1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mem_map.h"
18
19 #include <inttypes.h>
20 #include <stdlib.h>
21 #include <sys/mman.h> // For the PROT_* and MAP_* constants.
22 #ifndef ANDROID_OS
23 #include <sys/resource.h>
24 #endif
25
26 #include <map>
27 #include <memory>
28 #include <sstream>
29
30 #include "android-base/stringprintf.h"
31 #include "android-base/unique_fd.h"
32 #include "backtrace/BacktraceMap.h"
33 #include "cutils/ashmem.h"
34
35 #include "base/allocator.h"
36 #include "base/bit_utils.h"
37 #include "base/file_utils.h"
38 #include "base/globals.h"
39 #include "base/logging.h" // For VLOG_IS_ON.
40 #include "base/memory_tool.h"
41 #include "base/utils.h"
42
43 #ifndef MAP_ANONYMOUS
44 #define MAP_ANONYMOUS MAP_ANON
45 #endif
46
47 namespace art {
48
49 using android::base::StringPrintf;
50 using android::base::unique_fd;
51
52 template<class Key, class T, AllocatorTag kTag, class Compare = std::less<Key>>
53 using AllocationTrackingMultiMap =
54 std::multimap<Key, T, Compare, TrackingAllocator<std::pair<const Key, T>, kTag>>;
55
56 using Maps = AllocationTrackingMultiMap<void*, MemMap*, kAllocatorTagMaps>;
57
58 // All the non-empty MemMaps. Use a multimap as we do a reserve-and-divide (eg ElfMap::Load()).
59 static Maps* gMaps GUARDED_BY(MemMap::GetMemMapsLock()) = nullptr;
60
operator <<(std::ostream & os,std::pair<BacktraceMap::iterator,BacktraceMap::iterator> iters)61 static std::ostream& operator<<(
62 std::ostream& os,
63 std::pair<BacktraceMap::iterator, BacktraceMap::iterator> iters) {
64 for (BacktraceMap::iterator it = iters.first; it != iters.second; ++it) {
65 const backtrace_map_t* entry = *it;
66 os << StringPrintf("0x%08x-0x%08x %c%c%c %s\n",
67 static_cast<uint32_t>(entry->start),
68 static_cast<uint32_t>(entry->end),
69 (entry->flags & PROT_READ) ? 'r' : '-',
70 (entry->flags & PROT_WRITE) ? 'w' : '-',
71 (entry->flags & PROT_EXEC) ? 'x' : '-', entry->name.c_str());
72 }
73 return os;
74 }
75
operator <<(std::ostream & os,const Maps & mem_maps)76 std::ostream& operator<<(std::ostream& os, const Maps& mem_maps) {
77 os << "MemMap:" << std::endl;
78 for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) {
79 void* base = it->first;
80 MemMap* map = it->second;
81 CHECK_EQ(base, map->BaseBegin());
82 os << *map << std::endl;
83 }
84 return os;
85 }
86
87 std::mutex* MemMap::mem_maps_lock_ = nullptr;
88
89 #if USE_ART_LOW_4G_ALLOCATOR
90 // Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT.
91
92 // The regular start of memory allocations. The first 64KB is protected by SELinux.
93 static constexpr uintptr_t LOW_MEM_START = 64 * KB;
94
95 // Generate random starting position.
96 // To not interfere with image position, take the image's address and only place it below. Current
97 // formula (sketch):
98 //
99 // ART_BASE_ADDR = 0001XXXXXXXXXXXXXXX
100 // ----------------------------------------
101 // = 0000111111111111111
102 // & ~(kPageSize - 1) =~0000000000000001111
103 // ----------------------------------------
104 // mask = 0000111111111110000
105 // & random data = YYYYYYYYYYYYYYYYYYY
106 // -----------------------------------
107 // tmp = 0000YYYYYYYYYYY0000
108 // + LOW_MEM_START = 0000000000001000000
109 // --------------------------------------
110 // start
111 //
112 // arc4random as an entropy source is exposed in Bionic, but not in glibc. When we
113 // do not have Bionic, simply start with LOW_MEM_START.
114
115 // Function is standalone so it can be tested somewhat in mem_map_test.cc.
116 #ifdef __BIONIC__
CreateStartPos(uint64_t input)117 uintptr_t CreateStartPos(uint64_t input) {
118 CHECK_NE(0, ART_BASE_ADDRESS);
119
120 // Start with all bits below highest bit in ART_BASE_ADDRESS.
121 constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS));
122 constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1;
123
124 // Lowest (usually 12) bits are not used, as aligned by page size.
125 constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1);
126
127 // Mask input data.
128 return (input & mask) + LOW_MEM_START;
129 }
130 #endif
131
GenerateNextMemPos()132 static uintptr_t GenerateNextMemPos() {
133 #ifdef __BIONIC__
134 uint64_t random_data;
135 arc4random_buf(&random_data, sizeof(random_data));
136 return CreateStartPos(random_data);
137 #else
138 // No arc4random on host, see above.
139 return LOW_MEM_START;
140 #endif
141 }
142
143 // Initialize linear scan to random position.
144 uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos();
145 #endif
146
147 // Return true if the address range is contained in a single memory map by either reading
148 // the gMaps variable or the /proc/self/map entry.
ContainedWithinExistingMap(uint8_t * ptr,size_t size,std::string * error_msg)149 bool MemMap::ContainedWithinExistingMap(uint8_t* ptr, size_t size, std::string* error_msg) {
150 uintptr_t begin = reinterpret_cast<uintptr_t>(ptr);
151 uintptr_t end = begin + size;
152
153 // There is a suspicion that BacktraceMap::Create is occasionally missing maps. TODO: Investigate
154 // further.
155 {
156 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
157 for (auto& pair : *gMaps) {
158 MemMap* const map = pair.second;
159 if (begin >= reinterpret_cast<uintptr_t>(map->Begin()) &&
160 end <= reinterpret_cast<uintptr_t>(map->End())) {
161 return true;
162 }
163 }
164 }
165
166 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
167 if (map == nullptr) {
168 if (error_msg != nullptr) {
169 *error_msg = StringPrintf("Failed to build process map");
170 }
171 return false;
172 }
173
174 ScopedBacktraceMapIteratorLock lock(map.get());
175 for (BacktraceMap::iterator it = map->begin(); it != map->end(); ++it) {
176 const backtrace_map_t* entry = *it;
177 if ((begin >= entry->start && begin < entry->end) // start of new within old
178 && (end > entry->start && end <= entry->end)) { // end of new within old
179 return true;
180 }
181 }
182 if (error_msg != nullptr) {
183 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
184 *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " does not overlap "
185 "any existing map. See process maps in the log.", begin, end);
186 }
187 return false;
188 }
189
190 // Return true if the address range does not conflict with any /proc/self/maps entry.
CheckNonOverlapping(uintptr_t begin,uintptr_t end,std::string * error_msg)191 static bool CheckNonOverlapping(uintptr_t begin,
192 uintptr_t end,
193 std::string* error_msg) {
194 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
195 if (map.get() == nullptr) {
196 *error_msg = StringPrintf("Failed to build process map");
197 return false;
198 }
199 ScopedBacktraceMapIteratorLock lock(map.get());
200 for (BacktraceMap::iterator it = map->begin(); it != map->end(); ++it) {
201 const backtrace_map_t* entry = *it;
202 if ((begin >= entry->start && begin < entry->end) // start of new within old
203 || (end > entry->start && end < entry->end) // end of new within old
204 || (begin <= entry->start && end > entry->end)) { // start/end of new includes all of old
205 std::ostringstream map_info;
206 map_info << std::make_pair(it, map->end());
207 *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " overlaps with "
208 "existing map 0x%08" PRIxPTR "-0x%08" PRIxPTR " (%s)\n%s",
209 begin, end,
210 static_cast<uintptr_t>(entry->start), static_cast<uintptr_t>(entry->end),
211 entry->name.c_str(),
212 map_info.str().c_str());
213 return false;
214 }
215 }
216 return true;
217 }
218
219 // CheckMapRequest to validate a non-MAP_FAILED mmap result based on
220 // the expected value, calling munmap if validation fails, giving the
221 // reason in error_msg.
222 //
223 // If the expected_ptr is null, nothing is checked beyond the fact
224 // that the actual_ptr is not MAP_FAILED. However, if expected_ptr is
225 // non-null, we check that pointer is the actual_ptr == expected_ptr,
226 // and if not, report in error_msg what the conflict mapping was if
227 // found, or a generic error in other cases.
CheckMapRequest(uint8_t * expected_ptr,void * actual_ptr,size_t byte_count,std::string * error_msg)228 static bool CheckMapRequest(uint8_t* expected_ptr, void* actual_ptr, size_t byte_count,
229 std::string* error_msg) {
230 // Handled first by caller for more specific error messages.
231 CHECK(actual_ptr != MAP_FAILED);
232
233 if (expected_ptr == nullptr) {
234 return true;
235 }
236
237 uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr);
238 uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr);
239 uintptr_t limit = expected + byte_count;
240
241 if (expected_ptr == actual_ptr) {
242 return true;
243 }
244
245 // We asked for an address but didn't get what we wanted, all paths below here should fail.
246 int result = munmap(actual_ptr, byte_count);
247 if (result == -1) {
248 PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count);
249 }
250
251 if (error_msg != nullptr) {
252 // We call this here so that we can try and generate a full error
253 // message with the overlapping mapping. There's no guarantee that
254 // that there will be an overlap though, since
255 // - The kernel is not *required* to honor expected_ptr unless MAP_FIXED is
256 // true, even if there is no overlap
257 // - There might have been an overlap at the point of mmap, but the
258 // overlapping region has since been unmapped.
259 std::string error_detail;
260 CheckNonOverlapping(expected, limit, &error_detail);
261 std::ostringstream os;
262 os << StringPrintf("Failed to mmap at expected address, mapped at "
263 "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR,
264 actual, expected);
265 if (!error_detail.empty()) {
266 os << " : " << error_detail;
267 }
268 *error_msg = os.str();
269 }
270 return false;
271 }
272
273 #if USE_ART_LOW_4G_ALLOCATOR
TryMemMapLow4GB(void * ptr,size_t page_aligned_byte_count,int prot,int flags,int fd,off_t offset)274 static inline void* TryMemMapLow4GB(void* ptr,
275 size_t page_aligned_byte_count,
276 int prot,
277 int flags,
278 int fd,
279 off_t offset) {
280 void* actual = mmap(ptr, page_aligned_byte_count, prot, flags, fd, offset);
281 if (actual != MAP_FAILED) {
282 // Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low
283 // 4GB. If this is the case, unmap and retry.
284 if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count >= 4 * GB) {
285 munmap(actual, page_aligned_byte_count);
286 actual = MAP_FAILED;
287 }
288 }
289 return actual;
290 }
291 #endif
292
MapAnonymous(const char * name,uint8_t * expected_ptr,size_t byte_count,int prot,bool low_4gb,bool reuse,std::string * error_msg,bool use_ashmem)293 MemMap* MemMap::MapAnonymous(const char* name,
294 uint8_t* expected_ptr,
295 size_t byte_count,
296 int prot,
297 bool low_4gb,
298 bool reuse,
299 std::string* error_msg,
300 bool use_ashmem) {
301 #ifndef __LP64__
302 UNUSED(low_4gb);
303 #endif
304 use_ashmem = use_ashmem && !kIsTargetLinux;
305 if (byte_count == 0) {
306 return new MemMap(name, nullptr, 0, nullptr, 0, prot, false);
307 }
308 size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
309
310 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
311 if (reuse) {
312 // reuse means it is okay that it overlaps an existing page mapping.
313 // Only use this if you actually made the page reservation yourself.
314 CHECK(expected_ptr != nullptr);
315
316 DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg)) << *error_msg;
317 flags |= MAP_FIXED;
318 }
319
320 if (use_ashmem) {
321 if (!kIsTargetBuild) {
322 // When not on Android (either host or assuming a linux target) ashmem is faked using
323 // files in /tmp. Ensure that such files won't fail due to ulimit restrictions. If they
324 // will then use a regular mmap.
325 struct rlimit rlimit_fsize;
326 CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlimit_fsize), 0);
327 use_ashmem = (rlimit_fsize.rlim_cur == RLIM_INFINITY) ||
328 (page_aligned_byte_count < rlimit_fsize.rlim_cur);
329 }
330 }
331
332 unique_fd fd;
333
334
335 if (use_ashmem) {
336 // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
337 // prefixed "dalvik-".
338 std::string debug_friendly_name("dalvik-");
339 debug_friendly_name += name;
340 fd.reset(ashmem_create_region(debug_friendly_name.c_str(), page_aligned_byte_count));
341
342 if (fd.get() == -1) {
343 // We failed to create the ashmem region. Print a warning, but continue
344 // anyway by creating a true anonymous mmap with an fd of -1. It is
345 // better to use an unlabelled anonymous map than to fail to create a
346 // map at all.
347 PLOG(WARNING) << "ashmem_create_region failed for '" << name << "'";
348 } else {
349 // We succeeded in creating the ashmem region. Use the created ashmem
350 // region as backing for the mmap.
351 flags &= ~MAP_ANONYMOUS;
352 }
353 }
354
355 // We need to store and potentially set an error number for pretty printing of errors
356 int saved_errno = 0;
357
358 void* actual = MapInternal(expected_ptr,
359 page_aligned_byte_count,
360 prot,
361 flags,
362 fd.get(),
363 0,
364 low_4gb);
365 saved_errno = errno;
366
367 if (actual == MAP_FAILED) {
368 if (error_msg != nullptr) {
369 if (kIsDebugBuild || VLOG_IS_ON(oat)) {
370 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
371 }
372
373 *error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s. "
374 "See process maps in the log.",
375 expected_ptr,
376 page_aligned_byte_count,
377 prot,
378 flags,
379 fd.get(),
380 strerror(saved_errno));
381 }
382 return nullptr;
383 }
384 if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
385 return nullptr;
386 }
387 return new MemMap(name, reinterpret_cast<uint8_t*>(actual), byte_count, actual,
388 page_aligned_byte_count, prot, reuse);
389 }
390
MapDummy(const char * name,uint8_t * addr,size_t byte_count)391 MemMap* MemMap::MapDummy(const char* name, uint8_t* addr, size_t byte_count) {
392 if (byte_count == 0) {
393 return new MemMap(name, nullptr, 0, nullptr, 0, 0, false);
394 }
395 const size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
396 return new MemMap(name, addr, byte_count, addr, page_aligned_byte_count, 0, true /* reuse */);
397 }
398
399 template<typename A, typename B>
PointerDiff(A * a,B * b)400 static ptrdiff_t PointerDiff(A* a, B* b) {
401 return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(a) - reinterpret_cast<intptr_t>(b));
402 }
403
ReplaceWith(MemMap ** source_ptr,std::string * error)404 bool MemMap::ReplaceWith(MemMap** source_ptr, /*out*/std::string* error) {
405 #if !HAVE_MREMAP_SYSCALL
406 UNUSED(source_ptr);
407 *error = "Cannot perform atomic replace because we are missing the required mremap syscall";
408 return false;
409 #else // !HAVE_MREMAP_SYSCALL
410 CHECK(source_ptr != nullptr);
411 CHECK(*source_ptr != nullptr);
412 if (!MemMap::kCanReplaceMapping) {
413 *error = "Unable to perform atomic replace due to runtime environment!";
414 return false;
415 }
416 MemMap* source = *source_ptr;
417 // neither can be reuse.
418 if (source->reuse_ || reuse_) {
419 *error = "One or both mappings is not a real mmap!";
420 return false;
421 }
422 // TODO Support redzones.
423 if (source->redzone_size_ != 0 || redzone_size_ != 0) {
424 *error = "source and dest have different redzone sizes";
425 return false;
426 }
427 // Make sure they have the same offset from the actual mmap'd address
428 if (PointerDiff(BaseBegin(), Begin()) != PointerDiff(source->BaseBegin(), source->Begin())) {
429 *error =
430 "source starts at a different offset from the mmap. Cannot atomically replace mappings";
431 return false;
432 }
433 // mremap doesn't allow the final [start, end] to overlap with the initial [start, end] (it's like
434 // memcpy but the check is explicit and actually done).
435 if (source->BaseBegin() > BaseBegin() &&
436 reinterpret_cast<uint8_t*>(BaseBegin()) + source->BaseSize() >
437 reinterpret_cast<uint8_t*>(source->BaseBegin())) {
438 *error = "destination memory pages overlap with source memory pages";
439 return false;
440 }
441 // Change the protection to match the new location.
442 int old_prot = source->GetProtect();
443 if (!source->Protect(GetProtect())) {
444 *error = "Could not change protections for source to those required for dest.";
445 return false;
446 }
447
448 // Do the mremap.
449 void* res = mremap(/*old_address*/source->BaseBegin(),
450 /*old_size*/source->BaseSize(),
451 /*new_size*/source->BaseSize(),
452 /*flags*/MREMAP_MAYMOVE | MREMAP_FIXED,
453 /*new_address*/BaseBegin());
454 if (res == MAP_FAILED) {
455 int saved_errno = errno;
456 // Wasn't able to move mapping. Change the protection of source back to the original one and
457 // return.
458 source->Protect(old_prot);
459 *error = std::string("Failed to mremap source to dest. Error was ") + strerror(saved_errno);
460 return false;
461 }
462 CHECK(res == BaseBegin());
463
464 // The new base_size is all the pages of the 'source' plus any remaining dest pages. We will unmap
465 // them later.
466 size_t new_base_size = std::max(source->base_size_, base_size_);
467
468 // Delete the old source, don't unmap it though (set reuse) since it is already gone.
469 *source_ptr = nullptr;
470 size_t source_size = source->size_;
471 source->already_unmapped_ = true;
472 delete source;
473 source = nullptr;
474
475 size_ = source_size;
476 base_size_ = new_base_size;
477 // Reduce base_size if needed (this will unmap the extra pages).
478 SetSize(source_size);
479
480 return true;
481 #endif // !HAVE_MREMAP_SYSCALL
482 }
483
MapFileAtAddress(uint8_t * expected_ptr,size_t byte_count,int prot,int flags,int fd,off_t start,bool low_4gb,bool reuse,const char * filename,std::string * error_msg)484 MemMap* MemMap::MapFileAtAddress(uint8_t* expected_ptr,
485 size_t byte_count,
486 int prot,
487 int flags,
488 int fd,
489 off_t start,
490 bool low_4gb,
491 bool reuse,
492 const char* filename,
493 std::string* error_msg) {
494 CHECK_NE(0, prot);
495 CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE));
496
497 // Note that we do not allow MAP_FIXED unless reuse == true, i.e we
498 // expect his mapping to be contained within an existing map.
499 if (reuse) {
500 // reuse means it is okay that it overlaps an existing page mapping.
501 // Only use this if you actually made the page reservation yourself.
502 CHECK(expected_ptr != nullptr);
503 DCHECK(error_msg != nullptr);
504 DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg))
505 << ((error_msg != nullptr) ? *error_msg : std::string());
506 flags |= MAP_FIXED;
507 } else {
508 CHECK_EQ(0, flags & MAP_FIXED);
509 // Don't bother checking for an overlapping region here. We'll
510 // check this if required after the fact inside CheckMapRequest.
511 }
512
513 if (byte_count == 0) {
514 return new MemMap(filename, nullptr, 0, nullptr, 0, prot, false);
515 }
516 // Adjust 'offset' to be page-aligned as required by mmap.
517 int page_offset = start % kPageSize;
518 off_t page_aligned_offset = start - page_offset;
519 // Adjust 'byte_count' to be page-aligned as we will map this anyway.
520 size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize);
521 // The 'expected_ptr' is modified (if specified, ie non-null) to be page aligned to the file but
522 // not necessarily to virtual memory. mmap will page align 'expected' for us.
523 uint8_t* page_aligned_expected =
524 (expected_ptr == nullptr) ? nullptr : (expected_ptr - page_offset);
525
526 size_t redzone_size = 0;
527 if (RUNNING_ON_MEMORY_TOOL && kMemoryToolAddsRedzones && expected_ptr == nullptr) {
528 redzone_size = kPageSize;
529 page_aligned_byte_count += redzone_size;
530 }
531
532 uint8_t* actual = reinterpret_cast<uint8_t*>(MapInternal(page_aligned_expected,
533 page_aligned_byte_count,
534 prot,
535 flags,
536 fd,
537 page_aligned_offset,
538 low_4gb));
539 if (actual == MAP_FAILED) {
540 if (error_msg != nullptr) {
541 auto saved_errno = errno;
542
543 if (kIsDebugBuild || VLOG_IS_ON(oat)) {
544 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
545 }
546
547 *error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64
548 ") of file '%s' failed: %s. See process maps in the log.",
549 page_aligned_expected, page_aligned_byte_count, prot, flags, fd,
550 static_cast<int64_t>(page_aligned_offset), filename,
551 strerror(saved_errno));
552 }
553 return nullptr;
554 }
555 if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
556 return nullptr;
557 }
558 if (redzone_size != 0) {
559 const uint8_t *real_start = actual + page_offset;
560 const uint8_t *real_end = actual + page_offset + byte_count;
561 const uint8_t *mapping_end = actual + page_aligned_byte_count;
562
563 MEMORY_TOOL_MAKE_NOACCESS(actual, real_start - actual);
564 MEMORY_TOOL_MAKE_NOACCESS(real_end, mapping_end - real_end);
565 page_aligned_byte_count -= redzone_size;
566 }
567
568 return new MemMap(filename, actual + page_offset, byte_count, actual, page_aligned_byte_count,
569 prot, reuse, redzone_size);
570 }
571
~MemMap()572 MemMap::~MemMap() {
573 if (base_begin_ == nullptr && base_size_ == 0) {
574 return;
575 }
576
577 // Unlike Valgrind, AddressSanitizer requires that all manually poisoned memory is unpoisoned
578 // before it is returned to the system.
579 if (redzone_size_ != 0) {
580 MEMORY_TOOL_MAKE_UNDEFINED(
581 reinterpret_cast<char*>(base_begin_) + base_size_ - redzone_size_,
582 redzone_size_);
583 }
584
585 if (!reuse_) {
586 MEMORY_TOOL_MAKE_UNDEFINED(base_begin_, base_size_);
587 if (!already_unmapped_) {
588 int result = munmap(base_begin_, base_size_);
589 if (result == -1) {
590 PLOG(FATAL) << "munmap failed";
591 }
592 }
593 }
594
595 // Remove it from gMaps.
596 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
597 bool found = false;
598 DCHECK(gMaps != nullptr);
599 for (auto it = gMaps->lower_bound(base_begin_), end = gMaps->end();
600 it != end && it->first == base_begin_; ++it) {
601 if (it->second == this) {
602 found = true;
603 gMaps->erase(it);
604 break;
605 }
606 }
607 CHECK(found) << "MemMap not found";
608 }
609
MemMap(const std::string & name,uint8_t * begin,size_t size,void * base_begin,size_t base_size,int prot,bool reuse,size_t redzone_size)610 MemMap::MemMap(const std::string& name, uint8_t* begin, size_t size, void* base_begin,
611 size_t base_size, int prot, bool reuse, size_t redzone_size)
612 : name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size),
613 prot_(prot), reuse_(reuse), already_unmapped_(false), redzone_size_(redzone_size) {
614 if (size_ == 0) {
615 CHECK(begin_ == nullptr);
616 CHECK(base_begin_ == nullptr);
617 CHECK_EQ(base_size_, 0U);
618 } else {
619 CHECK(begin_ != nullptr);
620 CHECK(base_begin_ != nullptr);
621 CHECK_NE(base_size_, 0U);
622
623 // Add it to gMaps.
624 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
625 DCHECK(gMaps != nullptr);
626 gMaps->insert(std::make_pair(base_begin_, this));
627 }
628 }
629
RemapAtEnd(uint8_t * new_end,const char * tail_name,int tail_prot,std::string * error_msg,bool use_ashmem)630 MemMap* MemMap::RemapAtEnd(uint8_t* new_end, const char* tail_name, int tail_prot,
631 std::string* error_msg, bool use_ashmem) {
632 use_ashmem = use_ashmem && !kIsTargetLinux;
633 DCHECK_GE(new_end, Begin());
634 DCHECK_LE(new_end, End());
635 DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
636 DCHECK_ALIGNED(begin_, kPageSize);
637 DCHECK_ALIGNED(base_begin_, kPageSize);
638 DCHECK_ALIGNED(reinterpret_cast<uint8_t*>(base_begin_) + base_size_, kPageSize);
639 DCHECK_ALIGNED(new_end, kPageSize);
640 uint8_t* old_end = begin_ + size_;
641 uint8_t* old_base_end = reinterpret_cast<uint8_t*>(base_begin_) + base_size_;
642 uint8_t* new_base_end = new_end;
643 DCHECK_LE(new_base_end, old_base_end);
644 if (new_base_end == old_base_end) {
645 return new MemMap(tail_name, nullptr, 0, nullptr, 0, tail_prot, false);
646 }
647 size_ = new_end - reinterpret_cast<uint8_t*>(begin_);
648 base_size_ = new_base_end - reinterpret_cast<uint8_t*>(base_begin_);
649 DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
650 size_t tail_size = old_end - new_end;
651 uint8_t* tail_base_begin = new_base_end;
652 size_t tail_base_size = old_base_end - new_base_end;
653 DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end);
654 DCHECK_ALIGNED(tail_base_size, kPageSize);
655
656 unique_fd fd;
657 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
658 if (use_ashmem) {
659 // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
660 // prefixed "dalvik-".
661 std::string debug_friendly_name("dalvik-");
662 debug_friendly_name += tail_name;
663 fd.reset(ashmem_create_region(debug_friendly_name.c_str(), tail_base_size));
664 flags = MAP_PRIVATE | MAP_FIXED;
665 if (fd.get() == -1) {
666 *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s",
667 tail_name, strerror(errno));
668 return nullptr;
669 }
670 }
671
672 MEMORY_TOOL_MAKE_UNDEFINED(tail_base_begin, tail_base_size);
673 // Unmap/map the tail region.
674 int result = munmap(tail_base_begin, tail_base_size);
675 if (result == -1) {
676 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
677 *error_msg = StringPrintf("munmap(%p, %zd) failed for '%s'. See process maps in the log.",
678 tail_base_begin, tail_base_size, name_.c_str());
679 return nullptr;
680 }
681 // Don't cause memory allocation between the munmap and the mmap
682 // calls. Otherwise, libc (or something else) might take this memory
683 // region. Note this isn't perfect as there's no way to prevent
684 // other threads to try to take this memory region here.
685 uint8_t* actual = reinterpret_cast<uint8_t*>(mmap(tail_base_begin,
686 tail_base_size,
687 tail_prot,
688 flags,
689 fd.get(),
690 0));
691 if (actual == MAP_FAILED) {
692 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
693 *error_msg = StringPrintf("anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0) failed. See process "
694 "maps in the log.", tail_base_begin, tail_base_size, tail_prot, flags,
695 fd.get());
696 return nullptr;
697 }
698 return new MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot, false);
699 }
700
MadviseDontNeedAndZero()701 void MemMap::MadviseDontNeedAndZero() {
702 if (base_begin_ != nullptr || base_size_ != 0) {
703 if (!kMadviseZeroes) {
704 memset(base_begin_, 0, base_size_);
705 }
706 int result = madvise(base_begin_, base_size_, MADV_DONTNEED);
707 if (result == -1) {
708 PLOG(WARNING) << "madvise failed";
709 }
710 }
711 }
712
Sync()713 bool MemMap::Sync() {
714 bool result;
715 if (redzone_size_ != 0) {
716 // To avoid valgrind errors, temporarily lift the lower-end noaccess protection before passing
717 // it to msync() as it only accepts page-aligned base address, and exclude the higher-end
718 // noaccess protection from the msync range. b/27552451.
719 uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
720 MEMORY_TOOL_MAKE_DEFINED(base_begin, begin_ - base_begin);
721 result = msync(BaseBegin(), End() - base_begin, MS_SYNC) == 0;
722 MEMORY_TOOL_MAKE_NOACCESS(base_begin, begin_ - base_begin);
723 } else {
724 result = msync(BaseBegin(), BaseSize(), MS_SYNC) == 0;
725 }
726 return result;
727 }
728
Protect(int prot)729 bool MemMap::Protect(int prot) {
730 if (base_begin_ == nullptr && base_size_ == 0) {
731 prot_ = prot;
732 return true;
733 }
734
735 if (mprotect(base_begin_, base_size_, prot) == 0) {
736 prot_ = prot;
737 return true;
738 }
739
740 PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", "
741 << prot << ") failed";
742 return false;
743 }
744
CheckNoGaps(MemMap * begin_map,MemMap * end_map)745 bool MemMap::CheckNoGaps(MemMap* begin_map, MemMap* end_map) {
746 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
747 CHECK(begin_map != nullptr);
748 CHECK(end_map != nullptr);
749 CHECK(HasMemMap(begin_map));
750 CHECK(HasMemMap(end_map));
751 CHECK_LE(begin_map->BaseBegin(), end_map->BaseBegin());
752 MemMap* map = begin_map;
753 while (map->BaseBegin() != end_map->BaseBegin()) {
754 MemMap* next_map = GetLargestMemMapAt(map->BaseEnd());
755 if (next_map == nullptr) {
756 // Found a gap.
757 return false;
758 }
759 map = next_map;
760 }
761 return true;
762 }
763
DumpMaps(std::ostream & os,bool terse)764 void MemMap::DumpMaps(std::ostream& os, bool terse) {
765 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
766 DumpMapsLocked(os, terse);
767 }
768
DumpMapsLocked(std::ostream & os,bool terse)769 void MemMap::DumpMapsLocked(std::ostream& os, bool terse) {
770 const auto& mem_maps = *gMaps;
771 if (!terse) {
772 os << mem_maps;
773 return;
774 }
775
776 // Terse output example:
777 // [MemMap: 0x409be000+0x20P~0x11dP+0x20P~0x61cP+0x20P prot=0x3 LinearAlloc]
778 // [MemMap: 0x451d6000+0x6bP(3) prot=0x3 large object space allocation]
779 // The details:
780 // "+0x20P" means 0x20 pages taken by a single mapping,
781 // "~0x11dP" means a gap of 0x11d pages,
782 // "+0x6bP(3)" means 3 mappings one after another, together taking 0x6b pages.
783 os << "MemMap:" << std::endl;
784 for (auto it = mem_maps.begin(), maps_end = mem_maps.end(); it != maps_end;) {
785 MemMap* map = it->second;
786 void* base = it->first;
787 CHECK_EQ(base, map->BaseBegin());
788 os << "[MemMap: " << base;
789 ++it;
790 // Merge consecutive maps with the same protect flags and name.
791 constexpr size_t kMaxGaps = 9;
792 size_t num_gaps = 0;
793 size_t num = 1u;
794 size_t size = map->BaseSize();
795 CHECK_ALIGNED(size, kPageSize);
796 void* end = map->BaseEnd();
797 while (it != maps_end &&
798 it->second->GetProtect() == map->GetProtect() &&
799 it->second->GetName() == map->GetName() &&
800 (it->second->BaseBegin() == end || num_gaps < kMaxGaps)) {
801 if (it->second->BaseBegin() != end) {
802 ++num_gaps;
803 os << "+0x" << std::hex << (size / kPageSize) << "P";
804 if (num != 1u) {
805 os << "(" << std::dec << num << ")";
806 }
807 size_t gap =
808 reinterpret_cast<uintptr_t>(it->second->BaseBegin()) - reinterpret_cast<uintptr_t>(end);
809 CHECK_ALIGNED(gap, kPageSize);
810 os << "~0x" << std::hex << (gap / kPageSize) << "P";
811 num = 0u;
812 size = 0u;
813 }
814 CHECK_ALIGNED(it->second->BaseSize(), kPageSize);
815 ++num;
816 size += it->second->BaseSize();
817 end = it->second->BaseEnd();
818 ++it;
819 }
820 os << "+0x" << std::hex << (size / kPageSize) << "P";
821 if (num != 1u) {
822 os << "(" << std::dec << num << ")";
823 }
824 os << " prot=0x" << std::hex << map->GetProtect() << " " << map->GetName() << "]" << std::endl;
825 }
826 }
827
HasMemMap(MemMap * map)828 bool MemMap::HasMemMap(MemMap* map) {
829 void* base_begin = map->BaseBegin();
830 for (auto it = gMaps->lower_bound(base_begin), end = gMaps->end();
831 it != end && it->first == base_begin; ++it) {
832 if (it->second == map) {
833 return true;
834 }
835 }
836 return false;
837 }
838
GetLargestMemMapAt(void * address)839 MemMap* MemMap::GetLargestMemMapAt(void* address) {
840 size_t largest_size = 0;
841 MemMap* largest_map = nullptr;
842 DCHECK(gMaps != nullptr);
843 for (auto it = gMaps->lower_bound(address), end = gMaps->end();
844 it != end && it->first == address; ++it) {
845 MemMap* map = it->second;
846 CHECK(map != nullptr);
847 if (largest_size < map->BaseSize()) {
848 largest_size = map->BaseSize();
849 largest_map = map;
850 }
851 }
852 return largest_map;
853 }
854
Init()855 void MemMap::Init() {
856 if (mem_maps_lock_ != nullptr) {
857 // dex2oat calls MemMap::Init twice since its needed before the runtime is created.
858 return;
859 }
860 mem_maps_lock_ = new std::mutex();
861 // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
862 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
863 DCHECK(gMaps == nullptr);
864 gMaps = new Maps;
865 }
866
Shutdown()867 void MemMap::Shutdown() {
868 if (mem_maps_lock_ == nullptr) {
869 // If MemMap::Shutdown is called more than once, there is no effect.
870 return;
871 }
872 {
873 // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
874 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
875 DCHECK(gMaps != nullptr);
876 delete gMaps;
877 gMaps = nullptr;
878 }
879 delete mem_maps_lock_;
880 mem_maps_lock_ = nullptr;
881 }
882
SetSize(size_t new_size)883 void MemMap::SetSize(size_t new_size) {
884 CHECK_LE(new_size, size_);
885 size_t new_base_size = RoundUp(new_size + static_cast<size_t>(PointerDiff(Begin(), BaseBegin())),
886 kPageSize);
887 if (new_base_size == base_size_) {
888 size_ = new_size;
889 return;
890 }
891 CHECK_LT(new_base_size, base_size_);
892 MEMORY_TOOL_MAKE_UNDEFINED(
893 reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) +
894 new_base_size),
895 base_size_ - new_base_size);
896 CHECK_EQ(munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) + new_base_size),
897 base_size_ - new_base_size), 0) << new_base_size << " " << base_size_;
898 base_size_ = new_base_size;
899 size_ = new_size;
900 }
901
MapInternalArtLow4GBAllocator(size_t length,int prot,int flags,int fd,off_t offset)902 void* MemMap::MapInternalArtLow4GBAllocator(size_t length,
903 int prot,
904 int flags,
905 int fd,
906 off_t offset) {
907 #if USE_ART_LOW_4G_ALLOCATOR
908 void* actual = MAP_FAILED;
909
910 bool first_run = true;
911
912 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
913 for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) {
914 // Use gMaps as an optimization to skip over large maps.
915 // Find the first map which is address > ptr.
916 auto it = gMaps->upper_bound(reinterpret_cast<void*>(ptr));
917 if (it != gMaps->begin()) {
918 auto before_it = it;
919 --before_it;
920 // Start at the end of the map before the upper bound.
921 ptr = std::max(ptr, reinterpret_cast<uintptr_t>(before_it->second->BaseEnd()));
922 CHECK_ALIGNED(ptr, kPageSize);
923 }
924 while (it != gMaps->end()) {
925 // How much space do we have until the next map?
926 size_t delta = reinterpret_cast<uintptr_t>(it->first) - ptr;
927 // If the space may be sufficient, break out of the loop.
928 if (delta >= length) {
929 break;
930 }
931 // Otherwise, skip to the end of the map.
932 ptr = reinterpret_cast<uintptr_t>(it->second->BaseEnd());
933 CHECK_ALIGNED(ptr, kPageSize);
934 ++it;
935 }
936
937 // Try to see if we get lucky with this address since none of the ART maps overlap.
938 actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
939 if (actual != MAP_FAILED) {
940 next_mem_pos_ = reinterpret_cast<uintptr_t>(actual) + length;
941 return actual;
942 }
943
944 if (4U * GB - ptr < length) {
945 // Not enough memory until 4GB.
946 if (first_run) {
947 // Try another time from the bottom;
948 ptr = LOW_MEM_START - kPageSize;
949 first_run = false;
950 continue;
951 } else {
952 // Second try failed.
953 break;
954 }
955 }
956
957 uintptr_t tail_ptr;
958
959 // Check pages are free.
960 bool safe = true;
961 for (tail_ptr = ptr; tail_ptr < ptr + length; tail_ptr += kPageSize) {
962 if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) {
963 safe = false;
964 break;
965 } else {
966 DCHECK_EQ(errno, ENOMEM);
967 }
968 }
969
970 next_mem_pos_ = tail_ptr; // update early, as we break out when we found and mapped a region
971
972 if (safe == true) {
973 actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
974 if (actual != MAP_FAILED) {
975 return actual;
976 }
977 } else {
978 // Skip over last page.
979 ptr = tail_ptr;
980 }
981 }
982
983 if (actual == MAP_FAILED) {
984 LOG(ERROR) << "Could not find contiguous low-memory space.";
985 errno = ENOMEM;
986 }
987 return actual;
988 #else
989 UNUSED(length, prot, flags, fd, offset);
990 LOG(FATAL) << "Unreachable";
991 UNREACHABLE();
992 #endif
993 }
994
MapInternal(void * addr,size_t length,int prot,int flags,int fd,off_t offset,bool low_4gb)995 void* MemMap::MapInternal(void* addr,
996 size_t length,
997 int prot,
998 int flags,
999 int fd,
1000 off_t offset,
1001 bool low_4gb) {
1002 #ifdef __LP64__
1003 // When requesting low_4g memory and having an expectation, the requested range should fit into
1004 // 4GB.
1005 if (low_4gb && (
1006 // Start out of bounds.
1007 (reinterpret_cast<uintptr_t>(addr) >> 32) != 0 ||
1008 // End out of bounds. For simplicity, this will fail for the last page of memory.
1009 ((reinterpret_cast<uintptr_t>(addr) + length) >> 32) != 0)) {
1010 LOG(ERROR) << "The requested address space (" << addr << ", "
1011 << reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) + length)
1012 << ") cannot fit in low_4gb";
1013 return MAP_FAILED;
1014 }
1015 #else
1016 UNUSED(low_4gb);
1017 #endif
1018 DCHECK_ALIGNED(length, kPageSize);
1019 // TODO:
1020 // A page allocator would be a useful abstraction here, as
1021 // 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us
1022 void* actual = MAP_FAILED;
1023 #if USE_ART_LOW_4G_ALLOCATOR
1024 // MAP_32BIT only available on x86_64.
1025 if (low_4gb && addr == nullptr) {
1026 // The linear-scan allocator has an issue when executable pages are denied (e.g., by selinux
1027 // policies in sensitive processes). In that case, the error code will still be ENOMEM. So
1028 // the allocator will scan all low 4GB twice, and still fail. This is *very* slow.
1029 //
1030 // To avoid the issue, always map non-executable first, and mprotect if necessary.
1031 const int orig_prot = prot;
1032 const int prot_non_exec = prot & ~PROT_EXEC;
1033 actual = MapInternalArtLow4GBAllocator(length, prot_non_exec, flags, fd, offset);
1034
1035 if (actual == MAP_FAILED) {
1036 return MAP_FAILED;
1037 }
1038
1039 // See if we need to remap with the executable bit now.
1040 if (orig_prot != prot_non_exec) {
1041 if (mprotect(actual, length, orig_prot) != 0) {
1042 PLOG(ERROR) << "Could not protect to requested prot: " << orig_prot;
1043 munmap(actual, length);
1044 errno = ENOMEM;
1045 return MAP_FAILED;
1046 }
1047 }
1048 return actual;
1049 }
1050
1051 actual = mmap(addr, length, prot, flags, fd, offset);
1052 #else
1053 #if defined(__LP64__)
1054 if (low_4gb && addr == nullptr) {
1055 flags |= MAP_32BIT;
1056 }
1057 #endif
1058 actual = mmap(addr, length, prot, flags, fd, offset);
1059 #endif
1060 return actual;
1061 }
1062
operator <<(std::ostream & os,const MemMap & mem_map)1063 std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) {
1064 os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]",
1065 mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(),
1066 mem_map.GetName().c_str());
1067 return os;
1068 }
1069
TryReadable()1070 void MemMap::TryReadable() {
1071 if (base_begin_ == nullptr && base_size_ == 0) {
1072 return;
1073 }
1074 CHECK_NE(prot_ & PROT_READ, 0);
1075 volatile uint8_t* begin = reinterpret_cast<volatile uint8_t*>(base_begin_);
1076 volatile uint8_t* end = begin + base_size_;
1077 DCHECK(IsAligned<kPageSize>(begin));
1078 DCHECK(IsAligned<kPageSize>(end));
1079 // Read the first byte of each page. Use volatile to prevent the compiler from optimizing away the
1080 // reads.
1081 for (volatile uint8_t* ptr = begin; ptr < end; ptr += kPageSize) {
1082 // This read could fault if protection wasn't set correctly.
1083 uint8_t value = *ptr;
1084 UNUSED(value);
1085 }
1086 }
1087
ZeroAndReleasePages(void * address,size_t length)1088 void ZeroAndReleasePages(void* address, size_t length) {
1089 if (length == 0) {
1090 return;
1091 }
1092 uint8_t* const mem_begin = reinterpret_cast<uint8_t*>(address);
1093 uint8_t* const mem_end = mem_begin + length;
1094 uint8_t* const page_begin = AlignUp(mem_begin, kPageSize);
1095 uint8_t* const page_end = AlignDown(mem_end, kPageSize);
1096 if (!kMadviseZeroes || page_begin >= page_end) {
1097 // No possible area to madvise.
1098 std::fill(mem_begin, mem_end, 0);
1099 } else {
1100 // Spans one or more pages.
1101 DCHECK_LE(mem_begin, page_begin);
1102 DCHECK_LE(page_begin, page_end);
1103 DCHECK_LE(page_end, mem_end);
1104 std::fill(mem_begin, page_begin, 0);
1105 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
1106 std::fill(page_end, mem_end, 0);
1107 }
1108 }
1109
AlignBy(size_t size)1110 void MemMap::AlignBy(size_t size) {
1111 CHECK_EQ(begin_, base_begin_) << "Unsupported";
1112 CHECK_EQ(size_, base_size_) << "Unsupported";
1113 CHECK_GT(size, static_cast<size_t>(kPageSize));
1114 CHECK_ALIGNED(size, kPageSize);
1115 if (IsAlignedParam(reinterpret_cast<uintptr_t>(base_begin_), size) &&
1116 IsAlignedParam(base_size_, size)) {
1117 // Already aligned.
1118 return;
1119 }
1120 uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
1121 uint8_t* base_end = base_begin + base_size_;
1122 uint8_t* aligned_base_begin = AlignUp(base_begin, size);
1123 uint8_t* aligned_base_end = AlignDown(base_end, size);
1124 CHECK_LE(base_begin, aligned_base_begin);
1125 CHECK_LE(aligned_base_end, base_end);
1126 size_t aligned_base_size = aligned_base_end - aligned_base_begin;
1127 CHECK_LT(aligned_base_begin, aligned_base_end)
1128 << "base_begin = " << reinterpret_cast<void*>(base_begin)
1129 << " base_end = " << reinterpret_cast<void*>(base_end);
1130 CHECK_GE(aligned_base_size, size);
1131 // Unmap the unaligned parts.
1132 if (base_begin < aligned_base_begin) {
1133 MEMORY_TOOL_MAKE_UNDEFINED(base_begin, aligned_base_begin - base_begin);
1134 CHECK_EQ(munmap(base_begin, aligned_base_begin - base_begin), 0)
1135 << "base_begin=" << reinterpret_cast<void*>(base_begin)
1136 << " aligned_base_begin=" << reinterpret_cast<void*>(aligned_base_begin);
1137 }
1138 if (aligned_base_end < base_end) {
1139 MEMORY_TOOL_MAKE_UNDEFINED(aligned_base_end, base_end - aligned_base_end);
1140 CHECK_EQ(munmap(aligned_base_end, base_end - aligned_base_end), 0)
1141 << "base_end=" << reinterpret_cast<void*>(base_end)
1142 << " aligned_base_end=" << reinterpret_cast<void*>(aligned_base_end);
1143 }
1144 std::lock_guard<std::mutex> mu(*mem_maps_lock_);
1145 base_begin_ = aligned_base_begin;
1146 base_size_ = aligned_base_size;
1147 begin_ = aligned_base_begin;
1148 size_ = aligned_base_size;
1149 DCHECK(gMaps != nullptr);
1150 if (base_begin < aligned_base_begin) {
1151 auto it = gMaps->find(base_begin);
1152 CHECK(it != gMaps->end()) << "MemMap not found";
1153 gMaps->erase(it);
1154 gMaps->insert(std::make_pair(base_begin_, this));
1155 }
1156 }
1157
1158 } // namespace art
1159