1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * sha384_vector - SHA384 hash for data vector 84 * @num_elem: Number of elements in the data vector 85 * @addr: Pointers to the data areas 86 * @len: Lengths of the data blocks 87 * @mac: Buffer for the hash 88 * Returns: 0 on success, -1 on failure 89 */ 90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, 91 u8 *mac); 92 93 /** 94 * sha512_vector - SHA512 hash for data vector 95 * @num_elem: Number of elements in the data vector 96 * @addr: Pointers to the data areas 97 * @len: Lengths of the data blocks 98 * @mac: Buffer for the hash 99 * Returns: 0 on success, -1 on failure 100 */ 101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, 102 u8 *mac); 103 104 /** 105 * des_encrypt - Encrypt one block with DES 106 * @clear: 8 octets (in) 107 * @key: 7 octets (in) (no parity bits included) 108 * @cypher: 8 octets (out) 109 * Returns: 0 on success, -1 on failure 110 */ 111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 112 113 /** 114 * aes_encrypt_init - Initialize AES for encryption 115 * @key: Encryption key 116 * @len: Key length in bytes (usually 16, i.e., 128 bits) 117 * Returns: Pointer to context data or %NULL on failure 118 */ 119 void * aes_encrypt_init(const u8 *key, size_t len); 120 121 /** 122 * aes_encrypt - Encrypt one AES block 123 * @ctx: Context pointer from aes_encrypt_init() 124 * @plain: Plaintext data to be encrypted (16 bytes) 125 * @crypt: Buffer for the encrypted data (16 bytes) 126 * Returns: 0 on success, -1 on failure 127 */ 128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 129 130 /** 131 * aes_encrypt_deinit - Deinitialize AES encryption 132 * @ctx: Context pointer from aes_encrypt_init() 133 */ 134 void aes_encrypt_deinit(void *ctx); 135 136 /** 137 * aes_decrypt_init - Initialize AES for decryption 138 * @key: Decryption key 139 * @len: Key length in bytes (usually 16, i.e., 128 bits) 140 * Returns: Pointer to context data or %NULL on failure 141 */ 142 void * aes_decrypt_init(const u8 *key, size_t len); 143 144 /** 145 * aes_decrypt - Decrypt one AES block 146 * @ctx: Context pointer from aes_encrypt_init() 147 * @crypt: Encrypted data (16 bytes) 148 * @plain: Buffer for the decrypted data (16 bytes) 149 * Returns: 0 on success, -1 on failure 150 */ 151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 152 153 /** 154 * aes_decrypt_deinit - Deinitialize AES decryption 155 * @ctx: Context pointer from aes_encrypt_init() 156 */ 157 void aes_decrypt_deinit(void *ctx); 158 159 160 enum crypto_hash_alg { 161 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 162 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 163 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256, 164 CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512 165 }; 166 167 struct crypto_hash; 168 169 /** 170 * crypto_hash_init - Initialize hash/HMAC function 171 * @alg: Hash algorithm 172 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 173 * @key_len: Length of the key in bytes 174 * Returns: Pointer to hash context to use with other hash functions or %NULL 175 * on failure 176 * 177 * This function is only used with internal TLSv1 implementation 178 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 179 * to implement this. 180 */ 181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 182 size_t key_len); 183 184 /** 185 * crypto_hash_update - Add data to hash calculation 186 * @ctx: Context pointer from crypto_hash_init() 187 * @data: Data buffer to add 188 * @len: Length of the buffer 189 * 190 * This function is only used with internal TLSv1 implementation 191 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 192 * to implement this. 193 */ 194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 195 196 /** 197 * crypto_hash_finish - Complete hash calculation 198 * @ctx: Context pointer from crypto_hash_init() 199 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 200 * context 201 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 202 * hash context; on return, this is set to the actual length of the hash value 203 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 204 * or -2 on other failures (including failed crypto_hash_update() operations) 205 * 206 * This function calculates the hash value and frees the context buffer that 207 * was used for hash calculation. 208 * 209 * This function is only used with internal TLSv1 implementation 210 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 211 * to implement this. 212 */ 213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 214 215 216 enum crypto_cipher_alg { 217 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 218 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 219 }; 220 221 struct crypto_cipher; 222 223 /** 224 * crypto_cipher_init - Initialize block/stream cipher function 225 * @alg: Cipher algorithm 226 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 227 * @key: Cipher key 228 * @key_len: Length of key in bytes 229 * Returns: Pointer to cipher context to use with other cipher functions or 230 * %NULL on failure 231 * 232 * This function is only used with internal TLSv1 implementation 233 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 234 * to implement this. 235 */ 236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 237 const u8 *iv, const u8 *key, 238 size_t key_len); 239 240 /** 241 * crypto_cipher_encrypt - Cipher encrypt 242 * @ctx: Context pointer from crypto_cipher_init() 243 * @plain: Plaintext to cipher 244 * @crypt: Resulting ciphertext 245 * @len: Length of the plaintext 246 * Returns: 0 on success, -1 on failure 247 * 248 * This function is only used with internal TLSv1 implementation 249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 250 * to implement this. 251 */ 252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 253 const u8 *plain, u8 *crypt, size_t len); 254 255 /** 256 * crypto_cipher_decrypt - Cipher decrypt 257 * @ctx: Context pointer from crypto_cipher_init() 258 * @crypt: Ciphertext to decrypt 259 * @plain: Resulting plaintext 260 * @len: Length of the cipher text 261 * Returns: 0 on success, -1 on failure 262 * 263 * This function is only used with internal TLSv1 implementation 264 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 265 * to implement this. 266 */ 267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 268 const u8 *crypt, u8 *plain, size_t len); 269 270 /** 271 * crypto_cipher_decrypt - Free cipher context 272 * @ctx: Context pointer from crypto_cipher_init() 273 * 274 * This function is only used with internal TLSv1 implementation 275 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 276 * to implement this. 277 */ 278 void crypto_cipher_deinit(struct crypto_cipher *ctx); 279 280 281 struct crypto_public_key; 282 struct crypto_private_key; 283 284 /** 285 * crypto_public_key_import - Import an RSA public key 286 * @key: Key buffer (DER encoded RSA public key) 287 * @len: Key buffer length in bytes 288 * Returns: Pointer to the public key or %NULL on failure 289 * 290 * This function can just return %NULL if the crypto library supports X.509 291 * parsing. In that case, crypto_public_key_from_cert() is used to import the 292 * public key from a certificate. 293 * 294 * This function is only used with internal TLSv1 implementation 295 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 296 * to implement this. 297 */ 298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 299 300 struct crypto_public_key * 301 crypto_public_key_import_parts(const u8 *n, size_t n_len, 302 const u8 *e, size_t e_len); 303 304 /** 305 * crypto_private_key_import - Import an RSA private key 306 * @key: Key buffer (DER encoded RSA private key) 307 * @len: Key buffer length in bytes 308 * @passwd: Key encryption password or %NULL if key is not encrypted 309 * Returns: Pointer to the private key or %NULL on failure 310 * 311 * This function is only used with internal TLSv1 implementation 312 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 313 * to implement this. 314 */ 315 struct crypto_private_key * crypto_private_key_import(const u8 *key, 316 size_t len, 317 const char *passwd); 318 319 /** 320 * crypto_public_key_from_cert - Import an RSA public key from a certificate 321 * @buf: DER encoded X.509 certificate 322 * @len: Certificate buffer length in bytes 323 * Returns: Pointer to public key or %NULL on failure 324 * 325 * This function can just return %NULL if the crypto library does not support 326 * X.509 parsing. In that case, internal code will be used to parse the 327 * certificate and public key is imported using crypto_public_key_import(). 328 * 329 * This function is only used with internal TLSv1 implementation 330 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 331 * to implement this. 332 */ 333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 334 size_t len); 335 336 /** 337 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 338 * @key: Public key 339 * @in: Plaintext buffer 340 * @inlen: Length of plaintext buffer in bytes 341 * @out: Output buffer for encrypted data 342 * @outlen: Length of output buffer in bytes; set to used length on success 343 * Returns: 0 on success, -1 on failure 344 * 345 * This function is only used with internal TLSv1 implementation 346 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 347 * to implement this. 348 */ 349 int __must_check crypto_public_key_encrypt_pkcs1_v15( 350 struct crypto_public_key *key, const u8 *in, size_t inlen, 351 u8 *out, size_t *outlen); 352 353 /** 354 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 355 * @key: Private key 356 * @in: Encrypted buffer 357 * @inlen: Length of encrypted buffer in bytes 358 * @out: Output buffer for encrypted data 359 * @outlen: Length of output buffer in bytes; set to used length on success 360 * Returns: 0 on success, -1 on failure 361 * 362 * This function is only used with internal TLSv1 implementation 363 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 364 * to implement this. 365 */ 366 int __must_check crypto_private_key_decrypt_pkcs1_v15( 367 struct crypto_private_key *key, const u8 *in, size_t inlen, 368 u8 *out, size_t *outlen); 369 370 /** 371 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 372 * @key: Private key from crypto_private_key_import() 373 * @in: Plaintext buffer 374 * @inlen: Length of plaintext buffer in bytes 375 * @out: Output buffer for encrypted (signed) data 376 * @outlen: Length of output buffer in bytes; set to used length on success 377 * Returns: 0 on success, -1 on failure 378 * 379 * This function is only used with internal TLSv1 implementation 380 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 381 * to implement this. 382 */ 383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 384 const u8 *in, size_t inlen, 385 u8 *out, size_t *outlen); 386 387 /** 388 * crypto_public_key_free - Free public key 389 * @key: Public key 390 * 391 * This function is only used with internal TLSv1 implementation 392 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 393 * to implement this. 394 */ 395 void crypto_public_key_free(struct crypto_public_key *key); 396 397 /** 398 * crypto_private_key_free - Free private key 399 * @key: Private key from crypto_private_key_import() 400 * 401 * This function is only used with internal TLSv1 implementation 402 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 403 * to implement this. 404 */ 405 void crypto_private_key_free(struct crypto_private_key *key); 406 407 /** 408 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 409 * @key: Public key 410 * @crypt: Encrypted signature data (using the private key) 411 * @crypt_len: Encrypted signature data length 412 * @plain: Buffer for plaintext (at least crypt_len bytes) 413 * @plain_len: Plaintext length (max buffer size on input, real len on output); 414 * Returns: 0 on success, -1 on failure 415 */ 416 int __must_check crypto_public_key_decrypt_pkcs1( 417 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 418 u8 *plain, size_t *plain_len); 419 420 /** 421 * crypto_global_init - Initialize crypto wrapper 422 * 423 * This function is only used with internal TLSv1 implementation 424 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 425 * to implement this. 426 */ 427 int __must_check crypto_global_init(void); 428 429 /** 430 * crypto_global_deinit - Deinitialize crypto wrapper 431 * 432 * This function is only used with internal TLSv1 implementation 433 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 434 * to implement this. 435 */ 436 void crypto_global_deinit(void); 437 438 /** 439 * crypto_mod_exp - Modular exponentiation of large integers 440 * @base: Base integer (big endian byte array) 441 * @base_len: Length of base integer in bytes 442 * @power: Power integer (big endian byte array) 443 * @power_len: Length of power integer in bytes 444 * @modulus: Modulus integer (big endian byte array) 445 * @modulus_len: Length of modulus integer in bytes 446 * @result: Buffer for the result 447 * @result_len: Result length (max buffer size on input, real len on output) 448 * Returns: 0 on success, -1 on failure 449 * 450 * This function calculates result = base ^ power mod modulus. modules_len is 451 * used as the maximum size of modulus buffer. It is set to the used size on 452 * success. 453 * 454 * This function is only used with internal TLSv1 implementation 455 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 456 * to implement this. 457 */ 458 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 459 const u8 *power, size_t power_len, 460 const u8 *modulus, size_t modulus_len, 461 u8 *result, size_t *result_len); 462 463 /** 464 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 465 * @key: RC4 key 466 * @keylen: RC4 key length 467 * @skip: number of bytes to skip from the beginning of the RC4 stream 468 * @data: data to be XOR'ed with RC4 stream 469 * @data_len: buf length 470 * Returns: 0 on success, -1 on failure 471 * 472 * Generate RC4 pseudo random stream for the given key, skip beginning of the 473 * stream, and XOR the end result with the data buffer to perform RC4 474 * encryption/decryption. 475 */ 476 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 477 u8 *data, size_t data_len); 478 479 /** 480 * crypto_get_random - Generate cryptographically strong pseudy-random bytes 481 * @buf: Buffer for data 482 * @len: Number of bytes to generate 483 * Returns: 0 on success, -1 on failure 484 * 485 * If the PRNG does not have enough entropy to ensure unpredictable byte 486 * sequence, this functions must return -1. 487 */ 488 int crypto_get_random(void *buf, size_t len); 489 490 491 /** 492 * struct crypto_bignum - bignum 493 * 494 * Internal data structure for bignum implementation. The contents is specific 495 * to the used crypto library. 496 */ 497 struct crypto_bignum; 498 499 /** 500 * crypto_bignum_init - Allocate memory for bignum 501 * Returns: Pointer to allocated bignum or %NULL on failure 502 */ 503 struct crypto_bignum * crypto_bignum_init(void); 504 505 /** 506 * crypto_bignum_init_set - Allocate memory for bignum and set the value 507 * @buf: Buffer with unsigned binary value 508 * @len: Length of buf in octets 509 * Returns: Pointer to allocated bignum or %NULL on failure 510 */ 511 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 512 513 /** 514 * crypto_bignum_deinit - Free bignum 515 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 516 * @clear: Whether to clear the value from memory 517 */ 518 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 519 520 /** 521 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 522 * @a: Bignum 523 * @buf: Buffer for the binary number 524 * @len: Length of @buf in octets 525 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 526 * Returns: Number of octets written on success, -1 on failure 527 */ 528 int crypto_bignum_to_bin(const struct crypto_bignum *a, 529 u8 *buf, size_t buflen, size_t padlen); 530 531 /** 532 * crypto_bignum_add - c = a + b 533 * @a: Bignum 534 * @b: Bignum 535 * @c: Bignum; used to store the result of a + b 536 * Returns: 0 on success, -1 on failure 537 */ 538 int crypto_bignum_add(const struct crypto_bignum *a, 539 const struct crypto_bignum *b, 540 struct crypto_bignum *c); 541 542 /** 543 * crypto_bignum_mod - c = a % b 544 * @a: Bignum 545 * @b: Bignum 546 * @c: Bignum; used to store the result of a % b 547 * Returns: 0 on success, -1 on failure 548 */ 549 int crypto_bignum_mod(const struct crypto_bignum *a, 550 const struct crypto_bignum *b, 551 struct crypto_bignum *c); 552 553 /** 554 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 555 * @a: Bignum; base 556 * @b: Bignum; exponent 557 * @c: Bignum; modulus 558 * @d: Bignum; used to store the result of a^b (mod c) 559 * Returns: 0 on success, -1 on failure 560 */ 561 int crypto_bignum_exptmod(const struct crypto_bignum *a, 562 const struct crypto_bignum *b, 563 const struct crypto_bignum *c, 564 struct crypto_bignum *d); 565 566 /** 567 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 568 * @a: Bignum 569 * @b: Bignum 570 * @c: Bignum; used to store the result 571 * Returns: 0 on success, -1 on failure 572 */ 573 int crypto_bignum_inverse(const struct crypto_bignum *a, 574 const struct crypto_bignum *b, 575 struct crypto_bignum *c); 576 577 /** 578 * crypto_bignum_sub - c = a - b 579 * @a: Bignum 580 * @b: Bignum 581 * @c: Bignum; used to store the result of a - b 582 * Returns: 0 on success, -1 on failure 583 */ 584 int crypto_bignum_sub(const struct crypto_bignum *a, 585 const struct crypto_bignum *b, 586 struct crypto_bignum *c); 587 588 /** 589 * crypto_bignum_div - c = a / b 590 * @a: Bignum 591 * @b: Bignum 592 * @c: Bignum; used to store the result of a / b 593 * Returns: 0 on success, -1 on failure 594 */ 595 int crypto_bignum_div(const struct crypto_bignum *a, 596 const struct crypto_bignum *b, 597 struct crypto_bignum *c); 598 599 /** 600 * crypto_bignum_mulmod - d = a * b (mod c) 601 * @a: Bignum 602 * @b: Bignum 603 * @c: Bignum 604 * @d: Bignum; used to store the result of (a * b) % c 605 * Returns: 0 on success, -1 on failure 606 */ 607 int crypto_bignum_mulmod(const struct crypto_bignum *a, 608 const struct crypto_bignum *b, 609 const struct crypto_bignum *c, 610 struct crypto_bignum *d); 611 612 /** 613 * crypto_bignum_cmp - Compare two bignums 614 * @a: Bignum 615 * @b: Bignum 616 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 617 */ 618 int crypto_bignum_cmp(const struct crypto_bignum *a, 619 const struct crypto_bignum *b); 620 621 /** 622 * crypto_bignum_bits - Get size of a bignum in bits 623 * @a: Bignum 624 * Returns: Number of bits in the bignum 625 */ 626 int crypto_bignum_bits(const struct crypto_bignum *a); 627 628 /** 629 * crypto_bignum_is_zero - Is the given bignum zero 630 * @a: Bignum 631 * Returns: 1 if @a is zero or 0 if not 632 */ 633 int crypto_bignum_is_zero(const struct crypto_bignum *a); 634 635 /** 636 * crypto_bignum_is_one - Is the given bignum one 637 * @a: Bignum 638 * Returns: 1 if @a is one or 0 if not 639 */ 640 int crypto_bignum_is_one(const struct crypto_bignum *a); 641 642 /** 643 * crypto_bignum_legendre - Compute the Legendre symbol (a/p) 644 * @a: Bignum 645 * @p: Bignum 646 * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure 647 */ 648 int crypto_bignum_legendre(const struct crypto_bignum *a, 649 const struct crypto_bignum *p); 650 651 /** 652 * struct crypto_ec - Elliptic curve context 653 * 654 * Internal data structure for EC implementation. The contents is specific 655 * to the used crypto library. 656 */ 657 struct crypto_ec; 658 659 /** 660 * crypto_ec_init - Initialize elliptic curve context 661 * @group: Identifying number for the ECC group (IANA "Group Description" 662 * attribute registrty for RFC 2409) 663 * Returns: Pointer to EC context or %NULL on failure 664 */ 665 struct crypto_ec * crypto_ec_init(int group); 666 667 /** 668 * crypto_ec_deinit - Deinitialize elliptic curve context 669 * @e: EC context from crypto_ec_init() 670 */ 671 void crypto_ec_deinit(struct crypto_ec *e); 672 673 /** 674 * crypto_ec_prime_len - Get length of the prime in octets 675 * @e: EC context from crypto_ec_init() 676 * Returns: Length of the prime defining the group 677 */ 678 size_t crypto_ec_prime_len(struct crypto_ec *e); 679 680 /** 681 * crypto_ec_prime_len_bits - Get length of the prime in bits 682 * @e: EC context from crypto_ec_init() 683 * Returns: Length of the prime defining the group in bits 684 */ 685 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 686 687 /** 688 * crypto_ec_get_prime - Get prime defining an EC group 689 * @e: EC context from crypto_ec_init() 690 * Returns: Prime (bignum) defining the group 691 */ 692 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 693 694 /** 695 * crypto_ec_get_order - Get order of an EC group 696 * @e: EC context from crypto_ec_init() 697 * Returns: Order (bignum) of the group 698 */ 699 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 700 701 /** 702 * struct crypto_ec_point - Elliptic curve point 703 * 704 * Internal data structure for EC implementation to represent a point. The 705 * contents is specific to the used crypto library. 706 */ 707 struct crypto_ec_point; 708 709 /** 710 * crypto_ec_point_init - Initialize data for an EC point 711 * @e: EC context from crypto_ec_init() 712 * Returns: Pointer to EC point data or %NULL on failure 713 */ 714 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 715 716 /** 717 * crypto_ec_point_deinit - Deinitialize EC point data 718 * @p: EC point data from crypto_ec_point_init() 719 * @clear: Whether to clear the EC point value from memory 720 */ 721 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 722 723 /** 724 * crypto_ec_point_to_bin - Write EC point value as binary data 725 * @e: EC context from crypto_ec_init() 726 * @p: EC point data from crypto_ec_point_init() 727 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 728 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 729 * Returns: 0 on success, -1 on failure 730 * 731 * This function can be used to write an EC point as binary data in a format 732 * that has the x and y coordinates in big endian byte order fields padded to 733 * the length of the prime defining the group. 734 */ 735 int crypto_ec_point_to_bin(struct crypto_ec *e, 736 const struct crypto_ec_point *point, u8 *x, u8 *y); 737 738 /** 739 * crypto_ec_point_from_bin - Create EC point from binary data 740 * @e: EC context from crypto_ec_init() 741 * @val: Binary data to read the EC point from 742 * Returns: Pointer to EC point data or %NULL on failure 743 * 744 * This function readers x and y coordinates of the EC point from the provided 745 * buffer assuming the values are in big endian byte order with fields padded to 746 * the length of the prime defining the group. 747 */ 748 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 749 const u8 *val); 750 751 /** 752 * crypto_bignum_add - c = a + b 753 * @e: EC context from crypto_ec_init() 754 * @a: Bignum 755 * @b: Bignum 756 * @c: Bignum; used to store the result of a + b 757 * Returns: 0 on success, -1 on failure 758 */ 759 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 760 const struct crypto_ec_point *b, 761 struct crypto_ec_point *c); 762 763 /** 764 * crypto_bignum_mul - res = b * p 765 * @e: EC context from crypto_ec_init() 766 * @p: EC point 767 * @b: Bignum 768 * @res: EC point; used to store the result of b * p 769 * Returns: 0 on success, -1 on failure 770 */ 771 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 772 const struct crypto_bignum *b, 773 struct crypto_ec_point *res); 774 775 /** 776 * crypto_ec_point_invert - Compute inverse of an EC point 777 * @e: EC context from crypto_ec_init() 778 * @p: EC point to invert (and result of the operation) 779 * Returns: 0 on success, -1 on failure 780 */ 781 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 782 783 /** 784 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 785 * @e: EC context from crypto_ec_init() 786 * @p: EC point to use for the returning the result 787 * @x: x coordinate 788 * @y_bit: y-bit (0 or 1) for selecting the y value to use 789 * Returns: 0 on success, -1 on failure 790 */ 791 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 792 struct crypto_ec_point *p, 793 const struct crypto_bignum *x, int y_bit); 794 795 /** 796 * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b 797 * @e: EC context from crypto_ec_init() 798 * @x: x coordinate 799 * Returns: y^2 on success, %NULL failure 800 */ 801 struct crypto_bignum * 802 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 803 const struct crypto_bignum *x); 804 805 /** 806 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 807 * @e: EC context from crypto_ec_init() 808 * @p: EC point 809 * Returns: 1 if the specified EC point is the neutral element of the group or 810 * 0 if not 811 */ 812 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 813 const struct crypto_ec_point *p); 814 815 /** 816 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 817 * @e: EC context from crypto_ec_init() 818 * @p: EC point 819 * Returns: 1 if the specified EC point is on the curve or 0 if not 820 */ 821 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 822 const struct crypto_ec_point *p); 823 824 /** 825 * crypto_ec_point_cmp - Compare two EC points 826 * @e: EC context from crypto_ec_init() 827 * @a: EC point 828 * @b: EC point 829 * Returns: 0 on equal, non-zero otherwise 830 */ 831 int crypto_ec_point_cmp(const struct crypto_ec *e, 832 const struct crypto_ec_point *a, 833 const struct crypto_ec_point *b); 834 835 struct crypto_ecdh; 836 837 struct crypto_ecdh * crypto_ecdh_init(int group); 838 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y); 839 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, 840 const u8 *key, size_t len); 841 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh); 842 843 #endif /* CRYPTO_H */ 844