err;
264   }
265   A->neg = 0;
266   sign = -1;
267   // From  B = a mod |n|,  A = |n|  it follows that
268   //
269   //      0 <= B < A,
270   //     -sign*X*a  ==  B   (mod |n|),
271   //      sign*Y*a  ==  A   (mod |n|).
272 
273   // Binary inversion algorithm; requires odd modulus. This is faster than the
274   // general algorithm if the modulus is sufficiently small (about 400 .. 500
275   // bits on 32-bit systems, but much more on 64-bit systems)
276   int shift;
277 
278   while (!BN_is_zero(B)) {
279     //      0 < B < |n|,
280     //      0 < A <= |n|,
281     // (1) -sign*X*a  ==  B   (mod |n|),
282     // (2)  sign*Y*a  ==  A   (mod |n|)
283 
284     // Now divide  B  by the maximum possible power of two in the integers,
285     // and divide  X  by the same value mod |n|.
286     // When we're done, (1) still holds.
287     shift = 0;
288     while (!BN_is_bit_set(B, shift)) {
289       // note that 0 < B
290       shift++;
291 
292       if (BN_is_odd(X)) {
293         if (!BN_uadd(X, X, n)) {
294           goto err;
295         }
296       }
297       // now X is even, so we can easily divide it by two
298       if (!BN_rshift1(X, X)) {
299         goto err;
300       }
301     }
302     if (shift > 0) {
303       if (!BN_rshift(B, B, shift)) {
304         goto err;
305       }
306     }
307 
308     // Same for A and Y. Afterwards, (2) still holds.
309     shift = 0;
310     while (!BN_is_bit_set(A, shift)) {
311       // note that 0 < A
312       shift++;
313 
314       if (BN_is_odd(Y)) {
315         if (!BN_uadd(Y, Y, n)) {
316           goto err;
317         }
318       }
319       // now Y is even
320       if (!BN_rshift1(Y, Y)) {
321         goto err;
322       }
323     }
324     if (shift > 0) {
325       if (!BN_rshift(A, A, shift)) {
326         goto err;
327       }
328     }
329 
330     // We still have (1) and (2).
331     // Both  A  and  B  are odd.
332     // The following computations ensure that
333     //
334     //     0 <= B < |n|,
335     //      0 < A < |n|,
336     // (1) -sign*X*a  ==  B   (mod |n|),
337     // (2)  sign*Y*a  ==  A   (mod |n|),
338     //
339     // and that either  A  or  B  is even in the next iteration.
340     if (BN_ucmp(B, A) >= 0) {
341       // -sign*(X + Y)*a == B - A  (mod |n|)
342       if (!BN_uadd(X, X, Y)) {
343         goto err;
344       }
345       // NB: we could use BN_mod_add_quick(X, X, Y, n), but that
346       // actually makes the algorithm slower
347       if (!BN_usub(B, B, A)) {
348         goto err;
349       }
350     } else {
351       //  sign*(X + Y)*a == A - B  (mod |n|)
352       if (!BN_uadd(Y, Y, X)) {
353         goto err;
354       }
355       // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
356       if (!BN_usub(A, A, B)) {
357         goto err;
358       }
359     }
360   }
361 
362   if (!BN_is_one(A)) {
363     *out_no_inverse = 1;
364     OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
365     goto err;
366   }
367 
368   // The while loop (Euclid's algorithm) ends when
369   //      A == gcd(a,n);
370   // we have
371   //       sign*Y*a  ==  A  (mod |n|),
372   // where  Y  is non-negative.
373 
374   if (sign < 0) {
375     if (!BN_sub(Y, n, Y)) {
376       goto err;
377     }
378   }
379   // Now  Y*a  ==  A  (mod |n|).
380 
381   // Y*a == 1  (mod |n|)
382   if (!Y->neg && BN_ucmp(Y, n) < 0) {
383     if (!BN_copy(R, Y)) {
384       goto err;
385     }
386   } else {
387     if (!BN_nnmod(R, Y, n, ctx)) {
388       goto err;
389     }
390   }
391 
392   ret = 1;
393 
394 err:
395   BN_CTX_end(ctx);
396   return ret;
397 }
398 
BN_mod_inverse(BIGNUM * out,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)399 BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
400                        BN_CTX *ctx) {
401   BIGNUM *new_out = NULL;
402   if (out == NULL) {
403     new_out = BN_new();
404     if (new_out == NULL) {
405       OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
406       return NULL;
407     }
408     out = new_out;
409   }
410 
411   int ok = 0;
412   BIGNUM *a_reduced = NULL;
413   if (a->neg || BN_ucmp(a, n) >= 0) {
414     a_reduced = BN_dup(a);
415     if (a_reduced == NULL) {
416       goto err;
417     }
418     if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) {
419       goto err;
420     }
421     a = a_reduced;
422   }
423 
424   int no_inverse;
425   if (!BN_is_odd(n)) {
426     if (!bn_mod_inverse_general(out, &no_inverse, a, n, ctx)) {
427       goto err;
428     }
429   } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) {
430     goto err;
431   }
432 
433   ok = 1;
434 
435 err:
436   if (!ok) {
437     BN_free(new_out);
438     out = NULL;
439   }
440   BN_free(a_reduced);
441   return out;
442 }
443 
BN_mod_inverse_blinded(BIGNUM * out,int * out_no_inverse,const BIGNUM * a,const BN_MONT_CTX * mont,BN_CTX * ctx)444 int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
445                            const BN_MONT_CTX *mont, BN_CTX *ctx) {
446   *out_no_inverse = 0;
447 
448   if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) {
449     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
450     return 0;
451   }
452 
453   int ret = 0;
454   BIGNUM blinding_factor;
455   BN_init(&blinding_factor);
456 
457   if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) ||
458       !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) ||
459       !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) ||
460       !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) {
461     OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
462     goto err;
463   }
464 
465   ret = 1;
466 
467 err:
468   BN_free(&blinding_factor);
469   return ret;
470 }
471 
472 // bn_mod_inverse_general is the general inversion algorithm that works for
473 // both even and odd |n|. It was specifically designed to contain fewer
474 // branches that may leak sensitive information; see "New Branch Prediction
475 // Vulnerabilities in OpenSSL and Necessary Software Countermeasures" by
476 // Onur Acıçmez, Shay Gueron, and Jean-Pierre Seifert.
bn_mod_inverse_general(BIGNUM * out,int * out_no_inverse,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)477 static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse,
478                                   const BIGNUM *a, const BIGNUM *n,
479                                   BN_CTX *ctx) {
480   BIGNUM *A, *B, *X, *Y, *M, *D, *T;
481   int ret = 0;
482   int sign;
483 
484   *out_no_inverse = 0;
485 
486   BN_CTX_start(ctx);
487   A = BN_CTX_get(ctx);
488   B = BN_CTX_get(ctx);
489   X = BN_CTX_get(ctx);
490   D = BN_CTX_get(ctx);
491   M = BN_CTX_get(ctx);
492   Y = BN_CTX_get(ctx);
493   T = BN_CTX_get(ctx);
494   if (T == NULL) {
495     goto err;
496   }
497 
498   BIGNUM *R = out;
499 
500   BN_zero(Y);
501   if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
502     goto err;
503   }
504   A->neg = 0;
505 
506   sign = -1;
507   // From  B = a mod |n|,  A = |n|  it follows that
508   //
509   //      0 <= B < A,
510   //     -sign*X*a  ==  B   (mod |n|),
511   //      sign*Y*a  ==  A   (mod |n|).
512 
513   while (!BN_is_zero(B)) {
514     BIGNUM *tmp;
515 
516     //      0 < B < A,
517     // (*) -sign*X*a  ==  B   (mod |n|),
518     //      sign*Y*a  ==  A   (mod |n|)
519 
520     // (D, M) := (A/B, A%B) ...
521     if (!BN_div(D, M, A, B, ctx)) {
522       goto err;
523     }
524 
525     // Now
526     //      A = D*B + M;
527     // thus we have
528     // (**)  sign*Y*a  ==  D*B + M   (mod |n|).
529 
530     tmp = A;  // keep the BIGNUM object, the value does not matter
531 
532     // (A, B) := (B, A mod B) ...
533     A = B;
534     B = M;
535     // ... so we have  0 <= B < A  again
536 
537     // Since the former  M  is now  B  and the former  B  is now  A,
538     // (**) translates into
539     //       sign*Y*a  ==  D*A + B    (mod |n|),
540     // i.e.
541     //       sign*Y*a - D*A  ==  B    (mod |n|).
542     // Similarly, (*) translates into
543     //      -sign*X*a  ==  A          (mod |n|).
544     //
545     // Thus,
546     //   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
547     // i.e.
548     //        sign*(Y + D*X)*a  ==  B  (mod |n|).
549     //
550     // So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
551     //      -sign*X*a  ==  B   (mod |n|),
552     //       sign*Y*a  ==  A   (mod |n|).
553     // Note that  X  and  Y  stay non-negative all the time.
554 
555     if (!BN_mul(tmp, D, X, ctx)) {
556       goto err;
557     }
558     if (!BN_add(tmp, tmp, Y)) {
559       goto err;
560     }
561 
562     M = Y;  // keep the BIGNUM object, the value does not matter
563     Y = X;
564     X = tmp;
565     sign = -sign;
566   }
567 
568   if (!BN_is_one(A)) {
569     *out_no_inverse = 1;
570     OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
571     goto err;
572   }
573 
574   // The while loop (Euclid's algorithm) ends when
575   //      A == gcd(a,n);
576   // we have
577   //       sign*Y*a  ==  A  (mod |n|),
578   // where  Y  is non-negative.
579 
580   if (sign < 0) {
581     if (!BN_sub(Y, n, Y)) {
582       goto err;
583     }
584   }
585   // Now  Y*a  ==  A  (mod |n|).
586 
587   // Y*a == 1  (mod |n|)
588   if (!Y->neg && BN_ucmp(Y, n) < 0) {
589     if (!BN_copy(R, Y)) {
590       goto err;
591     }
592   } else {
593     if (!BN_nnmod(R, Y, n, ctx)) {
594       goto err;
595     }
596   }
597 
598   ret = 1;
599 
600 err:
601   BN_CTX_end(ctx);
602   return ret;
603 }
604 
bn_mod_inverse_prime(BIGNUM * out,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx,const BN_MONT_CTX * mont_p)605 int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
606                          BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
607   BN_CTX_start(ctx);
608   BIGNUM *p_minus_2 = BN_CTX_get(ctx);
609   int ok = p_minus_2 != NULL &&
610            BN_copy(p_minus_2, p) &&
611            BN_sub_word(p_minus_2, 2) &&
612            BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p);
613   BN_CTX_end(ctx);
614   return ok;
615 }
616 
bn_mod_inverse_secret_prime(BIGNUM * out,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx,const BN_MONT_CTX * mont_p)617 int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
618                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
619   BN_CTX_start(ctx);
620   BIGNUM *p_minus_2 = BN_CTX_get(ctx);
621   int ok = p_minus_2 != NULL &&
622            BN_copy(p_minus_2, p) &&
623            BN_sub_word(p_minus_2, 2) &&
624            BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p);
625   BN_CTX_end(ctx);
626   return ok;
627 }
628