1// Go support for Protocol Buffers - Google's data interchange format 2// 3// Copyright 2010 The Go Authors. All rights reserved. 4// https://github.com/golang/protobuf 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: 9// 10// * Redistributions of source code must retain the above copyright 11// notice, this list of conditions and the following disclaimer. 12// * Redistributions in binary form must reproduce the above 13// copyright notice, this list of conditions and the following disclaimer 14// in the documentation and/or other materials provided with the 15// distribution. 16// * Neither the name of Google Inc. nor the names of its 17// contributors may be used to endorse or promote products derived from 18// this software without specific prior written permission. 19// 20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32/* 33Package proto converts data structures to and from the wire format of 34protocol buffers. It works in concert with the Go source code generated 35for .proto files by the protocol compiler. 36 37A summary of the properties of the protocol buffer interface 38for a protocol buffer variable v: 39 40 - Names are turned from camel_case to CamelCase for export. 41 - There are no methods on v to set fields; just treat 42 them as structure fields. 43 - There are getters that return a field's value if set, 44 and return the field's default value if unset. 45 The getters work even if the receiver is a nil message. 46 - The zero value for a struct is its correct initialization state. 47 All desired fields must be set before marshaling. 48 - A Reset() method will restore a protobuf struct to its zero state. 49 - Non-repeated fields are pointers to the values; nil means unset. 50 That is, optional or required field int32 f becomes F *int32. 51 - Repeated fields are slices. 52 - Helper functions are available to aid the setting of fields. 53 msg.Foo = proto.String("hello") // set field 54 - Constants are defined to hold the default values of all fields that 55 have them. They have the form Default_StructName_FieldName. 56 Because the getter methods handle defaulted values, 57 direct use of these constants should be rare. 58 - Enums are given type names and maps from names to values. 59 Enum values are prefixed by the enclosing message's name, or by the 60 enum's type name if it is a top-level enum. Enum types have a String 61 method, and a Enum method to assist in message construction. 62 - Nested messages, groups and enums have type names prefixed with the name of 63 the surrounding message type. 64 - Extensions are given descriptor names that start with E_, 65 followed by an underscore-delimited list of the nested messages 66 that contain it (if any) followed by the CamelCased name of the 67 extension field itself. HasExtension, ClearExtension, GetExtension 68 and SetExtension are functions for manipulating extensions. 69 - Oneof field sets are given a single field in their message, 70 with distinguished wrapper types for each possible field value. 71 - Marshal and Unmarshal are functions to encode and decode the wire format. 72 73When the .proto file specifies `syntax="proto3"`, there are some differences: 74 75 - Non-repeated fields of non-message type are values instead of pointers. 76 - Enum types do not get an Enum method. 77 78The simplest way to describe this is to see an example. 79Given file test.proto, containing 80 81 package example; 82 83 enum FOO { X = 17; } 84 85 message Test { 86 required string label = 1; 87 optional int32 type = 2 [default=77]; 88 repeated int64 reps = 3; 89 optional group OptionalGroup = 4 { 90 required string RequiredField = 5; 91 } 92 oneof union { 93 int32 number = 6; 94 string name = 7; 95 } 96 } 97 98The resulting file, test.pb.go, is: 99 100 package example 101 102 import proto "github.com/golang/protobuf/proto" 103 import math "math" 104 105 type FOO int32 106 const ( 107 FOO_X FOO = 17 108 ) 109 var FOO_name = map[int32]string{ 110 17: "X", 111 } 112 var FOO_value = map[string]int32{ 113 "X": 17, 114 } 115 116 func (x FOO) Enum() *FOO { 117 p := new(FOO) 118 *p = x 119 return p 120 } 121 func (x FOO) String() string { 122 return proto.EnumName(FOO_name, int32(x)) 123 } 124 func (x *FOO) UnmarshalJSON(data []byte) error { 125 value, err := proto.UnmarshalJSONEnum(FOO_value, data) 126 if err != nil { 127 return err 128 } 129 *x = FOO(value) 130 return nil 131 } 132 133 type Test struct { 134 Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"` 135 Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"` 136 Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"` 137 Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"` 138 // Types that are valid to be assigned to Union: 139 // *Test_Number 140 // *Test_Name 141 Union isTest_Union `protobuf_oneof:"union"` 142 XXX_unrecognized []byte `json:"-"` 143 } 144 func (m *Test) Reset() { *m = Test{} } 145 func (m *Test) String() string { return proto.CompactTextString(m) } 146 func (*Test) ProtoMessage() {} 147 148 type isTest_Union interface { 149 isTest_Union() 150 } 151 152 type Test_Number struct { 153 Number int32 `protobuf:"varint,6,opt,name=number"` 154 } 155 type Test_Name struct { 156 Name string `protobuf:"bytes,7,opt,name=name"` 157 } 158 159 func (*Test_Number) isTest_Union() {} 160 func (*Test_Name) isTest_Union() {} 161 162 func (m *Test) GetUnion() isTest_Union { 163 if m != nil { 164 return m.Union 165 } 166 return nil 167 } 168 const Default_Test_Type int32 = 77 169 170 func (m *Test) GetLabel() string { 171 if m != nil && m.Label != nil { 172 return *m.Label 173 } 174 return "" 175 } 176 177 func (m *Test) GetType() int32 { 178 if m != nil && m.Type != nil { 179 return *m.Type 180 } 181 return Default_Test_Type 182 } 183 184 func (m *Test) GetOptionalgroup() *Test_OptionalGroup { 185 if m != nil { 186 return m.Optionalgroup 187 } 188 return nil 189 } 190 191 type Test_OptionalGroup struct { 192 RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"` 193 } 194 func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} } 195 func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) } 196 197 func (m *Test_OptionalGroup) GetRequiredField() string { 198 if m != nil && m.RequiredField != nil { 199 return *m.RequiredField 200 } 201 return "" 202 } 203 204 func (m *Test) GetNumber() int32 { 205 if x, ok := m.GetUnion().(*Test_Number); ok { 206 return x.Number 207 } 208 return 0 209 } 210 211 func (m *Test) GetName() string { 212 if x, ok := m.GetUnion().(*Test_Name); ok { 213 return x.Name 214 } 215 return "" 216 } 217 218 func init() { 219 proto.RegisterEnum("example.FOO", FOO_name, FOO_value) 220 } 221 222To create and play with a Test object: 223 224 package main 225 226 import ( 227 "log" 228 229 "github.com/golang/protobuf/proto" 230 pb "./example.pb" 231 ) 232 233 func main() { 234 test := &pb.Test{ 235 Label: proto.String("hello"), 236 Type: proto.Int32(17), 237 Reps: []int64{1, 2, 3}, 238 Optionalgroup: &pb.Test_OptionalGroup{ 239 RequiredField: proto.String("good bye"), 240 }, 241 Union: &pb.Test_Name{"fred"}, 242 } 243 data, err := proto.Marshal(test) 244 if err != nil { 245 log.Fatal("marshaling error: ", err) 246 } 247 newTest := &pb.Test{} 248 err = proto.Unmarshal(data, newTest) 249 if err != nil { 250 log.Fatal("unmarshaling error: ", err) 251 } 252 // Now test and newTest contain the same data. 253 if test.GetLabel() != newTest.GetLabel() { 254 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel()) 255 } 256 // Use a type switch to determine which oneof was set. 257 switch u := test.Union.(type) { 258 case *pb.Test_Number: // u.Number contains the number. 259 case *pb.Test_Name: // u.Name contains the string. 260 } 261 // etc. 262 } 263*/ 264package proto 265 266import ( 267 "encoding/json" 268 "fmt" 269 "log" 270 "reflect" 271 "sort" 272 "strconv" 273 "sync" 274) 275 276// Message is implemented by generated protocol buffer messages. 277type Message interface { 278 Reset() 279 String() string 280 ProtoMessage() 281} 282 283// Stats records allocation details about the protocol buffer encoders 284// and decoders. Useful for tuning the library itself. 285type Stats struct { 286 Emalloc uint64 // mallocs in encode 287 Dmalloc uint64 // mallocs in decode 288 Encode uint64 // number of encodes 289 Decode uint64 // number of decodes 290 Chit uint64 // number of cache hits 291 Cmiss uint64 // number of cache misses 292 Size uint64 // number of sizes 293} 294 295// Set to true to enable stats collection. 296const collectStats = false 297 298var stats Stats 299 300// GetStats returns a copy of the global Stats structure. 301func GetStats() Stats { return stats } 302 303// A Buffer is a buffer manager for marshaling and unmarshaling 304// protocol buffers. It may be reused between invocations to 305// reduce memory usage. It is not necessary to use a Buffer; 306// the global functions Marshal and Unmarshal create a 307// temporary Buffer and are fine for most applications. 308type Buffer struct { 309 buf []byte // encode/decode byte stream 310 index int // read point 311 312 // pools of basic types to amortize allocation. 313 bools []bool 314 uint32s []uint32 315 uint64s []uint64 316 317 // extra pools, only used with pointer_reflect.go 318 int32s []int32 319 int64s []int64 320 float32s []float32 321 float64s []float64 322} 323 324// NewBuffer allocates a new Buffer and initializes its internal data to 325// the contents of the argument slice. 326func NewBuffer(e []byte) *Buffer { 327 return &Buffer{buf: e} 328} 329 330// Reset resets the Buffer, ready for marshaling a new protocol buffer. 331func (p *Buffer) Reset() { 332 p.buf = p.buf[0:0] // for reading/writing 333 p.index = 0 // for reading 334} 335 336// SetBuf replaces the internal buffer with the slice, 337// ready for unmarshaling the contents of the slice. 338func (p *Buffer) SetBuf(s []byte) { 339 p.buf = s 340 p.index = 0 341} 342 343// Bytes returns the contents of the Buffer. 344func (p *Buffer) Bytes() []byte { return p.buf } 345 346/* 347 * Helper routines for simplifying the creation of optional fields of basic type. 348 */ 349 350// Bool is a helper routine that allocates a new bool value 351// to store v and returns a pointer to it. 352func Bool(v bool) *bool { 353 return &v 354} 355 356// Int32 is a helper routine that allocates a new int32 value 357// to store v and returns a pointer to it. 358func Int32(v int32) *int32 { 359 return &v 360} 361 362// Int is a helper routine that allocates a new int32 value 363// to store v and returns a pointer to it, but unlike Int32 364// its argument value is an int. 365func Int(v int) *int32 { 366 p := new(int32) 367 *p = int32(v) 368 return p 369} 370 371// Int64 is a helper routine that allocates a new int64 value 372// to store v and returns a pointer to it. 373func Int64(v int64) *int64 { 374 return &v 375} 376 377// Float32 is a helper routine that allocates a new float32 value 378// to store v and returns a pointer to it. 379func Float32(v float32) *float32 { 380 return &v 381} 382 383// Float64 is a helper routine that allocates a new float64 value 384// to store v and returns a pointer to it. 385func Float64(v float64) *float64 { 386 return &v 387} 388 389// Uint32 is a helper routine that allocates a new uint32 value 390// to store v and returns a pointer to it. 391func Uint32(v uint32) *uint32 { 392 return &v 393} 394 395// Uint64 is a helper routine that allocates a new uint64 value 396// to store v and returns a pointer to it. 397func Uint64(v uint64) *uint64 { 398 return &v 399} 400 401// String is a helper routine that allocates a new string value 402// to store v and returns a pointer to it. 403func String(v string) *string { 404 return &v 405} 406 407// EnumName is a helper function to simplify printing protocol buffer enums 408// by name. Given an enum map and a value, it returns a useful string. 409func EnumName(m map[int32]string, v int32) string { 410 s, ok := m[v] 411 if ok { 412 return s 413 } 414 return strconv.Itoa(int(v)) 415} 416 417// UnmarshalJSONEnum is a helper function to simplify recovering enum int values 418// from their JSON-encoded representation. Given a map from the enum's symbolic 419// names to its int values, and a byte buffer containing the JSON-encoded 420// value, it returns an int32 that can be cast to the enum type by the caller. 421// 422// The function can deal with both JSON representations, numeric and symbolic. 423func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) { 424 if data[0] == '"' { 425 // New style: enums are strings. 426 var repr string 427 if err := json.Unmarshal(data, &repr); err != nil { 428 return -1, err 429 } 430 val, ok := m[repr] 431 if !ok { 432 return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr) 433 } 434 return val, nil 435 } 436 // Old style: enums are ints. 437 var val int32 438 if err := json.Unmarshal(data, &val); err != nil { 439 return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName) 440 } 441 return val, nil 442} 443 444// DebugPrint dumps the encoded data in b in a debugging format with a header 445// including the string s. Used in testing but made available for general debugging. 446func (p *Buffer) DebugPrint(s string, b []byte) { 447 var u uint64 448 449 obuf := p.buf 450 index := p.index 451 p.buf = b 452 p.index = 0 453 depth := 0 454 455 fmt.Printf("\n--- %s ---\n", s) 456 457out: 458 for { 459 for i := 0; i < depth; i++ { 460 fmt.Print(" ") 461 } 462 463 index := p.index 464 if index == len(p.buf) { 465 break 466 } 467 468 op, err := p.DecodeVarint() 469 if err != nil { 470 fmt.Printf("%3d: fetching op err %v\n", index, err) 471 break out 472 } 473 tag := op >> 3 474 wire := op & 7 475 476 switch wire { 477 default: 478 fmt.Printf("%3d: t=%3d unknown wire=%d\n", 479 index, tag, wire) 480 break out 481 482 case WireBytes: 483 var r []byte 484 485 r, err = p.DecodeRawBytes(false) 486 if err != nil { 487 break out 488 } 489 fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r)) 490 if len(r) <= 6 { 491 for i := 0; i < len(r); i++ { 492 fmt.Printf(" %.2x", r[i]) 493 } 494 } else { 495 for i := 0; i < 3; i++ { 496 fmt.Printf(" %.2x", r[i]) 497 } 498 fmt.Printf(" ..") 499 for i := len(r) - 3; i < len(r); i++ { 500 fmt.Printf(" %.2x", r[i]) 501 } 502 } 503 fmt.Printf("\n") 504 505 case WireFixed32: 506 u, err = p.DecodeFixed32() 507 if err != nil { 508 fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err) 509 break out 510 } 511 fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u) 512 513 case WireFixed64: 514 u, err = p.DecodeFixed64() 515 if err != nil { 516 fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err) 517 break out 518 } 519 fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u) 520 521 case WireVarint: 522 u, err = p.DecodeVarint() 523 if err != nil { 524 fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err) 525 break out 526 } 527 fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u) 528 529 case WireStartGroup: 530 fmt.Printf("%3d: t=%3d start\n", index, tag) 531 depth++ 532 533 case WireEndGroup: 534 depth-- 535 fmt.Printf("%3d: t=%3d end\n", index, tag) 536 } 537 } 538 539 if depth != 0 { 540 fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth) 541 } 542 fmt.Printf("\n") 543 544 p.buf = obuf 545 p.index = index 546} 547 548// SetDefaults sets unset protocol buffer fields to their default values. 549// It only modifies fields that are both unset and have defined defaults. 550// It recursively sets default values in any non-nil sub-messages. 551func SetDefaults(pb Message) { 552 setDefaults(reflect.ValueOf(pb), true, false) 553} 554 555// v is a pointer to a struct. 556func setDefaults(v reflect.Value, recur, zeros bool) { 557 v = v.Elem() 558 559 defaultMu.RLock() 560 dm, ok := defaults[v.Type()] 561 defaultMu.RUnlock() 562 if !ok { 563 dm = buildDefaultMessage(v.Type()) 564 defaultMu.Lock() 565 defaults[v.Type()] = dm 566 defaultMu.Unlock() 567 } 568 569 for _, sf := range dm.scalars { 570 f := v.Field(sf.index) 571 if !f.IsNil() { 572 // field already set 573 continue 574 } 575 dv := sf.value 576 if dv == nil && !zeros { 577 // no explicit default, and don't want to set zeros 578 continue 579 } 580 fptr := f.Addr().Interface() // **T 581 // TODO: Consider batching the allocations we do here. 582 switch sf.kind { 583 case reflect.Bool: 584 b := new(bool) 585 if dv != nil { 586 *b = dv.(bool) 587 } 588 *(fptr.(**bool)) = b 589 case reflect.Float32: 590 f := new(float32) 591 if dv != nil { 592 *f = dv.(float32) 593 } 594 *(fptr.(**float32)) = f 595 case reflect.Float64: 596 f := new(float64) 597 if dv != nil { 598 *f = dv.(float64) 599 } 600 *(fptr.(**float64)) = f 601 case reflect.Int32: 602 // might be an enum 603 if ft := f.Type(); ft != int32PtrType { 604 // enum 605 f.Set(reflect.New(ft.Elem())) 606 if dv != nil { 607 f.Elem().SetInt(int64(dv.(int32))) 608 } 609 } else { 610 // int32 field 611 i := new(int32) 612 if dv != nil { 613 *i = dv.(int32) 614 } 615 *(fptr.(**int32)) = i 616 } 617 case reflect.Int64: 618 i := new(int64) 619 if dv != nil { 620 *i = dv.(int64) 621 } 622 *(fptr.(**int64)) = i 623 case reflect.String: 624 s := new(string) 625 if dv != nil { 626 *s = dv.(string) 627 } 628 *(fptr.(**string)) = s 629 case reflect.Uint8: 630 // exceptional case: []byte 631 var b []byte 632 if dv != nil { 633 db := dv.([]byte) 634 b = make([]byte, len(db)) 635 copy(b, db) 636 } else { 637 b = []byte{} 638 } 639 *(fptr.(*[]byte)) = b 640 case reflect.Uint32: 641 u := new(uint32) 642 if dv != nil { 643 *u = dv.(uint32) 644 } 645 *(fptr.(**uint32)) = u 646 case reflect.Uint64: 647 u := new(uint64) 648 if dv != nil { 649 *u = dv.(uint64) 650 } 651 *(fptr.(**uint64)) = u 652 default: 653 log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind) 654 } 655 } 656 657 for _, ni := range dm.nested { 658 f := v.Field(ni) 659 // f is *T or []*T or map[T]*T 660 switch f.Kind() { 661 case reflect.Ptr: 662 if f.IsNil() { 663 continue 664 } 665 setDefaults(f, recur, zeros) 666 667 case reflect.Slice: 668 for i := 0; i < f.Len(); i++ { 669 e := f.Index(i) 670 if e.IsNil() { 671 continue 672 } 673 setDefaults(e, recur, zeros) 674 } 675 676 case reflect.Map: 677 for _, k := range f.MapKeys() { 678 e := f.MapIndex(k) 679 if e.IsNil() { 680 continue 681 } 682 setDefaults(e, recur, zeros) 683 } 684 } 685 } 686} 687 688var ( 689 // defaults maps a protocol buffer struct type to a slice of the fields, 690 // with its scalar fields set to their proto-declared non-zero default values. 691 defaultMu sync.RWMutex 692 defaults = make(map[reflect.Type]defaultMessage) 693 694 int32PtrType = reflect.TypeOf((*int32)(nil)) 695) 696 697// defaultMessage represents information about the default values of a message. 698type defaultMessage struct { 699 scalars []scalarField 700 nested []int // struct field index of nested messages 701} 702 703type scalarField struct { 704 index int // struct field index 705 kind reflect.Kind // element type (the T in *T or []T) 706 value interface{} // the proto-declared default value, or nil 707} 708 709// t is a struct type. 710func buildDefaultMessage(t reflect.Type) (dm defaultMessage) { 711 sprop := GetProperties(t) 712 for _, prop := range sprop.Prop { 713 fi, ok := sprop.decoderTags.get(prop.Tag) 714 if !ok { 715 // XXX_unrecognized 716 continue 717 } 718 ft := t.Field(fi).Type 719 720 sf, nested, err := fieldDefault(ft, prop) 721 switch { 722 case err != nil: 723 log.Print(err) 724 case nested: 725 dm.nested = append(dm.nested, fi) 726 case sf != nil: 727 sf.index = fi 728 dm.scalars = append(dm.scalars, *sf) 729 } 730 } 731 732 return dm 733} 734 735// fieldDefault returns the scalarField for field type ft. 736// sf will be nil if the field can not have a default. 737// nestedMessage will be true if this is a nested message. 738// Note that sf.index is not set on return. 739func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) { 740 var canHaveDefault bool 741 switch ft.Kind() { 742 case reflect.Ptr: 743 if ft.Elem().Kind() == reflect.Struct { 744 nestedMessage = true 745 } else { 746 canHaveDefault = true // proto2 scalar field 747 } 748 749 case reflect.Slice: 750 switch ft.Elem().Kind() { 751 case reflect.Ptr: 752 nestedMessage = true // repeated message 753 case reflect.Uint8: 754 canHaveDefault = true // bytes field 755 } 756 757 case reflect.Map: 758 if ft.Elem().Kind() == reflect.Ptr { 759 nestedMessage = true // map with message values 760 } 761 } 762 763 if !canHaveDefault { 764 if nestedMessage { 765 return nil, true, nil 766 } 767 return nil, false, nil 768 } 769 770 // We now know that ft is a pointer or slice. 771 sf = &scalarField{kind: ft.Elem().Kind()} 772 773 // scalar fields without defaults 774 if !prop.HasDefault { 775 return sf, false, nil 776 } 777 778 // a scalar field: either *T or []byte 779 switch ft.Elem().Kind() { 780 case reflect.Bool: 781 x, err := strconv.ParseBool(prop.Default) 782 if err != nil { 783 return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err) 784 } 785 sf.value = x 786 case reflect.Float32: 787 x, err := strconv.ParseFloat(prop.Default, 32) 788 if err != nil { 789 return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err) 790 } 791 sf.value = float32(x) 792 case reflect.Float64: 793 x, err := strconv.ParseFloat(prop.Default, 64) 794 if err != nil { 795 return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err) 796 } 797 sf.value = x 798 case reflect.Int32: 799 x, err := strconv.ParseInt(prop.Default, 10, 32) 800 if err != nil { 801 return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err) 802 } 803 sf.value = int32(x) 804 case reflect.Int64: 805 x, err := strconv.ParseInt(prop.Default, 10, 64) 806 if err != nil { 807 return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err) 808 } 809 sf.value = x 810 case reflect.String: 811 sf.value = prop.Default 812 case reflect.Uint8: 813 // []byte (not *uint8) 814 sf.value = []byte(prop.Default) 815 case reflect.Uint32: 816 x, err := strconv.ParseUint(prop.Default, 10, 32) 817 if err != nil { 818 return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err) 819 } 820 sf.value = uint32(x) 821 case reflect.Uint64: 822 x, err := strconv.ParseUint(prop.Default, 10, 64) 823 if err != nil { 824 return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err) 825 } 826 sf.value = x 827 default: 828 return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind()) 829 } 830 831 return sf, false, nil 832} 833 834// Map fields may have key types of non-float scalars, strings and enums. 835// The easiest way to sort them in some deterministic order is to use fmt. 836// If this turns out to be inefficient we can always consider other options, 837// such as doing a Schwartzian transform. 838 839func mapKeys(vs []reflect.Value) sort.Interface { 840 s := mapKeySorter{ 841 vs: vs, 842 // default Less function: textual comparison 843 less: func(a, b reflect.Value) bool { 844 return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface()) 845 }, 846 } 847 848 // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps; 849 // numeric keys are sorted numerically. 850 if len(vs) == 0 { 851 return s 852 } 853 switch vs[0].Kind() { 854 case reflect.Int32, reflect.Int64: 855 s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() } 856 case reflect.Uint32, reflect.Uint64: 857 s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() } 858 } 859 860 return s 861} 862 863type mapKeySorter struct { 864 vs []reflect.Value 865 less func(a, b reflect.Value) bool 866} 867 868func (s mapKeySorter) Len() int { return len(s.vs) } 869func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] } 870func (s mapKeySorter) Less(i, j int) bool { 871 return s.less(s.vs[i], s.vs[j]) 872} 873 874// isProto3Zero reports whether v is a zero proto3 value. 875func isProto3Zero(v reflect.Value) bool { 876 switch v.Kind() { 877 case reflect.Bool: 878 return !v.Bool() 879 case reflect.Int32, reflect.Int64: 880 return v.Int() == 0 881 case reflect.Uint32, reflect.Uint64: 882 return v.Uint() == 0 883 case reflect.Float32, reflect.Float64: 884 return v.Float() == 0 885 case reflect.String: 886 return v.String() == "" 887 } 888 return false 889} 890 891// ProtoPackageIsVersion2 is referenced from generated protocol buffer files 892// to assert that that code is compatible with this version of the proto package. 893const ProtoPackageIsVersion2 = true 894 895// ProtoPackageIsVersion1 is referenced from generated protocol buffer files 896// to assert that that code is compatible with this version of the proto package. 897const ProtoPackageIsVersion1 = true 898