1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/bytestring.h>
16
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20
21 #include <openssl/buf.h>
22 #include <openssl/mem.h>
23
24 #include "../internal.h"
25
26
CBB_zero(CBB * cbb)27 void CBB_zero(CBB *cbb) {
28 OPENSSL_memset(cbb, 0, sizeof(CBB));
29 }
30
cbb_init(CBB * cbb,uint8_t * buf,size_t cap)31 static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) {
32 // This assumes that |cbb| has already been zeroed.
33 struct cbb_buffer_st *base;
34
35 base = OPENSSL_malloc(sizeof(struct cbb_buffer_st));
36 if (base == NULL) {
37 return 0;
38 }
39
40 base->buf = buf;
41 base->len = 0;
42 base->cap = cap;
43 base->can_resize = 1;
44 base->error = 0;
45
46 cbb->base = base;
47 cbb->is_top_level = 1;
48 return 1;
49 }
50
CBB_init(CBB * cbb,size_t initial_capacity)51 int CBB_init(CBB *cbb, size_t initial_capacity) {
52 CBB_zero(cbb);
53
54 uint8_t *buf = OPENSSL_malloc(initial_capacity);
55 if (initial_capacity > 0 && buf == NULL) {
56 return 0;
57 }
58
59 if (!cbb_init(cbb, buf, initial_capacity)) {
60 OPENSSL_free(buf);
61 return 0;
62 }
63
64 return 1;
65 }
66
CBB_init_fixed(CBB * cbb,uint8_t * buf,size_t len)67 int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) {
68 CBB_zero(cbb);
69
70 if (!cbb_init(cbb, buf, len)) {
71 return 0;
72 }
73
74 cbb->base->can_resize = 0;
75 return 1;
76 }
77
CBB_cleanup(CBB * cbb)78 void CBB_cleanup(CBB *cbb) {
79 if (cbb->base) {
80 // Only top-level |CBB|s are cleaned up. Child |CBB|s are non-owning. They
81 // are implicitly discarded when the parent is flushed or cleaned up.
82 assert(cbb->is_top_level);
83
84 if (cbb->base->can_resize) {
85 OPENSSL_free(cbb->base->buf);
86 }
87 OPENSSL_free(cbb->base);
88 }
89 cbb->base = NULL;
90 }
91
cbb_buffer_reserve(struct cbb_buffer_st * base,uint8_t ** out,size_t len)92 static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out,
93 size_t len) {
94 size_t newlen;
95
96 if (base == NULL) {
97 return 0;
98 }
99
100 newlen = base->len + len;
101 if (newlen < base->len) {
102 // Overflow
103 goto err;
104 }
105
106 if (newlen > base->cap) {
107 size_t newcap = base->cap * 2;
108 uint8_t *newbuf;
109
110 if (!base->can_resize) {
111 goto err;
112 }
113
114 if (newcap < base->cap || newcap < newlen) {
115 newcap = newlen;
116 }
117 newbuf = OPENSSL_realloc(base->buf, newcap);
118 if (newbuf == NULL) {
119 goto err;
120 }
121
122 base->buf = newbuf;
123 base->cap = newcap;
124 }
125
126 if (out) {
127 *out = base->buf + base->len;
128 }
129
130 return 1;
131
132 err:
133 base->error = 1;
134 return 0;
135 }
136
cbb_buffer_add(struct cbb_buffer_st * base,uint8_t ** out,size_t len)137 static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out,
138 size_t len) {
139 if (!cbb_buffer_reserve(base, out, len)) {
140 return 0;
141 }
142 // This will not overflow or |cbb_buffer_reserve| would have failed.
143 base->len += len;
144 return 1;
145 }
146
cbb_buffer_add_u(struct cbb_buffer_st * base,uint32_t v,size_t len_len)147 static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint32_t v,
148 size_t len_len) {
149 if (len_len == 0) {
150 return 1;
151 }
152
153 uint8_t *buf;
154 if (!cbb_buffer_add(base, &buf, len_len)) {
155 return 0;
156 }
157
158 for (size_t i = len_len - 1; i < len_len; i--) {
159 buf[i] = v;
160 v >>= 8;
161 }
162
163 if (v != 0) {
164 base->error = 1;
165 return 0;
166 }
167
168 return 1;
169 }
170
CBB_finish(CBB * cbb,uint8_t ** out_data,size_t * out_len)171 int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) {
172 if (!cbb->is_top_level) {
173 return 0;
174 }
175
176 if (!CBB_flush(cbb)) {
177 return 0;
178 }
179
180 if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) {
181 // |out_data| and |out_len| can only be NULL if the CBB is fixed.
182 return 0;
183 }
184
185 if (out_data != NULL) {
186 *out_data = cbb->base->buf;
187 }
188 if (out_len != NULL) {
189 *out_len = cbb->base->len;
190 }
191 cbb->base->buf = NULL;
192 CBB_cleanup(cbb);
193 return 1;
194 }
195
196 // CBB_flush recurses and then writes out any pending length prefix. The
197 // current length of the underlying base is taken to be the length of the
198 // length-prefixed data.
CBB_flush(CBB * cbb)199 int CBB_flush(CBB *cbb) {
200 size_t child_start, i, len;
201
202 // If |cbb->base| has hit an error, the buffer is in an undefined state, so
203 // fail all following calls. In particular, |cbb->child| may point to invalid
204 // memory.
205 if (cbb->base == NULL || cbb->base->error) {
206 return 0;
207 }
208
209 if (cbb->child == NULL || cbb->child->pending_len_len == 0) {
210 return 1;
211 }
212
213 child_start = cbb->child->offset + cbb->child->pending_len_len;
214
215 if (!CBB_flush(cbb->child) ||
216 child_start < cbb->child->offset ||
217 cbb->base->len < child_start) {
218 goto err;
219 }
220
221 len = cbb->base->len - child_start;
222
223 if (cbb->child->pending_is_asn1) {
224 // For ASN.1 we assume that we'll only need a single byte for the length.
225 // If that turned out to be incorrect, we have to move the contents along
226 // in order to make space.
227 uint8_t len_len;
228 uint8_t initial_length_byte;
229
230 assert (cbb->child->pending_len_len == 1);
231
232 if (len > 0xfffffffe) {
233 // Too large.
234 goto err;
235 } else if (len > 0xffffff) {
236 len_len = 5;
237 initial_length_byte = 0x80 | 4;
238 } else if (len > 0xffff) {
239 len_len = 4;
240 initial_length_byte = 0x80 | 3;
241 } else if (len > 0xff) {
242 len_len = 3;
243 initial_length_byte = 0x80 | 2;
244 } else if (len > 0x7f) {
245 len_len = 2;
246 initial_length_byte = 0x80 | 1;
247 } else {
248 len_len = 1;
249 initial_length_byte = (uint8_t)len;
250 len = 0;
251 }
252
253 if (len_len != 1) {
254 // We need to move the contents along in order to make space.
255 size_t extra_bytes = len_len - 1;
256 if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) {
257 goto err;
258 }
259 OPENSSL_memmove(cbb->base->buf + child_start + extra_bytes,
260 cbb->base->buf + child_start, len);
261 }
262 cbb->base->buf[cbb->child->offset++] = initial_length_byte;
263 cbb->child->pending_len_len = len_len - 1;
264 }
265
266 for (i = cbb->child->pending_len_len - 1; i < cbb->child->pending_len_len;
267 i--) {
268 cbb->base->buf[cbb->child->offset + i] = (uint8_t)len;
269 len >>= 8;
270 }
271 if (len != 0) {
272 goto err;
273 }
274
275 cbb->child->base = NULL;
276 cbb->child = NULL;
277
278 return 1;
279
280 err:
281 cbb->base->error = 1;
282 return 0;
283 }
284
CBB_data(const CBB * cbb)285 const uint8_t *CBB_data(const CBB *cbb) {
286 assert(cbb->child == NULL);
287 return cbb->base->buf + cbb->offset + cbb->pending_len_len;
288 }
289
CBB_len(const CBB * cbb)290 size_t CBB_len(const CBB *cbb) {
291 assert(cbb->child == NULL);
292 assert(cbb->offset + cbb->pending_len_len <= cbb->base->len);
293
294 return cbb->base->len - cbb->offset - cbb->pending_len_len;
295 }
296
cbb_add_length_prefixed(CBB * cbb,CBB * out_contents,uint8_t len_len)297 static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents,
298 uint8_t len_len) {
299 uint8_t *prefix_bytes;
300
301 if (!CBB_flush(cbb)) {
302 return 0;
303 }
304
305 size_t offset = cbb->base->len;
306 if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) {
307 return 0;
308 }
309
310 OPENSSL_memset(prefix_bytes, 0, len_len);
311 OPENSSL_memset(out_contents, 0, sizeof(CBB));
312 out_contents->base = cbb->base;
313 cbb->child = out_contents;
314 cbb->child->offset = offset;
315 cbb->child->pending_len_len = len_len;
316 cbb->child->pending_is_asn1 = 0;
317
318 return 1;
319 }
320
CBB_add_u8_length_prefixed(CBB * cbb,CBB * out_contents)321 int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) {
322 return cbb_add_length_prefixed(cbb, out_contents, 1);
323 }
324
CBB_add_u16_length_prefixed(CBB * cbb,CBB * out_contents)325 int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) {
326 return cbb_add_length_prefixed(cbb, out_contents, 2);
327 }
328
CBB_add_u24_length_prefixed(CBB * cbb,CBB * out_contents)329 int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) {
330 return cbb_add_length_prefixed(cbb, out_contents, 3);
331 }
332
333 // add_base128_integer encodes |v| as a big-endian base-128 integer where the
334 // high bit of each byte indicates where there is more data. This is the
335 // encoding used in DER for both high tag number form and OID components.
add_base128_integer(CBB * cbb,uint64_t v)336 static int add_base128_integer(CBB *cbb, uint64_t v) {
337 unsigned len_len = 0;
338 uint64_t copy = v;
339 while (copy > 0) {
340 len_len++;
341 copy >>= 7;
342 }
343 if (len_len == 0) {
344 len_len = 1; // Zero is encoded with one byte.
345 }
346 for (unsigned i = len_len - 1; i < len_len; i--) {
347 uint8_t byte = (v >> (7 * i)) & 0x7f;
348 if (i != 0) {
349 // The high bit denotes whether there is more data.
350 byte |= 0x80;
351 }
352 if (!CBB_add_u8(cbb, byte)) {
353 return 0;
354 }
355 }
356 return 1;
357 }
358
CBB_add_asn1(CBB * cbb,CBB * out_contents,unsigned tag)359 int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag) {
360 if (!CBB_flush(cbb)) {
361 return 0;
362 }
363
364 // Split the tag into leading bits and tag number.
365 uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0;
366 unsigned tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK;
367 if (tag_number >= 0x1f) {
368 // Set all the bits in the tag number to signal high tag number form.
369 if (!CBB_add_u8(cbb, tag_bits | 0x1f) ||
370 !add_base128_integer(cbb, tag_number)) {
371 return 0;
372 }
373 } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) {
374 return 0;
375 }
376
377 size_t offset = cbb->base->len;
378 if (!CBB_add_u8(cbb, 0)) {
379 return 0;
380 }
381
382 OPENSSL_memset(out_contents, 0, sizeof(CBB));
383 out_contents->base = cbb->base;
384 cbb->child = out_contents;
385 cbb->child->offset = offset;
386 cbb->child->pending_len_len = 1;
387 cbb->child->pending_is_asn1 = 1;
388
389 return 1;
390 }
391
CBB_add_bytes(CBB * cbb,const uint8_t * data,size_t len)392 int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) {
393 uint8_t *dest;
394
395 if (!CBB_flush(cbb) ||
396 !cbb_buffer_add(cbb->base, &dest, len)) {
397 return 0;
398 }
399 OPENSSL_memcpy(dest, data, len);
400 return 1;
401 }
402
CBB_add_space(CBB * cbb,uint8_t ** out_data,size_t len)403 int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) {
404 if (!CBB_flush(cbb) ||
405 !cbb_buffer_add(cbb->base, out_data, len)) {
406 return 0;
407 }
408 return 1;
409 }
410
CBB_reserve(CBB * cbb,uint8_t ** out_data,size_t len)411 int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) {
412 if (!CBB_flush(cbb) ||
413 !cbb_buffer_reserve(cbb->base, out_data, len)) {
414 return 0;
415 }
416 return 1;
417 }
418
CBB_did_write(CBB * cbb,size_t len)419 int CBB_did_write(CBB *cbb, size_t len) {
420 size_t newlen = cbb->base->len + len;
421 if (cbb->child != NULL ||
422 newlen < cbb->base->len ||
423 newlen > cbb->base->cap) {
424 return 0;
425 }
426 cbb->base->len = newlen;
427 return 1;
428 }
429
CBB_add_u8(CBB * cbb,uint8_t value)430 int CBB_add_u8(CBB *cbb, uint8_t value) {
431 if (!CBB_flush(cbb)) {
432 return 0;
433 }
434
435 return cbb_buffer_add_u(cbb->base, value, 1);
436 }
437
CBB_add_u16(CBB * cbb,uint16_t value)438 int CBB_add_u16(CBB *cbb, uint16_t value) {
439 if (!CBB_flush(cbb)) {
440 return 0;
441 }
442
443 return cbb_buffer_add_u(cbb->base, value, 2);
444 }
445
CBB_add_u24(CBB * cbb,uint32_t value)446 int CBB_add_u24(CBB *cbb, uint32_t value) {
447 if (!CBB_flush(cbb)) {
448 return 0;
449 }
450
451 return cbb_buffer_add_u(cbb->base, value, 3);
452 }
453
CBB_add_u32(CBB * cbb,uint32_t value)454 int CBB_add_u32(CBB *cbb, uint32_t value) {
455 if (!CBB_flush(cbb)) {
456 return 0;
457 }
458
459 return cbb_buffer_add_u(cbb->base, value, 4);
460 }
461
CBB_discard_child(CBB * cbb)462 void CBB_discard_child(CBB *cbb) {
463 if (cbb->child == NULL) {
464 return;
465 }
466
467 cbb->base->len = cbb->child->offset;
468
469 cbb->child->base = NULL;
470 cbb->child = NULL;
471 }
472
CBB_add_asn1_uint64(CBB * cbb,uint64_t value)473 int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) {
474 CBB child;
475 int started = 0;
476
477 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_INTEGER)) {
478 return 0;
479 }
480
481 for (size_t i = 0; i < 8; i++) {
482 uint8_t byte = (value >> 8*(7-i)) & 0xff;
483 if (!started) {
484 if (byte == 0) {
485 // Don't encode leading zeros.
486 continue;
487 }
488 // If the high bit is set, add a padding byte to make it
489 // unsigned.
490 if ((byte & 0x80) && !CBB_add_u8(&child, 0)) {
491 return 0;
492 }
493 started = 1;
494 }
495 if (!CBB_add_u8(&child, byte)) {
496 return 0;
497 }
498 }
499
500 // 0 is encoded as a single 0, not the empty string.
501 if (!started && !CBB_add_u8(&child, 0)) {
502 return 0;
503 }
504
505 return CBB_flush(cbb);
506 }
507
CBB_add_asn1_octet_string(CBB * cbb,const uint8_t * data,size_t data_len)508 int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) {
509 CBB child;
510 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) ||
511 !CBB_add_bytes(&child, data, data_len) ||
512 !CBB_flush(cbb)) {
513 return 0;
514 }
515
516 return 1;
517 }
518
CBB_add_asn1_bool(CBB * cbb,int value)519 int CBB_add_asn1_bool(CBB *cbb, int value) {
520 CBB child;
521 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) ||
522 !CBB_add_u8(&child, value != 0 ? 0xff : 0) ||
523 !CBB_flush(cbb)) {
524 return 0;
525 }
526
527 return 1;
528 }
529
530 // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is
531 // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the
532 // component and the dot, so |cbs| may be passed into the function again for the
533 // next value.
parse_dotted_decimal(CBS * cbs,uint64_t * out)534 static int parse_dotted_decimal(CBS *cbs, uint64_t *out) {
535 *out = 0;
536 int seen_digit = 0;
537 for (;;) {
538 // Valid terminators for a component are the end of the string or a
539 // non-terminal dot. If the string ends with a dot, this is not a valid OID
540 // string.
541 uint8_t u;
542 if (!CBS_get_u8(cbs, &u) ||
543 (u == '.' && CBS_len(cbs) > 0)) {
544 break;
545 }
546 if (u < '0' || u > '9' ||
547 // Forbid stray leading zeros.
548 (seen_digit && *out == 0) ||
549 // Check for overflow.
550 *out > UINT64_MAX / 10 ||
551 *out * 10 > UINT64_MAX - (u - '0')) {
552 return 0;
553 }
554 *out = *out * 10 + (u - '0');
555 seen_digit = 1;
556 }
557 // The empty string is not a legal OID component.
558 return seen_digit;
559 }
560
CBB_add_asn1_oid_from_text(CBB * cbb,const char * text,size_t len)561 int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) {
562 if (!CBB_flush(cbb)) {
563 return 0;
564 }
565
566 CBS cbs;
567 CBS_init(&cbs, (const uint8_t *)text, len);
568
569 // OIDs must have at least two components.
570 uint64_t a, b;
571 if (!parse_dotted_decimal(&cbs, &a) ||
572 !parse_dotted_decimal(&cbs, &b)) {
573 return 0;
574 }
575
576 // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is
577 // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39.
578 if (a > 2 ||
579 (a < 2 && b > 39) ||
580 b > UINT64_MAX - 80 ||
581 !add_base128_integer(cbb, 40u * a + b)) {
582 return 0;
583 }
584
585 // The remaining components are encoded unmodified.
586 while (CBS_len(&cbs) > 0) {
587 if (!parse_dotted_decimal(&cbs, &a) ||
588 !add_base128_integer(cbb, a)) {
589 return 0;
590 }
591 }
592
593 return 1;
594 }
595
compare_set_of_element(const void * a_ptr,const void * b_ptr)596 static int compare_set_of_element(const void *a_ptr, const void *b_ptr) {
597 // See X.690, section 11.6 for the ordering. They are sorted in ascending
598 // order by their DER encoding.
599 const CBS *a = a_ptr, *b = b_ptr;
600 size_t a_len = CBS_len(a), b_len = CBS_len(b);
601 size_t min_len = a_len < b_len ? a_len : b_len;
602 int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len);
603 if (ret != 0) {
604 return ret;
605 }
606 if (a_len == b_len) {
607 return 0;
608 }
609 // If one is a prefix of the other, the shorter one sorts first. (This is not
610 // actually reachable. No DER encoding is a prefix of another DER encoding.)
611 return a_len < b_len ? -1 : 1;
612 }
613
CBB_flush_asn1_set_of(CBB * cbb)614 int CBB_flush_asn1_set_of(CBB *cbb) {
615 if (!CBB_flush(cbb)) {
616 return 0;
617 }
618
619 CBS cbs;
620 size_t num_children = 0;
621 CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb));
622 while (CBS_len(&cbs) != 0) {
623 if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) {
624 return 0;
625 }
626 num_children++;
627 }
628
629 if (num_children < 2) {
630 return 1; // Nothing to do. This is the common case for X.509.
631 }
632 if (num_children > ((size_t)-1) / sizeof(CBS)) {
633 return 0; // Overflow.
634 }
635
636 // Parse out the children and sort. We alias them into a copy of so they
637 // remain valid as we rewrite |cbb|.
638 int ret = 0;
639 size_t buf_len = CBB_len(cbb);
640 uint8_t *buf = BUF_memdup(CBB_data(cbb), buf_len);
641 CBS *children = OPENSSL_malloc(num_children * sizeof(CBS));
642 if (buf == NULL || children == NULL) {
643 goto err;
644 }
645 CBS_init(&cbs, buf, buf_len);
646 for (size_t i = 0; i < num_children; i++) {
647 if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) {
648 goto err;
649 }
650 }
651 qsort(children, num_children, sizeof(CBS), compare_set_of_element);
652
653 // Rewind |cbb| and write the contents back in the new order.
654 cbb->base->len = cbb->offset + cbb->pending_len_len;
655 for (size_t i = 0; i < num_children; i++) {
656 if (!CBB_add_bytes(cbb, CBS_data(&children[i]), CBS_len(&children[i]))) {
657 goto err;
658 }
659 }
660 assert(CBB_len(cbb) == buf_len);
661
662 ret = 1;
663
664 err:
665 OPENSSL_free(buf);
666 OPENSSL_free(children);
667 return ret;
668 }
669