• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_processor.h"
18 
19 #include "base/time_utils.h"
20 #include "base/utils.h"
21 #include "collector/garbage_collector.h"
22 #include "java_vm_ext.h"
23 #include "mirror/class-inl.h"
24 #include "mirror/object-inl.h"
25 #include "mirror/reference-inl.h"
26 #include "nativehelper/scoped_local_ref.h"
27 #include "object_callbacks.h"
28 #include "reference_processor-inl.h"
29 #include "reflection.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "task_processor.h"
32 #include "well_known_classes.h"
33 
34 namespace art {
35 namespace gc {
36 
37 static constexpr bool kAsyncReferenceQueueAdd = false;
38 
ReferenceProcessor()39 ReferenceProcessor::ReferenceProcessor()
40     : collector_(nullptr),
41       preserving_references_(false),
42       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
43       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
44       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
45       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
46       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
47       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
48 }
49 
EnableSlowPath()50 void ReferenceProcessor::EnableSlowPath() {
51   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
52 }
53 
DisableSlowPath(Thread * self)54 void ReferenceProcessor::DisableSlowPath(Thread* self) {
55   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
56   condition_.Broadcast(self);
57 }
58 
BroadcastForSlowPath(Thread * self)59 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
60   MutexLock mu(self, *Locks::reference_processor_lock_);
61   condition_.Broadcast(self);
62 }
63 
GetReferent(Thread * self,ObjPtr<mirror::Reference> reference)64 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
65                                                        ObjPtr<mirror::Reference> reference) {
66   if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
67     // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
68     // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
69     // mark stack and interfere with termination of marking.
70     ObjPtr<mirror::Object> const referent = reference->GetReferent();
71     // If the referent is null then it is already cleared, we can just return null since there is no
72     // scenario where it becomes non-null during the reference processing phase.
73     if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
74       return referent;
75     }
76   }
77   MutexLock mu(self, *Locks::reference_processor_lock_);
78   while ((!kUseReadBarrier && SlowPathEnabled()) ||
79          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
80     ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>();
81     // If the referent became cleared, return it. Don't need barrier since thread roots can't get
82     // updated until after we leave the function due to holding the mutator lock.
83     if (referent == nullptr) {
84       return nullptr;
85     }
86     // Try to see if the referent is already marked by using the is_marked_callback. We can return
87     // it to the mutator as long as the GC is not preserving references.
88     if (LIKELY(collector_ != nullptr)) {
89       // If it's null it means not marked, but it could become marked if the referent is reachable
90       // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
91       // can return it to the mutator as long as the GC is not preserving references, in which
92       // case only black nodes can be safely returned. If the GC is preserving references, the
93       // mutator could take a white field from a grey or white node and move it somewhere else
94       // in the heap causing corruption since this field would get swept.
95       // Use the cached referent instead of calling GetReferent since other threads could call
96       // Reference.clear() after we did the null check resulting in a null pointer being
97       // incorrectly passed to IsMarked. b/33569625
98       ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr());
99       if (forwarded_ref != nullptr) {
100         // Non null means that it is marked.
101         if (!preserving_references_ ||
102            (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
103           return forwarded_ref;
104         }
105       }
106     }
107     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
108     // presence of threads blocking for weak ref access.
109     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
110     condition_.WaitHoldingLocks(self);
111   }
112   return reference->GetReferent();
113 }
114 
StartPreservingReferences(Thread * self)115 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
116   MutexLock mu(self, *Locks::reference_processor_lock_);
117   preserving_references_ = true;
118 }
119 
StopPreservingReferences(Thread * self)120 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
121   MutexLock mu(self, *Locks::reference_processor_lock_);
122   preserving_references_ = false;
123   // We are done preserving references, some people who are blocked may see a marked referent.
124   condition_.Broadcast(self);
125 }
126 
127 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,collector::GarbageCollector * collector)128 void ReferenceProcessor::ProcessReferences(bool concurrent,
129                                            TimingLogger* timings,
130                                            bool clear_soft_references,
131                                            collector::GarbageCollector* collector) {
132   TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
133   Thread* self = Thread::Current();
134   {
135     MutexLock mu(self, *Locks::reference_processor_lock_);
136     collector_ = collector;
137     if (!kUseReadBarrier) {
138       CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
139     } else {
140       // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
141       CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
142     }
143   }
144   if (kIsDebugBuild && collector->IsTransactionActive()) {
145     // In transaction mode, we shouldn't enqueue any Reference to the queues.
146     // See DelayReferenceReferent().
147     DCHECK(soft_reference_queue_.IsEmpty());
148     DCHECK(weak_reference_queue_.IsEmpty());
149     DCHECK(finalizer_reference_queue_.IsEmpty());
150     DCHECK(phantom_reference_queue_.IsEmpty());
151   }
152   // Unless required to clear soft references with white references, preserve some white referents.
153   if (!clear_soft_references) {
154     TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
155         "(Paused)ForwardSoftReferences", timings);
156     if (concurrent) {
157       StartPreservingReferences(self);
158     }
159     // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
160     // mark if the SoftReference is supposed to be preserved.
161     soft_reference_queue_.ForwardSoftReferences(collector);
162     collector->ProcessMarkStack();
163     if (concurrent) {
164       StopPreservingReferences(self);
165     }
166   }
167   // Clear all remaining soft and weak references with white referents.
168   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
169   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
170   {
171     TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
172         "(Paused)EnqueueFinalizerReferences", timings);
173     if (concurrent) {
174       StartPreservingReferences(self);
175     }
176     // Preserve all white objects with finalize methods and schedule them for finalization.
177     finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
178     collector->ProcessMarkStack();
179     if (concurrent) {
180       StopPreservingReferences(self);
181     }
182   }
183   // Clear all finalizer referent reachable soft and weak references with white referents.
184   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
185   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
186   // Clear all phantom references with white referents.
187   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
188   // At this point all reference queues other than the cleared references should be empty.
189   DCHECK(soft_reference_queue_.IsEmpty());
190   DCHECK(weak_reference_queue_.IsEmpty());
191   DCHECK(finalizer_reference_queue_.IsEmpty());
192   DCHECK(phantom_reference_queue_.IsEmpty());
193   {
194     MutexLock mu(self, *Locks::reference_processor_lock_);
195     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
196     // could result in a stale is_marked_callback_ being called before the reference processing
197     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
198     // callback isn't yet set.
199     collector_ = nullptr;
200     if (!kUseReadBarrier && concurrent) {
201       // Done processing, disable the slow path and broadcast to the waiters.
202       DisableSlowPath(self);
203     }
204   }
205 }
206 
207 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
208 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref,collector::GarbageCollector * collector)209 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
210                                                 ObjPtr<mirror::Reference> ref,
211                                                 collector::GarbageCollector* collector) {
212   // klass can be the class of the old object if the visitor already updated the class of ref.
213   DCHECK(klass != nullptr);
214   DCHECK(klass->IsTypeOfReferenceClass());
215   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
216   // do_atomic_update needs to be true because this happens outside of the reference processing
217   // phase.
218   if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) {
219     if (UNLIKELY(collector->IsTransactionActive())) {
220       // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
221       // issue of rolling back reference processing.  do_atomic_update needs to be true because this
222       // happens outside of the reference processing phase.
223       if (!referent->IsNull()) {
224         collector->MarkHeapReference(referent, /*do_atomic_update*/ true);
225       }
226       return;
227     }
228     Thread* self = Thread::Current();
229     // TODO: Remove these locks, and use atomic stacks for storing references?
230     // We need to check that the references haven't already been enqueued since we can end up
231     // scanning the same reference multiple times due to dirty cards.
232     if (klass->IsSoftReferenceClass()) {
233       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
234     } else if (klass->IsWeakReferenceClass()) {
235       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
236     } else if (klass->IsFinalizerReferenceClass()) {
237       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
238     } else if (klass->IsPhantomReferenceClass()) {
239       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
240     } else {
241       LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
242                  << klass->GetAccessFlags();
243     }
244   }
245 }
246 
UpdateRoots(IsMarkedVisitor * visitor)247 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
248   cleared_references_.UpdateRoots(visitor);
249 }
250 
251 class ClearedReferenceTask : public HeapTask {
252  public:
ClearedReferenceTask(jobject cleared_references)253   explicit ClearedReferenceTask(jobject cleared_references)
254       : HeapTask(NanoTime()), cleared_references_(cleared_references) {
255   }
Run(Thread * thread)256   virtual void Run(Thread* thread) {
257     ScopedObjectAccess soa(thread);
258     jvalue args[1];
259     args[0].l = cleared_references_;
260     InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
261     soa.Env()->DeleteGlobalRef(cleared_references_);
262   }
263 
264  private:
265   const jobject cleared_references_;
266 };
267 
EnqueueClearedReferences(Thread * self)268 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
269   Locks::mutator_lock_->AssertNotHeld(self);
270   // When a runtime isn't started there are no reference queues to care about so ignore.
271   if (!cleared_references_.IsEmpty()) {
272     if (LIKELY(Runtime::Current()->IsStarted())) {
273       jobject cleared_references;
274       {
275         ReaderMutexLock mu(self, *Locks::mutator_lock_);
276         cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef(
277             self, cleared_references_.GetList());
278       }
279       if (kAsyncReferenceQueueAdd) {
280         // TODO: This can cause RunFinalization to terminate before newly freed objects are
281         // finalized since they may not be enqueued by the time RunFinalization starts.
282         Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
283             self, new ClearedReferenceTask(cleared_references));
284       } else {
285         ClearedReferenceTask task(cleared_references);
286         task.Run(self);
287       }
288     }
289     cleared_references_.Clear();
290   }
291 }
292 
ClearReferent(ObjPtr<mirror::Reference> ref)293 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
294   Thread* self = Thread::Current();
295   MutexLock mu(self, *Locks::reference_processor_lock_);
296   // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
297   // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
298   // This also handles the race where the referent gets cleared after a null check but before
299   // IsMarkedHeapReference is called.
300   WaitUntilDoneProcessingReferences(self);
301   if (Runtime::Current()->IsActiveTransaction()) {
302     ref->ClearReferent<true>();
303   } else {
304     ref->ClearReferent<false>();
305   }
306 }
307 
WaitUntilDoneProcessingReferences(Thread * self)308 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
309   // Wait until we are done processing reference.
310   while ((!kUseReadBarrier && SlowPathEnabled()) ||
311          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
312     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
313     // presence of threads blocking for weak ref access.
314     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
315     condition_.WaitHoldingLocks(self);
316   }
317 }
318 
MakeCircularListIfUnenqueued(ObjPtr<mirror::FinalizerReference> reference)319 bool ReferenceProcessor::MakeCircularListIfUnenqueued(
320     ObjPtr<mirror::FinalizerReference> reference) {
321   Thread* self = Thread::Current();
322   MutexLock mu(self, *Locks::reference_processor_lock_);
323   WaitUntilDoneProcessingReferences(self);
324   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
325   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
326   // phase. Since we are holding the reference processor lock, it guarantees that reference
327   // processing can't begin. The GC could have just enqueued the reference one one of the internal
328   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
329   // race.
330   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
331   if (reference->IsUnprocessed()) {
332     CHECK(reference->IsFinalizerReferenceInstance());
333     reference->SetPendingNext(reference);
334     return true;
335   }
336   return false;
337 }
338 
339 }  // namespace gc
340 }  // namespace art
341